首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 593 毫秒
1.
文摘     
正用于海水鱼养殖池除氮的DHS-USB循环水系统开发了由降流式挂海绵(DHS)反应器与上流式污泥床(USB)反应器组合构成的一个除氮循环水系统。将该系统应用于一个海水鱼养殖池,用以评价其除氮能力并确定脱氮反应的最佳C/N比。随着该系统的启动运转,海水鱼养殖池中的硝酸盐氮浓度保持在30 mg/L以下,而总氨氮和亚硝酸盐氮浓度则维持在0.1 mg/L以下。最佳脱氮率约为1.2。  相似文献   

2.
单级生物接触氧化法去除海水养殖废水中的无机氮   总被引:1,自引:0,他引:1  
利用在填料上人工接种微生物组成的浸没式生物接触氧化单级处理系统对养殖废水进行净化,效果良好。在试验水体体积与处理系统体积之比约为100∶1的情况下,对氨氮、亚硝酸盐氮、硝酸盐氮起始质量浓度分别为4.0 mg/L、1.76 mg/L、800 mg/L,COD质量浓度为16.33 mg/L的养殖废水进行处理,发现处理系统中进行着强烈的硝化和反硝化作用:处理30 h,氨氮质量浓度下降并一直保持在0.1 mg/L;亚硝酸盐氮浓度48 h内,前6 h从1.76 mg/L短暂上升到2.24 mg/L,然后持续下降,最低到0.22 mg/L;对硝酸盐氮的反硝化作用能力也很强,经48 h处理,硝酸盐氮质量浓度从800 mg/L下降到180 mg/L。根据对处理过程中的水质测定,浸没式生物接触氧化单级处理试验系统具有较强的生物脱氮能力。  相似文献   

3.
为考察水力停留时间(HRT)对不同硝酸盐氮(NO3--N)浓度的养殖污水脱氮效果的影响,建立以聚己内酯(PCL)为碳源和生物膜载体的固相反硝化反应器,经历20 d培养,反应器成功启动。试验结果表明,当进水NO3--N浓度分别为100 mg/L以下、150 mg/L、200~300 mg/L时,反应器的最佳HRT分别为4、5.5和6 h,出水NO3--N浓度达到最低值,分别为17.9 mg/L、23.9 mg/L和34.1~47.4 mg/L,同时溶解性有机碳(DOC)没有大幅增加。反应器对氨氮(NH4+-N)亦有一定的去除效果,在反应器启动运行后,出水NH4+-N浓度明显下降,且在不同进水NO3--N及HRT下均稳定在5 mg/L左右,出水亚硝酸盐氮(NO2--N)一直维持在0.14 mg/L以下;同时,反应器对养殖污水中的溶氧(DO)和p H变化有一定抗性,缓冲能力较强。本研究对水产养殖脱氮的实验室研究和实际运行、管理具有参考意义。  相似文献   

4.
冷水鱼循环水养殖中的低温氨氮处理技术研究   总被引:1,自引:0,他引:1  
为解决冷水鱼养殖过程中养殖水体中的氨氮累积问题,根据低温生物滤器及臭氧催化氧化处理氨氮的特点,设计了冷水鱼工厂化养殖氨氮处理系统并进行了试验。试验基于以臭氧氧化为主、低温生物处理为辅的处理工艺,试验鱼为虹鳟鱼,养殖密度为23 kg/m3,试验水体约为10 m3,试验周期为7 d。结果表明,该系统能够满足冷水鱼工厂化养殖过程中有关氨氮处理的水质指标要求,处理后的养殖池进水口的水质指标总氨氮≤0.18 mg/L,硝酸盐氮氮≤29.43 mg/L,亚硝酸盐氮氮≤0.1 mg/L;养殖水体氨氮浓度监测表明,臭氧在水中残留低于0.008 mg/L,符合养殖鱼类对水体臭氧浓度的安全要求。  相似文献   

5.
研究不同碳源对海水水族箱脱氮系统运行效果的影响,从而为系统高效运行提供依据。结果表明,当初始硝酸盐浓度为100 mg/L时,分别以乙醇、乙酸钠、柠檬酸钠和葡萄糖作为唯一碳源,海水水族箱中硝酸盐去除效果达到99%所需时间分别为8 d9、d1、0 d和11 d。以葡萄糖和柠檬酸钠为唯一碳源时,水族箱中亚硝酸盐呈现出先积累再消耗的变化规律,亚硝酸盐峰值浓度分别为16.7 mg/L和17.6 mg/L,并分别在13d和11 d降解到0.1 mg/L以下;而分别以乙醇和乙酸钠作为唯一碳源时,水族箱中亚硝酸盐氮浓度均维持在0.1 mg/L以下。以乙醇作为唯一碳源时,水族箱中DO迅速下降,8 d时稳定在2 mg/L左右,分别投加其他3种碳源时,水族箱中DO始终维持在6 mg/L以上。除柠檬酸钠外,投加碳源后水族箱中浊度和pH未出现明显变化。  相似文献   

6.
马鞍溪水库水质分析报告   总被引:1,自引:0,他引:1  
本文研究了马鞍溪水库库水的理化性质,分析表明该库的水属于碳酸水,总硬度平均为0.71毫克当量/升,总碱度平均为1.085毫克当量/升,按盐氮、亚硝酸盐氮、硝酸盐氮分配状况正常,三态氮总量平均为1.06mg/L,溶解磷浓度为0.099mg/L,氮磷比值为10.7,溶解氧平均为8.09mg/L,有机耗氧量平均为28.19mg/L。  相似文献   

7.
亚硝酸盐氧化细菌固定化方法的优化研究   总被引:1,自引:0,他引:1  
对亚硝酸盐氧化细菌的包埋固定化及其应用进行了研究.选用聚乙烯醇(PVA)和海藻酸钠(SA)混合物作为包埋载体,试验发现混合载体中聚乙烯醇(PVA)和海藻酸钠(SA)的含量、包埋菌液浓度和交联时间对固定化效果有重要影响.利用正交试验对这4个因素进行优化,得到最佳包埋条件为:聚乙烯醇8%、海藻酸钠1%、包埋菌液浓度26 g/L、固定化小球交联时间16 h.对影响固定化菌降解亚硝酸盐氮的因素进行了研究,发现固定化菌的适宜降解条件为:温度30℃、pH 7.0及DOI≥2.0 mg//L.将固定化菌用于养殖水亚硝酸盐氮降解,10 d内将业硝酸盐氮从1.210 mg/L降至0.041 mg/L,具有稳定、持续降解的特点.  相似文献   

8.
郑宗林  叶金明  刘波  杨先乐  周兴华  向枭 《水产学报》2010,34(12):1901-1907
反硝化聚磷微菌由于具有同时脱氮和除磷的特点,能够最大程度的减少碳源需求,为解决生物脱氮除磷工艺的碳源竞争矛盾提供了新的思路和方法。以纯培养方式探讨了外源性碳源、硝酸盐对反硝化聚磷菌(RC11)磷酸盐代谢活动的影响。结果表明,好氧培养时,菌株RC11在外源碳源存在时发生了超量吸磷现象;缺氧培养时,菌株RC11可以利用硝酸盐而非亚硝酸盐作为电子受体进行反硝化聚磷。无外加碳源时,菌株RC11经历厌氧阶段后初期可以利用硝酸盐氧化到亚硝酸盐的过程中产生的能量进行摄磷;但当亚硝酸盐的积累达到高峰时,进入以亚硝酸盐为电子受体的反硝化阶段,由于亚硝酸盐氮不能作为氧分子的替代物进行反硝化除磷,菌株RC11实际上处于一个厌氧环境,会引发释磷;在厌氧条件下菌株RC11具有利用硝酸盐作为电子受体进行反硝化除磷的功能。  相似文献   

9.
采用上流式和下流式曝气生物滤池处理凡纳滨对虾(Litopenaeus vannamei)养殖污水,连续进行30 d,分析出水水质,并观察系统运行情况和装置污染状况。研究了养殖污水中化学需氧量、氨氮、硝酸盐氮、亚硝酸盐氮、无机氮及活性磷酸盐6项指标的去除效果。实验结果表明:从养殖污水主要污染物指标的去除效果和稳定性上看,上流式优于下流式曝气生物滤池。在系统进水化学需氧量质量浓度为7.62~8.20 mg/L、氨氮质量浓度为0.62~0.65 mg/L、硝酸盐氮质量浓度为0.54~0.59 mg/L、亚硝酸盐氮质量浓度为0.23~0.27 mg/L、无机氮质量浓度为1.40~1.47 mg/L、活性磷酸盐质量浓度为0.24~0.29 mg/L,水温为25℃~30℃时,上流式曝气生物滤池对养殖污水中6项指标的去除率分别为:45.2%、88.9%、58.5%、78.8%、75.3%和25.1%。可见,对氨氮的去除效果最佳,亚硝酸盐氮和无机氮次之,化学需氧量和硝酸盐氮的去除效果较差,活性磷酸盐去除率最低。  相似文献   

10.
以人工高分子聚合物+农业废弃物为复合碳源的反硝化系统兼具高效脱氮和低脱氮成本的优势。进水硝酸盐浓度(INC)和温度(T)是生物反硝化过程的重要影响因素,本研究以质量比为1∶1的聚己内酯(PCL)和玉米芯(CC)为复合碳源构建反硝化系统,设置3种INC和温度,测定了脱氮能效、有机物利用情况、微生物群落结构和功能基因丰度来判定这2个因素对反硝化的影响。实验结果显示,反应器最佳的INC为30 mg/L,60~90 d的平均硝酸盐去除率(NRE)达到99.12%,且无明显亚硝酸盐氮积累;在不同INC下,优势菌门均为变形菌门(Proteobacteria),其丰度随INC升高而下降,分别为54.46%、39.96%和24.77%;T=25℃为最佳温度条件,其功能基因表达量除napA外均最高,后30 d的NRE为99.21%;T=30℃和T=25℃优势菌门均为变形菌门,丰度分别为55.86%和38.85%,而T=20℃的系统中丰度最高的为拟杆菌门(Bacteroidota)(28.87%);各系统的优势菌属都为红细菌属(Rhodobacter)。各系统产生的短链脂肪酸中,乙酸占比最高且其与丙酸的比...  相似文献   

11.
研究了生产金头鲷的再循环养殖系统中脱硝反应器内厌氧氨氧化菌的活性。从养殖池固体颗粒过滤器提取的有机物质被用作脱硝反应的电子给体和碳源。反应器在四种固体颗粒滞留时间(SRT)下工作。在状态稳定,12.5,8和6天的SRT下,厌氧氨氧化活性相似(约35mg N 1 reactor^-1day^-1);在4天的SRT下,活性低了很多,为12mg N 1 reactor^-1day^-1。这表明,在SRT低于6天的情况下,厌氧氨氧化菌被冲刷出了反应器。这些结果被荧光原位杂交技术所证实,该技术显示在12.5,8和6天的SRT下,脱硝反应器内厌氧氨氧化菌菌落数量接近于10^8cells/ml,  相似文献   

12.
为解决黄尾鲴夏花培育过程养殖水体中氮、磷等营养物质含量上升的问题,探讨了不同浓度的高效絮凝脱氮除磷菌剂对养殖水体氮、磷去除的效果。30d的水族缸养殖实验验证了当高效絮凝脱氮除磷菌剂的剂量为0.2 mg/L时,养殖水体氨氮的含量始终在0.15 mg/L以下;氨氮去除率可达90.5%~99%,亚硝酸盐氮的含量始终在0.08 mg/L以下,亚硝酸盐氮去除率可达93.8%~99%;总磷去除率可达72.8%~99%;生物絮团在第三天就能形成。此外,通过大田实验得到使用高效絮凝脱氮除磷菌剂培育黄尾鲴夏花成活率可达71.25%~72.5%,养殖效益每亩可达3862.5~3937.5元。表明高效絮凝脱氮除磷菌剂能显著提高耐低温黄尾鲴的苗种成活率和养殖经济效益。  相似文献   

13.
利用复合微生物降解养殖水体中亚硝酸盐的初步研究   总被引:4,自引:0,他引:4  
在养殖水体中对保存的芽孢杆菌、反硝化细菌、乳酸菌降解亚硝酸盐的能力进行比较,发现3种菌株对亚硝酸盐均能较好地降解,但降解速度不同,反硝化细菌>乳酸菌>芽孢杆菌;对3种菌株混合接种发现,具有较好净化水质效果的最佳接菌配比为芽孢杆菌∶反硝化细菌∶乳酸菌=1∶1∶2,在30℃、接种量为1%的条件下,以该配比接种亚硝酸盐,硝酸盐初始质量浓度分别为12.85、54.42mg/L的模拟养殖水体中,其亚硝酸盐、硝酸盐降解率在24h内均超99.99%,水体中的pH值显著降低,水体中的氨氮变化较小,可以实现对养殖水体的快速脱氮。  相似文献   

14.
为摸清河南中牟县万滩镇地区养殖水体区域性问题,降低养殖风险,于2014年3—11月对实验池塘18项水质指标进行跟踪,并利用变异系数法进行分析、评价,从而为池塘水质评价和水质过程管理提供科学量化的依据。结果表明,亚硝酸盐氮、氨氮、硝酸盐氮、透明度、活性磷、浊度、溶氧、氧化还原电位等8项指标权重之和达到了80%,综合考虑监测指标间的关联关系和实际情况,最终确定以亚硝酸盐氮、氨氮、硝酸盐氮、透明度、活性磷、溶氧、温度、p H等8项指标为池塘日常管理监控因子。该地区主要指标变化范围为:氨氮0~1.0 mg/L,亚硝酸盐氮0~0.5 mg/L,硝酸盐氮0~3.5 mg/L,透明度10~40cm,活性磷0.1~0.8 mg/L,溶解氧3~9mg/L,水温16.9~29.2℃和p H7.22~8.85。该地区池塘在养殖前期出现高p H的现象,是各项因素叠加的综合结果;养殖中后期应重点关注水体的脱氮处理,预防长期高浓度氨氮、亚硝酸盐氮等毒性指标累积带来的风险。本研究为开展针对性的池塘水质调节和养殖过程管理提供参考依据。  相似文献   

15.
统计优化硝化菌发酵培养基   总被引:1,自引:0,他引:1  
为提高硝化菌的亚硝酸盐氧化能力,利用统计试验设计(Plackett-Burman和Box-Behnken设计)优化得到一最佳培养基:NaHCO3 2.0g·L^-1;NaNO2 2.36g·L^-1;Na2C030.37g·L^-1;NaCl 0.34g·L^-1;KH2P040.05g·L^-1;MgSO4·7H2O 0.05g·L^-1;FeSO4·7H2O 0.03g·L^-1。在此条件下,硝化菌的最大亚硝酸盐氧化速率达到905.0mgNO2-N·(gMLSS·d)^-1(mixed liquor suspended solids,MLSS,混合液悬浮固体)。将50L降解速率为850mgNO2-N·(gMLSS·d)^-1的硝化菌(浓度为1.99gVSS·L^-1)(volatile solid,VSS,挥发性固体)投加至0.6hm^2的养殖水体中,7d内试验水体中的亚硝酸盐浓度即降至安全浓度以下。  相似文献   

16.
通过对海洋环境污泥进行富集培养及分离筛选得到一株光合细菌,通过16S rDNA全序列分析,结合菌株形态和结构,鉴定其为Ectothiorhodospira magna。研究表明菌株在盐度30‰、28℃、DO 8 mg/L的条件下,对初始浓度分别为280、84、98 mg/L的氨氮、亚硝酸盐氮和硝酸盐氮经过10 d处理的去除率分别为81.83%、46.21%、86.79%。在氨氮、亚硝酸盐氮和硝酸盐氮共存的环境下,菌株首先利用氨氮,之后将亚硝酸盐氮转化成硝酸盐氮。  相似文献   

17.
热带芽孢杆菌的筛选及对人工废水效果研究   总被引:1,自引:0,他引:1  
自海南热带海水养殖系统的底泥中筛选得到1株对人工废水净化效果明显的菌株L S‐1305,通过对菌落形态、16S rDNA、生理生化试验,鉴定该菌株为弯曲芽孢杆菌。研究了弯曲芽孢杆菌LS‐1305在人工废水中的生长特性及对凡纳滨对虾的安全性试验,并将密度为(2.5±0.3)×105 cf u/m L的弯曲芽孢杆菌L S‐1305活菌接种至化学需氧量、氨氮、亚硝酸盐初始质量浓度分别为(721.5±1.8) mg/L、(67.33±0.58) mg/L、68.56±2.08) mg/L的人工废水中,不间断充无菌空气培养48 h。最终建立了该菌株在人工废水中随时间的生长关系。试验结果表明,该菌株对凡纳滨对虾安全,该菌株对人工废水的化学需氧量、氨氮、亚硝酸盐的去除率分别为91.61%、86.21%、87.22%。弯曲芽孢杆菌L S‐1305具有显著改良海水养殖水体的潜在应用前景,为今后开发适合海南地区海水养殖环境的热带芽孢杆菌微生物制剂奠定了重要的基础。  相似文献   

18.
选择绍兴地区不同方位的4个乡镇(东浦镇、福全镇、马山镇、鉴湖镇)作为监测点,分析了农村生活污水对河道水质的影响.在采样点直接进行pH、透明度、ORP、TDS和溶解氧等测量,将采集的水样在实验室进行COD、BOD5、TN、TP、亚硝酸盐氮、硝酸盐氮、氨氮、正磷酸盐的含量测定.结果表明监测点的水体透明度为62~79cm,溶解氧1.325~3.150mg/L,TDS为112~219mg/kg,pH6.80~7.43,ORP为-0.67~15mV,硝酸盐氮为0.82~2.59mg/L,亚硝酸盐氮为0.82~2.59mg/L,氨氮为2.83~4.31mg/L,正磷酸盐为0.018~0.32mg/L,总氮为0.061~0.13mg/L,总磷为0.0225~0.0339mg/L,COD为0~63.1395mg/mL,BOD5为18.47~22.25mg/L.采用地衣芽孢杆菌(Bacillus licheniformis)和恶臭假单胞菌(Pseudomonas putida)1∶1混合的微生态制剂处理农村污染水体,持续15d,结果表明不同浓度的微生态制剂对污染水体均有治理效果,0.15g/L菌粉组去除效果最佳.  相似文献   

19.
【目的】构建以丝瓜络为碳源的固相反硝化系统,并探究在不同水力停留时间(hydraulic retention time, HRT)和进水硝酸盐浓度(Influent nitrate concentration, INC)下该系统的反硝化性能,为丝瓜络作为反硝化碳源在水产养殖尾水处理工艺的进一步优化提供理论依据。【方法】以丝瓜络(loofah sponge, LS)为一维反硝化反应器(denitrification reactor, DR)外加碳源,在流场环境下,测定不同HRT(16、20、24和28 h)和INC(50、75、100和125 mg/L)下反硝化系统对硝酸盐氮(NO3?-N)、亚硝酸盐氮(NO2?-N)、氨氮(NH4+-N)、总氮(TN)、总磷(TP)和COD的去除效果。并采用基于Illumina Miseq测序平台的高通量测序技术,对丝瓜络反硝化反应器(LS-DR)在运行初期和末期时的细菌群落结构进行分析。【结果】当INC为50 mg/L,HRT为24 h时,LS-DR的NO3?-N去除率和TN去除率均达到最大,分别为98.97±0.52%和97.84±0.94%,同时出水NO2?-N浓度也达到较低水平(小于0.5 mg/L);在HRT为24 h的基础上,当INC延长至75、100和125 mg/L时,其NO3?-N去除率和NO3?-N去除速率(nitrate removal rate, NRR)均随INC的增加而显著增加(P < 0.05),出水COD则随INC的增加而降低,但均未实现完全反硝化,然而,LS-DR在整个实验期间均能完全去除NH4+-N;扫描电镜结果显示丝瓜络表面结构有利于微生物附着生长;高通量测序结果显示LS-DR的优势菌门包括变形菌门(Proteobacteria)、拟杆菌门(Bacteroidetes)、弯曲杆菌门(Campilobacterota)、厚壁菌门(Firmicutes)和疣微菌门(Verrucomicrobiota);被鉴定的优势菌属中热单胞菌属 (Thermomonas, 1.46%)、陶厄氏菌属 (Thauera, 0.55%)、固氮螺菌属 (Azospira, 3.32%)、Simplicispira(1.01%)、假黄色单胞菌属 (Pseudoxanthomonas, 0.39%)、草螺菌属 (Herbaspirillum, 3.02%)和Uliginosibacterium(0.9%)能够促进反硝化的进行,Cytophaga xylanolytica(1.61%)和Cloacibacterium(2.69%)主要参与了丝瓜络的降解,黄杆菌属 (Flavobacterium, 1.17%)和Diaphorobacter(0.64%)既能进行反硝化,也能降解丝瓜络。【结论】LS-DR的最佳HRT为24 h,最适宜的INC为50 mg/L。【意义】本研究为丝瓜络固相反硝化工艺的优化提供了理论基础,为开发应用新型缓释碳源提供参考。  相似文献   

20.
为提高对虾养殖系统水质净化能力,改善对虾养殖水环境,利用3种微生态制剂(枯草芽孢杆菌、硝化细菌、光合细菌)和2种生物膜载体(陶粒、纤维毛球)建立4个南美白对虾(Penaeus vannamei)养殖系统,比较不同养殖系统硝化功能的建立过程及对氨氮和亚硝酸盐氮的净化能力,采用高通量测序方法分析细菌群落结构。结果表明,各系统硝化功能建立后,24 h氨氮去除率较初期分别提高12.47%、13.95%、17.25%和17.65%。以纤维毛球为载体,投加硝化细菌、枯草芽孢杆菌和光合细菌系统的氨氧化能力和亚硝酸盐氧化能力强于陶粒系统,24 h氨氮去除率分别高9.03%和9.06%。投放虾苗后,在30 d养殖周期内,各系统氨氮和亚硝酸盐氮含量分别维持在0.20 mg/L和0.15 mg/L以下,硝酸盐氮含量呈缓慢上升趋势。细菌群落结构分析表明,养殖系统生物膜中优势菌门均为变形菌门,占比超40%;优势菌纲为α-变形菌纲、β-变形菌纲、γ-变形菌纲,系统中存在Nitrosomonas、Nitrospira和Nitrococcus等多种参与水体净化以及Algisphaera、Gemmatimonas和Paucibacter等参与有机质分解与对虾益生作用的类群。本研究可为减少养殖水体废物排放及降低水生环境污染风险提供参考。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号