首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3篇
  免费   1篇
  国内免费   2篇
综合类   2篇
水产渔业   3篇
畜牧兽医   1篇
  2024年   1篇
  2023年   1篇
  2022年   2篇
  2019年   1篇
  2012年   1篇
排序方式: 共有6条查询结果,搜索用时 15 毫秒
1
1.
2.
为了查明2016年3月份河南省洛阳市某大鲵(Andrias davidianus)养殖厂发生大规模疫病的原因,试验采用平板划线法从患病大鲵中分离细菌,结合革兰氏染色镜检、透射电镜观察、16S rDNA序列分析及遗传进化树构建对其进行鉴定,并对代表株进行生长曲线的测定及人工感染试验以鉴定其致病性,最后进行药敏试验测定水产常用药物的抑菌效果。结果表明:从大鲵组织中共分离出5株细菌,编号为HN1~HN5,均为革兰氏阴性短杆菌,且有一根鞭毛;5株细菌与杀鲑气单胞菌(Aeromonas salmonicida)序列的相似度高达99%,为同种菌株,鉴定其均为杀鲑气单胞菌;代表株HN3菌株与杀鲑气单胞菌LMG 22214株(NR_115351.1)同源性最高; HN3菌株在培养6 h后进入对数生长期,42 h后进入稳定期;HN3菌株为大鲵的病原菌,且对甲砜霉素和恩诺沙星极度敏感,对氟苯尼考、复方新诺明、多西环素高度敏感,对磺胺二甲氧嘧啶钠等4种药物中度敏感,对磺胺间甲氧嘧啶钠等3种药物有耐药性。  相似文献   
3.
探究微生物制剂的修复效果和最佳投放浓度,为实际应用微生物制剂修复白洋淀水陆交错带生态系统奠定研究基础。采集鲥餱淀水陆交错带表层(0 ~ 20 cm)黑泥作为实验底泥,加入鲥餱淀湖水,投入组PP微生物制剂(成品活菌数不低于7×1010个/g)浓度分别为3.0、5.0、10.0、20.0 mg/L。结果显示,微生态制剂对上覆水CODCr、总磷和总氮的最高降解率分别为33.57%、83.33%和42.98%,对底泥全氮和有机碳的最高降解率分别为31.16%和19.53%;底泥中多酚氧化酶、脲酶和蛋白酶的活性提高;水体中放线菌门相对丰度增加,蓝细菌门丰度下降明显,Candidatus Rhodoluna、Aquirestis和Hydrogenophaga(氢噬胞菌属)等相对丰度显著高于对照组(P <0.05)。推荐微生物制剂投加浓度为3 ~ 5 mg/L(活菌个数不少于2.1×108 ~ 3.5×108个/L)。  相似文献   
4.
一、矿区环境条件 凤凰山森林公园内废弃矿区集中于公园核心区30km2内,辖区地势北高南低,沉积岩为石灰岩,成土母质为残积物,土壤pH值为8.15~8.65.年平均气温14℃,1月份最低气温-16℃,7月份最高气温42℃.年降水量为617.8mm,多集中在7-8月份.年平均风速2.6km/s,年无霜期211.7d,年日照时数2382h.  相似文献   
5.
【目的】构建以丝瓜络为碳源的固相反硝化系统,并探究在不同水力停留时间(hydraulic retention time, HRT)和进水硝酸盐浓度(Influent nitrate concentration, INC)下该系统的反硝化性能,为丝瓜络作为反硝化碳源在水产养殖尾水处理工艺的进一步优化提供理论依据。【方法】以丝瓜络(loofah sponge, LS)为一维反硝化反应器(denitrification reactor, DR)外加碳源,在流场环境下,测定不同HRT(16、20、24和28 h)和INC(50、75、100和125 mg/L)下反硝化系统对硝酸盐氮(NO3?-N)、亚硝酸盐氮(NO2?-N)、氨氮(NH4+-N)、总氮(TN)、总磷(TP)和COD的去除效果。并采用基于Illumina Miseq测序平台的高通量测序技术,对丝瓜络反硝化反应器(LS-DR)在运行初期和末期时的细菌群落结构进行分析。【结果】当INC为50 mg/L,HRT为24 h时,LS-DR的NO3?-N去除率和TN去除率均达到最大,分别为98.97±0.52%和97.84±0.94%,同时出水NO2?-N浓度也达到较低水平(小于0.5 mg/L);在HRT为24 h的基础上,当INC延长至75、100和125 mg/L时,其NO3?-N去除率和NO3?-N去除速率(nitrate removal rate, NRR)均随INC的增加而显著增加(P < 0.05),出水COD则随INC的增加而降低,但均未实现完全反硝化,然而,LS-DR在整个实验期间均能完全去除NH4+-N;扫描电镜结果显示丝瓜络表面结构有利于微生物附着生长;高通量测序结果显示LS-DR的优势菌门包括变形菌门(Proteobacteria)、拟杆菌门(Bacteroidetes)、弯曲杆菌门(Campilobacterota)、厚壁菌门(Firmicutes)和疣微菌门(Verrucomicrobiota);被鉴定的优势菌属中热单胞菌属 (Thermomonas, 1.46%)、陶厄氏菌属 (Thauera, 0.55%)、固氮螺菌属 (Azospira, 3.32%)、Simplicispira(1.01%)、假黄色单胞菌属 (Pseudoxanthomonas, 0.39%)、草螺菌属 (Herbaspirillum, 3.02%)和Uliginosibacterium(0.9%)能够促进反硝化的进行,Cytophaga xylanolytica(1.61%)和Cloacibacterium(2.69%)主要参与了丝瓜络的降解,黄杆菌属 (Flavobacterium, 1.17%)和Diaphorobacter(0.64%)既能进行反硝化,也能降解丝瓜络。【结论】LS-DR的最佳HRT为24 h,最适宜的INC为50 mg/L。【意义】本研究为丝瓜络固相反硝化工艺的优化提供了理论基础,为开发应用新型缓释碳源提供参考。  相似文献   
6.
固相反硝化去除水产养殖尾水中硝酸盐氮(NO33–-N)具有广阔的应用前景,水力停留时间(hydraulic retention time, HRT)和进水硝酸盐浓度(influent nitrate concentration, INC)是影响反硝化系统反硝化性能的主要因素之一,需要对HRT进行优化,掌握其最大NO3–-N处理能力。本研究首次以香蕉杆为反硝化反应器的外加碳源,在流场环境下,测定不同HRT和INC下反硝化系统对NO3–-N、亚硝酸盐氮(NO2–-N)、氨氮(NH4+-N)、总氮(TN)、总磷(TP)和化学需氧量(COD)的去除效果。并采用基于Illumina Miseq测序平台的高通量测序技术,对反硝化系统运行初期及末期的细菌群落进行16S rDNA V3和V4区测序分析。结果显示,香蕉杆反应器的最佳HRT为20 h,对应NO3–-N去除率为(96.71±1.36)%,且无NO2–-N积累。在最佳HRT的基础上,反应器的出水硝酸盐浓度(effluent nitrate concentration, ENC)和硝酸盐去除速率(nitrate removal rate, NRR)均随INC的增加而显著增加(P<0.05),出水COD随INC的增加而降低。此外,反应器在整个实验期间能完全去除NH4+-N。高通量测序结果显示,经过长期运行后,反应器内的优势菌门包括变形菌门(Proteobacteria)、拟杆菌门(Bacteroidetes)、弯曲杆菌门(Campilobacterota)和厚壁菌门(Firmicutes),它们的相对丰度分别增至31.20%、6.67%、3.08%和4.26%,保证了反应器的高效运行。此外,在属水平上,反应器初期和末期的优势菌存在明显差异。本研究为农业废弃物作为养殖尾水反硝化碳源的工艺优化提供了理论参考。  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号