首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
采用上流式和下流式曝气生物滤池处理凡纳滨对虾(Litopenaeus vannamei)养殖污水,连续进行30 d,分析出水水质,并观察系统运行情况和装置污染状况。研究了养殖污水中化学需氧量、氨氮、硝酸盐氮、亚硝酸盐氮、无机氮及活性磷酸盐6项指标的去除效果。实验结果表明:从养殖污水主要污染物指标的去除效果和稳定性上看,上流式优于下流式曝气生物滤池。在系统进水化学需氧量质量浓度为7.62~8.20 mg/L、氨氮质量浓度为0.62~0.65 mg/L、硝酸盐氮质量浓度为0.54~0.59 mg/L、亚硝酸盐氮质量浓度为0.23~0.27 mg/L、无机氮质量浓度为1.40~1.47 mg/L、活性磷酸盐质量浓度为0.24~0.29 mg/L,水温为25℃~30℃时,上流式曝气生物滤池对养殖污水中6项指标的去除率分别为:45.2%、88.9%、58.5%、78.8%、75.3%和25.1%。可见,对氨氮的去除效果最佳,亚硝酸盐氮和无机氮次之,化学需氧量和硝酸盐氮的去除效果较差,活性磷酸盐去除率最低。  相似文献   

2.
冷水鱼循环水养殖中的低温氨氮处理技术研究   总被引:1,自引:0,他引:1  
为解决冷水鱼养殖过程中养殖水体中的氨氮累积问题,根据低温生物滤器及臭氧催化氧化处理氨氮的特点,设计了冷水鱼工厂化养殖氨氮处理系统并进行了试验。试验基于以臭氧氧化为主、低温生物处理为辅的处理工艺,试验鱼为虹鳟鱼,养殖密度为23 kg/m3,试验水体约为10 m3,试验周期为7 d。结果表明,该系统能够满足冷水鱼工厂化养殖过程中有关氨氮处理的水质指标要求,处理后的养殖池进水口的水质指标总氨氮≤0.18 mg/L,硝酸盐氮氮≤29.43 mg/L,亚硝酸盐氮氮≤0.1 mg/L;养殖水体氨氮浓度监测表明,臭氧在水中残留低于0.008 mg/L,符合养殖鱼类对水体臭氧浓度的安全要求。  相似文献   

3.
采用移动床生物膜反应器(MBBR)处理低浓度氨氮养殖废水,在不同水力停留时间(HRT)和不同曝气条件下,分析MBBR处理人工模拟的低浓度氨氮(2 mg/L左右)养殖废水的进出水氨氮、亚硝酸盐氮和硝酸盐氮的浓度变化,探讨HRT和曝气量对MBBR处理低浓度氨氮养殖废水的影响,并以实际鲟鱼养殖废水(氨氮浓度0.5~1.5 mg/L)和其他研究成果进行验证和比较.结果显示:MBBR的最优HRT为6~8 min,最优曝气量为180 L/h,相应的氨氮去除率为70% ~ 75%,氨氮去除负荷为560~700 g/(m3.d),填料生物膜厚度为26~38 μm;膜表层结构多样,物种丰富,膜生长良好.该反应器对处理低浓度氨氮养殖废水具有的高效能力.  相似文献   

4.
通过对海洋环境污泥进行富集培养及分离筛选得到一株光合细菌,通过16S rDNA全序列分析,结合菌株形态和结构,鉴定其为Ectothiorhodospira magna。研究表明菌株在盐度30‰、28℃、DO 8 mg/L的条件下,对初始浓度分别为280、84、98 mg/L的氨氮、亚硝酸盐氮和硝酸盐氮经过10 d处理的去除率分别为81.83%、46.21%、86.79%。在氨氮、亚硝酸盐氮和硝酸盐氮共存的环境下,菌株首先利用氨氮,之后将亚硝酸盐氮转化成硝酸盐氮。  相似文献   

5.
为摸清河南中牟县万滩镇地区养殖水体区域性问题,降低养殖风险,于2014年3—11月对实验池塘18项水质指标进行跟踪,并利用变异系数法进行分析、评价,从而为池塘水质评价和水质过程管理提供科学量化的依据。结果表明,亚硝酸盐氮、氨氮、硝酸盐氮、透明度、活性磷、浊度、溶氧、氧化还原电位等8项指标权重之和达到了80%,综合考虑监测指标间的关联关系和实际情况,最终确定以亚硝酸盐氮、氨氮、硝酸盐氮、透明度、活性磷、溶氧、温度、p H等8项指标为池塘日常管理监控因子。该地区主要指标变化范围为:氨氮0~1.0 mg/L,亚硝酸盐氮0~0.5 mg/L,硝酸盐氮0~3.5 mg/L,透明度10~40cm,活性磷0.1~0.8 mg/L,溶解氧3~9mg/L,水温16.9~29.2℃和p H7.22~8.85。该地区池塘在养殖前期出现高p H的现象,是各项因素叠加的综合结果;养殖中后期应重点关注水体的脱氮处理,预防长期高浓度氨氮、亚硝酸盐氮等毒性指标累积带来的风险。本研究为开展针对性的池塘水质调节和养殖过程管理提供参考依据。  相似文献   

6.
臭氧消毒后生成的氧化物如果过量将影响养殖生物和饵料微藻的生长,为此采用经臭氧处理的海水培养小球藻(Chlorella spp.),分析臭氧处理海水生成氧化物对小球藻生长的影响以及臭氧处理海水后氨氮(NH4 -N)和亚硝酸盐氮(NO2- -N)含量变化.试验结果表明,在温度(25±1)℃,光照度10 000 lx左右,光照时数:黑暗时数为14 h:10 h,pH 8.0±0.1,盐度30.0±0.1的条件下,臭氧生成氧化物质量浓度<0.735mg/L时,对小球藻不产生毒害作用;在臭氧生成氧化物质量浓度>1.036 mg/L时,有明显的毒害作用(小球藻大量死亡);质量浓度为2.364 mg/L时,小球藻全部死亡.经臭氧处理的海水,其氨氮和亚硝酸盐氮的质量浓度降低,其中氨氮最大降低82.6%.  相似文献   

7.
为评估对虾养殖对周边海域水体环境的影响,对海南一对虾养殖场分布海域的水体水质进行了调查。在对虾养殖期间,连续4个月测定了养殖废水排污口附近(参照点)及距离参照点不同距离海域水体中的氨氮、磷酸盐、亚硝酸盐和硝酸盐的浓度。结果显示,参照点水体中的氨氮、磷酸盐、亚硝酸盐和硝酸盐分别为(0.121±0.001)mg/L,(0.058±0.002)mg/L,(0.039±0.003)mg/L和(4.753±0.015)mg/L。在距离参照点1.5 km处海域水体中的氨氮、磷酸盐、亚硝酸盐和硝酸盐分别为(0.109±0.001)mg/L,(0.045±0.001)mg/L,(0.002±0.002)mg/L和(4.552±0.003)mg/L。从参照点由近及远,水体中的上述测定指标含量均呈降低趋势。其中,各采样点中亚硝酸盐的含量均显著低于参照点水体(P0.01),采样点2和采样点3处的磷酸盐的含量显著低于参照点水体(P0.05)。氨氮和硝酸盐的含量和参照点水体无显著性差异(P0.05)。研究结果表明对虾养殖废水的排放对周围海域水体中氨氮和硝酸盐影响较大,对亚硝酸盐和磷酸盐含量影响相对较小。  相似文献   

8.
利用复合微生物降解养殖水体中亚硝酸盐的初步研究   总被引:4,自引:0,他引:4  
在养殖水体中对保存的芽孢杆菌、反硝化细菌、乳酸菌降解亚硝酸盐的能力进行比较,发现3种菌株对亚硝酸盐均能较好地降解,但降解速度不同,反硝化细菌>乳酸菌>芽孢杆菌;对3种菌株混合接种发现,具有较好净化水质效果的最佳接菌配比为芽孢杆菌∶反硝化细菌∶乳酸菌=1∶1∶2,在30℃、接种量为1%的条件下,以该配比接种亚硝酸盐,硝酸盐初始质量浓度分别为12.85、54.42mg/L的模拟养殖水体中,其亚硝酸盐、硝酸盐降解率在24h内均超99.99%,水体中的pH值显著降低,水体中的氨氮变化较小,可以实现对养殖水体的快速脱氮。  相似文献   

9.
生物—电氧化法去除海水养殖循环水污染物   总被引:1,自引:0,他引:1  
为提高海水养殖循环水处理效率,降低处理成本,本研究采用曝气生物滤器与电化学阳极氧化组合工艺,考察了不同阳极电势、进水氨氮和亚硝酸盐浓度下系统对氨氮及亚硝酸盐等污染物的去除效果,研究了微生物与工作电极之间的相互作用,并分析了电化学反应能耗。在水力停留时间为45 min、1.4 V阳极电压、进水氨氮和亚硝酸盐浓度分别为4.5和1.3 mg/L条件下,生物—电氧化法对氨氮去除率达88.8%,高出对照组7.6%,出水氨氮和亚硝酸盐浓度分别为0.5和0.9 mg/L,COD去除率为88.2%,高出对照组19.4%,平均能耗0.040 kWh/m~3,电极表面微生物生长对阳极电氧化过程有促进作用,微生物功能预测显示实验组硝化功能占比为0.03%,对照组为0.07%。研究表明,生物—电氧化法对海水养殖循环水的污染物有良好的去除效果,具有一定的发展应用潜力。  相似文献   

10.
养殖密度是影响养殖水体水质和鱼类生长性能的重要因素。通过红鳍东方鲀(Takifugu rubripes)循环水养殖试验和硝酸盐氮急性处理试验,分别研究不同养殖密度(12.5~20.0 kg/m~3)和不同硝酸盐氮质量浓度(1.0、25.0、100.0和150.0 mg/L)对养殖水体水质、红鳍东方鲀生长性能、应激反应和抗氧化状态的影响。结果显示:不同养殖密度对红鳍东方鲀养殖水体的pH、氨氮和亚硝酸盐氮质量浓度无显著性影响,但较高密度会导致硝酸盐氮质量浓度显著升高,最高升至24.5 mg/L。在较高养殖密度条件下,红鳍东方鲀的生长性能(终体质量、特定增长率和饲料转化率)和抗氧化能力(总抗氧化能力、超氧化物歧化酶、谷胱甘肽过氧化物酶)较弱,但其脂质过氧化(丙二醛)和应激反应(葡萄糖、乳酸和皮质醇)较强。此外,在硝酸盐氮急性处理试验中,红鳍东方鲀未出现死亡。当硝酸盐氮质量浓度为100.0和150.0 mg/L时,红鳍东方鲀抗氧化能力较弱,而应激反应较强。综上,当养殖密度为16.5 kg/m~3时,红鳍东方鲀的生长和抗氧化状态较好,且应激压力较小,这表明在较高密度条件下,养殖水体硝酸盐氮质量浓度的升高不是引起鱼类生长抑制的主要原因。  相似文献   

11.
Stringent environmental legislation in Europe, especially in the Baltic Sea area, limits the discharge of nutrients to natural water bodies, limiting the aquaculture production in the region. Therefore, cost-efficient end-of-pipe treatment technologies to reduce nitrogen (N) discharge are required for the sustainable growth of marine land-based RAS. The following study examined the potential of fed batch reactors (FBR) in treating saline RAS effluents, aiming to define optimal operational conditions and evaluate the activated sludge denitrification capacity using external (acetate, propionate and ethanol) and internal carbon sources (RAS fish organic waste (FOW) and RAS fermented fish organic waste (FFOW)). The results show that between the evaluated operation cycle times (2, 4, and 6 h), the highest nitrate/nitrite removal rate was achieved at an operation cycle time of 2 h (corresponding to a hydraulic retention time of 2.5 h) when acetate was used as a carbon source. The specific denitrification rates were 98.7 ± 3.4 mg NO3-N/(h g biomass) and 93.2 ± 13.6 mg NOx-N/(h g biomass), with a resulting volumetric denitrification capacity of 1.20 kg NO3-N/(m3 reactor d). The usage of external and internal carbon sources at an operation cycle time of 4 h demonstrated that acetate had the highest nitrate removal rate (57.6 ± 6.6 mg N/(h g biomass)), followed by propionate (37.5 ± 6.3 mg NO3-N/(h g biomass)), ethanol (25.5 ± 6.0 mg NO3-N/(h g biomass)) and internal carbon sources (7.7 ± 1.6–14.1 ± 2.2 mg NO3-N/(h g biomass)). No TAN (Total Ammonia Nitrogen) or PO43- accumulation was observed in the effluent when using the external carbon sources, while 0.9 ± 0.5 mg TAN/L and 3.9 ± 1.5 mg PO43--P/L was found in the effluent when using the FOW, and 8.1±0.7 mg TAN/L and 7.3 ± 0.9 mg PO43--P/L when using FFOW. Average sulfide concentrations varied between 0.002 and 0.008 mg S2-/L when using the acetate, propionate and FOW, while using ethanol resulted in the accumulation of sulfide (0.26 ± 0.17 mg S2-/L). Altogether, it was demonstrated that FBR has a great potential for end-of-pipe denitrification in marine land-based RAS, with a reliable operation and a reduced reactor volume as compared to the other available technologies. Using acetate, the required reactor volume is less than half of what is needed for other evaluated carbon sources, due to the higher denitrification rate achieved. Additionally, combined use of both internal and external carbon sources would further reduce the operational carbon cost.  相似文献   

12.
利用自制的硝化细菌菌剂促进移动床生物膜反应器(Moving bed biofilm reactor,MBBR)的挂膜启动,分析不同载体氨氮负荷、碳氮比条件下反应器运行状况,并进一步进行了实验室模拟循环水养殖草金鱼实验。结果显示,利用自制硝化菌剂能够完成整个移动床反应器的启动过程,在接种15 d后使循环出水氨氮稳定在1 mg/L以下。单位体积载体氨氮负荷实验表明,MBBR能够在100 mg TAN/(L填料·d)条件下,使出水满足一般水产养殖水质要求(氨氮0.5 mg/L,亚硝氮0.1 mg/L)。进水碳氮比在1以内时MBBR能够稳定高效运行。在实验室模拟循环水养殖过程中,经菌剂强化的MBBR能维持循环出水氨氮低于0.5 mg/L,亚硝氮低于0.05 mg/L。  相似文献   

13.
Reduced fishery harvests and increased consumer demand for seafood have precipitated an increase in intensive fish farming, predominantly in coastal and open ocean net-pens. However, as currently practiced, aquaculture is widely viewed as detrimental to the environment and typical operations are vulnerable to environmental influences, including pollution and endemic diseases. Here we report the development of a land-based, marine recirculating aquaculture system that is fully contained, with virtually no environmental impact as a result of highly efficient biological waste treatment and water recycling. Over 99% of the water volume was recycled daily by integrating aerobic nitrification to eliminate toxic ammonia and, for the first time, simultaneous, anaerobic denitrification and anaerobic ammonium oxidation, to convert ammonia and nitrate to nitrogen gas. Hydrogen sulfide generated by the separated endogenous organic solids was used as an electron source for nitrate reduction via autotrophic denitrification and the remaining organic solids were converted to methane and carbon dioxide. System viability was validated by growing gilthead seabream (Sparus aurata) from 61 g to 412 g for a total of 1.7 tons in a record 131 days with 99% fish survival. Ammonia nitrite and nitrate did not exceed an average daily concentration of 0.8 mg/l, 0.2 mg/l and 150 mg/l, respectively. Food conversion values were 16% lower than recorded levels for net-pen aquaculture and saltwater usage of less than 16 l/every kg of fish produced. The system is site-independent, biosecure, devoid of environmental contaminants and is not restricted to a single species.  相似文献   

14.
This paper presents an innovative process to solve the nitrate build-up problem in recirculating aquaculture systems (RAS). The novel aspects of the process lie in a denitrification bioreactor system that uses solid cotton wool as the primary carbon source and a unique degassing chamber. In the latter, the water is physically stripped of dissolved gaseous O2 (by means of a Venturi vacuum tube), and the subsequent denitrification becomes more efficient due to elimination of the problems of oxygen inhibition of denitrification and aerobic consumption of cotton wool. The cotton wool medium also serves as a physical barrier that traps organic particles, which, in turn, act as an additional carbon source for denitrification. Operation in the proposed system gives an extremely low C/N ratio of 0.82 g of cotton wool/g of nitrate N, which contributes to a significant reduction of biofilter volume. The additional advantage of using solid cotton wool as the carbon source is that it does not release organic residuals into the liquid to be recycled. Operation of the system over a long period consistently produced effluents with low nitrate levels (below 10 mg N/l), and there was only a very small need to replace system water. The overall treatment scheme, also incorporating an aerobic nitrification biofilter and a granular filtration device, produced water of excellent quality, i.e., with near-zero levels of nitrite and ammonia, a sufficiently high pH for aquaculture, and low turbidity. The proposed system thus provides a solution for sustainable small-scale, urban aquaculture operation with a very high recovery of water (over 99%) and minimal waste disposal.  相似文献   

15.
一株反硝化细菌的筛选及其反硝化特性的研究   总被引:13,自引:0,他引:13  
从土壤中分离到一株高活性反硝化菌DNF409,经生理生化和16S rDNA序列分析,初步判断为芽孢杆菌属(Bacillussp.)。在生长的各个阶段,该菌株均具有较强的反硝化活性,最适反硝化碳源为乙醇。在天然养殖水体中,碳氮摩尔比达到8.0∶1、菌体浓度达到108cfu/L时,其反硝化活性即可充分发挥,硝态氮和亚硝态氮的降解率可分别达到94.79%和99.94%。试验表明该菌株在养殖水体的生物脱氮方面具有广阔的应用前景。  相似文献   

16.
The pink shrimp Farfantepenaeus brasiliensis is native in southern Brazil and is potentially suited for aquaculture. Under intensive culture, the accumulation of nitrogenous compounds results from excretion by the shrimp and from the processes of feed decomposition and nitrification. The objective of this study was to evaluate ammonia, nitrite, and nitrate toxicity effects on oxygen consumption of juvenile pink shrimp. Shrimps (initial weight 0.7 ± 0.15 g) were exposed over a period of 30 days to 50%, 100%, and 200% of the safe levels of total ammonia (TAN = 0.88 mg/L), nitrite (NO2? = 10.59 mg/L), and nitrate (NO3? = 91.20 mg/L) for the species. The specimens were individually collected and placed in respirometry chambers, where the oxygen consumption was measured over a period of two hours. Throughout the experiment there was no significant difference (p > 0.05) among treatments in terms of survival and growth. The pink shrimp juveniles exposed to nitrogen concentrations of 200% of the nitrite and nitrate safe level showed the highest oxygen consumption (p < 0.05).  相似文献   

17.
Total ammonia nitrogen (TAN) concentration is often a key limiting water quality parameter in intensive aquaculture systems. Removing ammonia through biological filtration is thus the first objective in recirculating aquaculture system design. In this study, the performance characteristics of a steady-state nitrification biofilm were explored using a series of reactors. Four nitrification kinetics parameters were estimated using the data collected from the experimental system, including minimum TAN concentration, half saturation constant, maximum TAN removal rate and maximum specific bacterial growth rate. Experimental data showed that a minimum TAN concentration was needed to support a steady-state nitrification biofilm. For the temperature of 27.2°C, the mean minimum TAN concentration was 0.07 mg/l. For a single substrate-limiting factor, the relationship between TAN removal rate (R) and TAN concentration (S) was represented by an empirical equation [R=1859(S−0.07)/(S+1.93)]. The characteristics of nitrite oxidation were also demonstrated by the experiment system. The results of this study will help to better understand the characteristics of nitrification biofilters applied in recirculating aquaculture systems.  相似文献   

18.
生物质炭膜架作为一种新型填料,具有较高的单位比表面积,利于脱氮微生物群落的附着,净化污水能力较强,在未来人工湿地的运用中具有广阔前景。然而,水产养殖过程中的环境变化和渔药的使用,是否会妨碍人工湿地中填料作用的充分发挥尚未明确。为研究外界因素对生物质炭膜架除污能力的影响,设置了不同pH(E1:6.5、E2:7.5和E3:8.5)和常用渔药(F1:氟苯尼考,6 mg/L;F2:土霉素,20 mg/L)处理组,研究生物质炭填料系统降氨氮效率及其附着生物膜微生物群落结构的变化。结果表明:(1)实验组与对照组中,脱氮微生物硝化螺旋菌门(Nitrospirae)相对丰度均为最高;(2)E1、E2、E3组降氨氮速率分别为0.247、0.249、0.305 mg/(L·h),均低于对照组(pH=8.2):0.323 mg/(L·h);低pH条件下硝化螺旋菌的相对含量略有降低,而脱氮硫杆菌相对含量没有显著差异。(3)F1、F2组降氨氮速率一致,均为0.172 mg/(L·h),低于对照组0.323 mg/(L·h);与对照组相比,实验组硝化螺旋杆菌与脱氮硫杆菌相对含量无显著变化,推测氟苯尼考和土霉素抑制了菌的活性,致使氨氮降解速率下降。综上,弱碱性水体有助于提高生物质炭填料净化水质能力,而氟苯尼考或土霉素的使用会影响生物膜上脱氮微生物的群落丰度和活力并抑制降氨氮能力。因此,使用抗生素类渔药治疗时,应配合其它水质调节措施来控制养殖水体的氨氮含量,保证养殖对象安全,最大化发挥生物质填料的净化养殖尾水效果。  相似文献   

19.
为研究絮团浓度对革胡子鲇零换水养殖效果的影响,在不额外添加有机碳源(只利用饲料中的碳)的革胡子鲇()养殖系统中,设置了平均絮团质量浓度为561.18 mg/L和780.41 mg/L两个处理组,比较了两实验组的水质、菌群结构、鱼生长及氮利用效率。结果表明,两种浓度絮团条件下,总氨氮(total ammonia nitrogen,TAN)和亚硝酸氮(NO2--N)能分别维持1.84 mg/L和1.79 mg/L以下。两处理组间pH、溶解氧(dissolved oxygen,DO)、TAN、NO2--N、氮素利用效率及主要生长指标无显著差异(-N)浓度(822.0 mg/L)明显高于低浓度絮团组(623.33 mg/L)。高通量测序分析菌群结构结果表明,两组间门水平的菌群组成种类及优势度无显著性差异(<0.05)。两处理组中的革胡子鲇存活率分别达到(91.11±1.53)%和(94.44±2.08)%,饲料系数为(1.41±0.18)和(1.27±0.26),特殊生长率为(2.13±0.04)%/d和(2.19±0.08)%/d,均无显著差异(>0.05)。两实验组饲料氮的利用率分别达到了72.17%和71.34%。综合以上结果认为,仅利用饲料中的碳既能维持革胡子鲇的零换水养殖且能取得较高的氮素利用效率,两种絮团浓度对革胡子鲇的生长无显著影响,高浓度絮团组中的硝化作用更明显。  相似文献   

20.
Denitrification in recirculating systems: Theory and applications   总被引:20,自引:0,他引:20  
Profitability of recirculating systems depends in part on the ability to manage nutrient wastes. Nitrogenous wastes in these systems can be eliminated through nitrifying and denitrifying biofilters. While nitrifying filters are incorporated in most recirculating systems according to well-established protocols, denitrifying filters are still under development. By means of denitrification, oxidized inorganic nitrogen compounds, such as nitrite and nitrate are reduced to elemental nitrogen (N2). The process is conducted by facultative anaerobic microorganisms with electron donors derived from either organic (heterotrophic denitrification) or inorganic sources (autotrophic denitrification). In recirculating systems and traditional wastewater treatment plants, heterotrophic denitrification often is applied using external electron and carbon donors (e.g. carbohydrates, organic alcohols) or endogenous organic donors originating from the waste. In addition to nitrate removal, denitrifying organisms are associated with other processes relevant to water quality control in aquaculture systems. Denitrification raises the alkalinity and, hence, replenishes some of the inorganic carbon lost through nitrification. Organic carbon discharge from recirculating systems is reduced when endogenous carbon sources originating from the fish waste are used to fuel denitrification. In addition to the carbon cycle, denitrifiers also are associated with sulfur and phosphorus cycles in recirculating systems. Orthophosphate uptake by some denitrifiers takes place in excess of their metabolic requirements and may result in a considerable reduction of orthophosphate from the culture water. Finally, autotrophic denitrifiers may prevent the accumulation of toxic sulfide resulting from sulfate reduction in marine recirculating systems. Information on nitrate removal in recirculating systems is limited to studies with small-scale experimental systems. Packed bed reactors supplemented with external carbon sources are used most widely for nitrate removal in these systems. Although studies on the application of denitrification in freshwater and marine recirculating systems were initiated some thirty years ago, a unifying concept for the design and operation of denitrifying biofilters in recirculating systems is lacking.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号