首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
The influence of amylose content, cooking, and storage on starch structure, thermal behaviors, pasting properties, and rapidly digestible starch (RDS), slowly digestible starch (SDS), and resistant starch (RS) in different commercial rice cultivars was investigated. Long grain rice with high‐amylose content had a higher gelatinization temperature and a lower gelatinization enthalpy than the other rice cultivars with intermediate amylose content (Arborio and Calrose) and waxy type (glutinous). The intensity ratio of 1047/1022 cm–1 determined by Fourier Transform Infrared (FT‐IR), which indicated the ordered structure in starch granules, was the highest in glutinous and the lowest in long grain. Results from Rapid ViscoAnalyser (RVA) showed that the rice cultivar with higher amylose content had lower peak viscosity and breakdown, but higher pasting temperature, setback, and final viscosity. The RDS content was 28.1, 38.6, 41.5, and 57.5% in long grain, Arborio, Calrose, and glutinous rice, respectively, which was inversely related to amylose content. However, the SDS and RS contents were positively correlated with amylose content. During storage of cooked rice, long grain showed a continuous increase in pasting viscosity, while glutinous exhibited the sharp cold‐water swelling peak. The retrogradation rate was greater in rice cultivars with high amylose content. The ratio of 1047/1022 cm–1 was substantially decreased by cooking and then increased during storage of cooked rice due to the crystalline structure, newly formed by retrogradation. Storage of cooked rice decreased RDS content and increased SDS content in all rice cultivars. However, no increase in RS content during storage was observed. The enthalpy for retrogradation and the intensity ratio 1047/1022 cm–1 during storage were correlated negatively with RDS and positively with SDS (P ≤ 0.01).  相似文献   

2.
To determine the effect of amylose content on the starch properties, the amylose content, pasting properties, swelling power, enzymatic digestibility, and thermal properties of partial and perfect waxy types along with their wild‐type parent were analyzed. As expected, amylose content decreases differently in response to the loss of each Wx gene, showing the least response to Wx‐A1a. Most of the characteristics, except the thermal properties of the amylose‐lipid complex in differential scanning calorimetry (DSC), differed significantly among the tested types. Furthermore, the breakdown, setback, and pasting temperatures from the Rapid Visco Analyser (RVA) and the enzymatic digestibility, swelling power, peak temperature, and enthalpy of starch gelatinization from DSC showed a correlation with the amylose content. The relationships between the peak viscosity from the RVA and the onset temperature of starch gelatinization determined by DSC with amylose content of the tested materials were not clear. Waxy starch, which has no amylose, showed a contrasting behavior in starch gelatinization compared with nonwaxy starches. Among the nonwaxy starches, lower setback, lower pasting temperature, higher enzyme digestibility, higher peak temperature, higher enthalpy of starch gelatinization, and higher swelling were generally associated with low amylose starches.  相似文献   

3.
Certain food additives commonly used in flour products also have a plasticization effect on product shelf life regarding retrogradation. Sucrose, sorbitol, glycerol, citric acid, and acetic acid at 25, 25, 25, 0.5, and 0.5%, respectively, were added to two different starch gel systems: slurry (high‐amylose rice flour gel) and dough (waxy rice flour dough). All plasticizers increased gelatinization temperature, decreased enthalpy (ΔH), and promoted a more homogeneous system. Sucrose had the greatest effect on gelatinization increase. Rice dough was more susceptible to plasticizers, resulting in higher moisture content and a more amorphous structure. Retrogradation was highly positively correlated with amylose content, moisture retention, ratio of protons of water/starch, and previous occurrence of retrogradation. Moisture retention was increased in plasticizer‐added samples, especially waxy rice dough. Over a longer storage period, sucrose and sorbitol showed an antiplasticization effect in waxy rice flour dough, but glycerol and acid caused higher retrogradation in high‐amylose rice flour gel.  相似文献   

4.
The objective of this study was to compare the structure and properties of flours and starches from whole, broken, and yellowed rice kernels that were broken or discolored in the laboratory. Physicochemical properties including pasting, gelling, thermal properties, and X‐ray diffraction patterns were determined. Structure was elucidated using high‐performance size‐exclusion chromatography (HPSEC) and high‐performance anion‐exchange chromatography with pulsed amperometric detection (HPAEC‐PAD). The yellowed rice kernels contained a slightly higher protein content and produced a significantly lower starch yield than did the whole or broken rice kernels. Flour from the yellowed rice kernels had a significantly higher pasting temperature, higher Brabender viscosities, increased damaged starch content, reduced amylose content, and increased gelatinization temperature and enthalpy compared with flours from the whole or the broken rice kernels. However, all starches showed similar pasting, gelling, thermal properties, and X‐ray diffraction patterns, and no structural differences could be detected among different starches by HPSEC and HPAEC‐PAD. α‐Amylase may be responsible for the decreased amylopectin fraction, decreased apparent amylose content, and increased amounts of low molecular weight saccharides in the yellowed rice flour. The increased amount of reducing sugars from starch hydrolysis promoted the interaction between starch and protein. The alkaline‐soluble fraction during starch isolation is presumed to contribute to the difference in pasting, gelling, and thermal properties among whole, broken, and yellowed rice flours.  相似文献   

5.
We studied the effect of amylose content on the gelatinization, retrogradation, and pasting properties of starch using wheat starches differing in amylose content. Starches were isolated from waxy and nonwaxy wheat and reciprocal F1 seeds by crossing waxy and nonwaxy wheat. Mixing waxy and nonwaxy wheat starch produced a mixed starch with the same amylose content as F1 seeds for comparison. The amylose content of F1 seeds ranged between waxy and nonwaxy wheat. Nonwaxy‐waxy wheat had a higher amylose content than waxy‐nonwaxy wheat. Endothermic enthalpy and final gelatinization temperature measured by differential scanning calorimetry correlated negatively with amylose content. Gelatinization onset and peak temperature clearly differed between F1 and mixed starches with the same amylose content as F1 starches. Enthalpy for melting recrystallized starches correlated negatively with amylose content. Rapid Visco Analyser measurement showed that F1 starches had a higher peak viscosity than waxy and nonwaxy wheat starches. Mixed starches showed characteristic profiles with two low peaks. Setback and final viscosity correlated highly with amylose content. Some of gelatinization and pasting properties differed between F1 starches and mixed starches.  相似文献   

6.
为探究再生季稻米蒸煮食味品质在不同生态区的差异,并从淀粉结构与性能角度揭示其差异机理,本试验以杂交稻甬优4149、晶两优1468为供试材料,按再生稻栽培模式分别种植于肇庆、长沙、信阳3个生态区,研究了再生季齐穗后温光条件对稻米蒸煮食味品质、RVA 谱特性及淀粉热性能和晶体结构的影响。结果表明,肇庆试验地区的再生季稻米蒸煮食味品质优于长沙、信阳,其直链淀粉含量适中,胶稠度长,糊化温度较低,总淀粉含量较高。再生季齐穗后温光条件与稻米胶稠度、糊化特性以及淀粉热性能和相对结晶度具有显著相关性。籽粒灌浆初中期的温度和光照对再生季稻米淀粉的糊化性能与热性能影响较大;淀粉的相对结晶度受中后期的日均温度影响最为显著。本研究将有助于绿色农业的可持续发展和优质稻米的生产。  相似文献   

7.
The structural features of rice starch that may contribute to differences in the functionality of three long‐grain rice cultivars were studied. Dried rough rice samples of cultivars Cypress, Drew, and Wells were analyzed for milling quality, grain physical attributes, and starch structures and physicochemical properties. Drew was lower in head rice yield and translucency and higher in percentage of chalky grains compared with Cypress and Wells. Apparent amylose content (21.3–23.1%), crude protein (8.3–8.6%), and crude fat (0.48–0.64%) of milled rice flours were comparable, but pasting properties of rice flours as measured by viscoamylography, as well as starch iodine affinity and thermal properties determined by differential scanning calorimetry were different for the three cultivars. Drew had higher peak, hot paste, and breakdown viscosities, and gelatinization temperature and enthalpy. Molecular size distribution of starch fractions determined by high‐performance size‐exclusion chromatography showed that the three samples were similar in amylose content (AM) (20.0–21.8%) but differed in amylopectin (AP) (64.7–68.3%) and intermediate material (IM) (10.9–13.5%). Drew had highest AP and lowest IM contents, whereas Cypress had the lowest AP and highest IM contents. High‐performance anion‐exchange chromatography of isoamylase‐debranched starch indicated that the AP of Drew was lower in A and B1 chains but higher in B2, B3, and longer chains.  相似文献   

8.
The starch properties of five low‐amylose rice cultivars, Yawarakomachi, Soft 158, Hanabusa, Aya, and Snow Pearl, were compared with those of two normal amylose rice cultivars, Nipponbare and Hinohikari. There were no large differences in the distributions of the amylopectin chain length determined by high‐performance anion‐exchange chromatography, and the starch gelatinization properties determined by differential scanning calorimetry, between normal and low‐amylose rice cultivars. Results obtained using rapid viscosity analysis indicated that low‐amylose rice starches had lower peak viscosity, breakdown, and setback values than normal amylose rice starches. Starch granules from low‐amylose rice cultivars had a higher susceptibility to glucoamylase than those from normal amylose rice cultivars. The results of this study showed some differences between normal and low‐amylose rice starches in pasting properties and enzymatic digestibility.  相似文献   

9.
Physical and functional properties of starches isolated from 93 noncultivated genotypes of nine Amaranthus species from a world germ plasm collection and an additional 31 cultivated Amaranthus genotypes obtained from China were tested. A wide variation was found in the properties tested among the Amaranthus species and among genotypes within the same species. When comparing starches from cultivated and noncultivated genotypes, it was generally found that amylose was lower; starch pasting profiles were more consistent with higher peak viscosity, lower breakdown, and lower setback; the gelatinization temperature was lower; and energy of enthalpy was higher. Under cool storage, the hardness of cultivated starch pastes was lower and the adhesiveness was higher. As expected, amylose content was a primary factor affecting the physical and functional properties of Amaranthus starch. Compared with reference maize, rice, and wheat starches, Amaranthus starch tended to have lower hot paste viscosity and lower cool paste viscosity; and higher gelatinization temperatures and higher energy of enthalpy. Furthermore, Amaranthus starch pastes showed less change of gel hardness and adhesiveness after cold storage. The environmental effect on the different properties of starch varied among Amaranthus species. It is suggested that Amaranthus starches can be developed for a wide range of food uses.  相似文献   

10.
The effects of amylose content on thermal properties of starches, dough rheology, and bread staling were investigated using starch of waxy and regular wheat genotypes. As the amylose content of starch blends decreased from 24 to 0%, the gelatinization enthalpy increased from 10.5 to 15.3 J/g and retrogradation enthalpy after 96 hr of storage at 4°C decreased from 2.2 to 0 J/g. Mixograph water absorption of starch and gluten blends increased as the amylose content decreased. Generally, lower rheofermentometer dough height, higher gas production, and a lower gas retention coefficient were observed in starch and gluten blends with 12 or 18% amylose content compared with the regular starch and gluten blend. Bread baked from starch and gluten blends exhibited a more porous crumb structure with increased loaf volume as amylose content in the starch decreased. Bread from starch and gluten blends with amylose content of 19.2–21.6% exhibited similar crumb structure to that of bread with regular wheat starch which contained 24% amylose. Crumb moisture content was similar at 5 hr after baking but higher in bread with waxy starch than in bread without waxy starch after seven days of storage at 4°C. Bread with 10% waxy wheat starch exhibited lower crumb hardness values compared with bread without waxy wheat starch. Higher retrogradation enthalpy values were observed in breads containing waxy wheat starch (4.56 J/g at 18% amylose and 5.43 J/g at 12% amylose) compared with breads containing regular wheat starch (3.82 J/g at 24% amylose).  相似文献   

11.
Wheat lines with reduced amylose content were recently produced by single and double mutation from a low‐amylose line, Kanto 107. They are appropriate for clarifying the influence of amylose content on starch gel properties because of their similar genetic background. When measured using the concanavalin A method (ConA), the total amylose content of isolated starches from Kanto 107 and three mutants (K107Afpp4, Tanikei A6599‐4, K107Wx2) was 24.8, 18.5, 7.1, and 1.7%, respectively. Results of differential scanning calorimetry (DSC) showed that the difference in amylose content strongly affected gelatinization conclusion temperature and enthalpy. We prepared 30 and 40% starch gels and measured their dynamic shear viscoelasticity using a rheometer with parallel plate geometry. Compressive and creep‐recovery tests were conducted under uniaxial compression. The storage shear modulus correlated highly with the amylose content of starch in 30 and 40% starch gels. The creep‐recovery test showed a clear distinction in creep curves among starch samples. When the compressive force required for 50, 80, and 95% strains was compared, starch gels with lower amylose content showed lower compressive force at 50% strain. Waxy starch gel (K107Wx2) showed higher compressive force at strain >80% than other samples due to its sticky property.  相似文献   

12.
Starches were isolated from grains of waxy, heterowaxy, and normal sorghum. To study the relationship between starch structure and functionality and guide applications of these starches, amylose content, amylopectin chain-length distributions, gelatinization and retrogradation, pasting properties, dynamic rheological properties, and in vitro enzyme digestion of raw starches were analyzed. Heterowaxy sorghum starch had intermediate amylose content, pasting properties, and dynamic rheological properties. Stress relaxation was a useful indicator of cooked starch cohesiveness. Cooked heterowaxy sorghum starch (10% solids) had a viscoelastic-solid type of character, whereas cooked waxy sorghum starch behaved like a viscoelastic liquid. Amylopectin of normal sorghum starch had a slightly higher proportion of chains with degree of polymerization (DP) of 6-15 (45.5%) compared with amylopectin of heterowaxy starch (44.1%), which had a gelatinization peak temperature 2 degrees C higher than normal sorghum starch. Heterowaxy sorghum starch contained significantly lower rapidly digestible starch (RDS) and higher resistant starch (RS) than waxy sorghum starch.  相似文献   

13.
As the staple food of over half the world's population, hot cooked rice high in resistant starch (RS) is of particular interest, which will have greater impact in the dietary prevention of diabetes and hyperlipidemia. A mutant rice high in RS in hot cooked rice, described as RS111, was comparatively studied with the wild type and common rice. Despite obviously low RS content in the raw milled rice, the RS content in the hot cooked rice of mutant RS111 was significantly higher than that of the wild type and common rice and, correspondingly, in vitro starch hydrolysis by porcine pancreatic alpha-amylase tends to be incomplete with low hydrolysis extent for the cooked mutant rice high in RS. Obvious differences in physicochemical properties, starch granule morphology, pasting properties, thermal properties, and X-ray diffraction pattern were observed among the mutant RS111, wild type, and common indica rice. The high-RS mutant was characterized by significantly higher apparent amylose content and crude lipid content, higher percentage of oval-shaped granules and bigger oval size, reduced paste viscosity, and low onset temperature, peak temperature, final temperature, enthalpy of gelatinization, and crystallinity.  相似文献   

14.
The effect of annealing temperature (Ta) on the rheological behavior of 10 wt % rice starch suspension was investigated by the dynamic viscoelasticity, the differential scanning calorimetry (DSC), and the amount of leached out amylose and the swelling ratio of starch suspension. The rheological behaviors of the annealed samples are classified into three types in terms of Ta: Ta1, 48 and 55 degrees C, which are much lower than the gelatinization temperature, Tgel (=62 degrees C); Ta2, 58, 60, and 62 degrees C, which are almost the same as Tgel; and Ta3, 65, 68, 70, and 73 degrees C, which are much higher than Tgel. For the samples annealed at Ta2, the onset temperature of the storage and the loss moduli, G' and G', increased with increasing T(a), and G' and G" in the temperature range from 65 to 90 degrees C gradually increased though smaller than those for the nonannealed sample, the control. This can be understood by the partial gelatinization; i.e., the leached out amylose prevents further amylose from leaching out. The rheological property of the samples annealed at Ta1 is not so different from that of the control, and the samples annealed at Ta3 are almost gelatinized. The rheological behavior of starch suspension can be controlled by Ta.  相似文献   

15.
Changes in the viscosity properties of gamma-irradiated rice starches (from 1 to 25% amylose content) from four genotypes (JY293, Jiayu 293; XS, Xiushui; ZF504, Zhefu 504; and ZXN, Zaoxiannuo) during pasting in water (pH 7) or in different pH solutions were studied using a rapid visco analyzer. Peak viscosity (PV) of all native rice starches was little affected at pH 4 and 10, while hot paste viscosity (HPV) and cool paste (final) viscosity (CPV) were generally lower at pH 4 and higher at pH 10 as compared with that at pH 7. The PV, HPV, and CPV of gamma-irradiated starches were higher at pH 4 and lower at pH 10 than pH 7. All viscosity characteristics of native rice starches were reduced in stronger alkali (pH 11.5) or acidic (pH 2.5) solutions. However, the gamma-irradiated starches were substantially higher at pH 2.5 but lower at pH 11.5, indicating that the effect of irradiation was highly pH dependent. The swelling volume of irradiated ZF504 and JY293 starch at all irradiation levels was higher at pH 4 than pH 7, while the values were lowest at pH 2.5. The irradiated ZXN and XS starches had higher swelling volumes at pH 4 and pH 2.5 than pH 7. Differential scanning calorimetry analysis showed that gamma-irradiation caused progressively lower gelatinization peak temperature (T(p)) and higher gelatinization range (T(r)) at pH 7. T(p) was higher and T(r) was lower at a much stronger acidic condition (pH 1) for both native and irradiated starches. The possibility of using viscosity changes in low pH for the detection of irradiated starch was discussed.  相似文献   

16.
The starch of wheat (Triticum aestivum L.) flour affects food product quality due to the temperature-dependent interactions of starch with water during gelatinization, pasting, and gelation. The objective of this study was to determine the fundamental basis of variation in gelatinization, pasting, and gelation of prime starch derived from seven different wheat cultivars: Kanto 107, which is a partial waxy mutant line, and six near-isogenic lines (NILs) differing in hardness. Complete pasting curves with extended 16-min hold at 93°C were obtained using the Rapid Visco Analyser (RVA). Apparent amylose content ranged from 17.5 to 23.5%; total amylose content ranged from 22.8 to 28.2%. Starches exhibited significant variation in onset of gelatinization. However, none of the parameters measured consistently correlated with onset or other RVA curve parameters that preceded peak paste viscosity. Peak paste viscosity varied from 190 to 323 RVA units (RVU). Higher peak, greater breakdown, lower final viscosity, negative setback, and less total setback were associated with lower apparent and total amylose contents. Each 1% reduction in apparent or total amylose content corresponded to an increase in peak viscosity of about 22 and 25 RVU, respectively, at 12% starch concentration. Of the seven U.S. cultivars, the lower amylose cultivars Penawawa and Klasic were missing the granule-bound starch synthase (GBSS; ADPglucose starch glycosyl transferase, EC 2.4.4.21) protein associated with the Waxy gene locus on chromosome 4A (Wx-B1 locus). Kanto 107 was confirmed as missing both the 7A and 4A waxy proteins (Wx-A1 and Wx-B1 loci). The hardness NIL also were shown to be null at the 4A locus. Apparent and total amylose contents of prime starch generally corresponded well to the number of GBSS proteins; although the hardness NIL tended to have somewhat higher amylose contents than did the other GBSS 4A nulls. We concluded that reduced quantity of starch amylose due to decreased GBSS profoundly affects starch gelatinization, pasting, and gelation properties.  相似文献   

17.
The physicochemical properties of starch, such as apparent amylose content, gelatinization temperature, and pasting viscosities, determine the eating, cooking, and processing qualities of various products of rice. A recombinant inbred line (RIL) population derived from the reciprocal cross of Lemont (a premium high-quality tropical japonica rice) and Jiayu 293 (a high-yield but low-quality indica rice) was used to test the association of microsatellite markers of starch-synthesizing genes with starch quality parameters. The results confirmed the association of Wx and starch synthase I (SSI) alleles with various starch properties measured in rice flour. However, the starch properties were not associated with the starch branching enzyme 1 (SBE 1) gene alleles.  相似文献   

18.
吕军  姜秀英  刘军  解文孝  韩勇  沈枫 《核农学报》2021,35(10):2214-2222
淀粉是稻米胚乳的主要成分,解析其理化特性对改良水稻品质具有十分重要的意义。为了探究心白稻米淀粉的理化特性,本研究以经EMS诱导粳稻品种辽星1号获得的心白突变体xb1为材料,利用扫描电镜、激光粒度分析仪、RVA快速黏度分析仪、差示扫描量热仪等方法,对形态结构、淀粉颗粒结构和粒径分布、糊化特性及热力学特性等进行了分析。结果表明,与野生型相比,突变体xb1籽粒的粒宽、粒厚和千粒重均显著降低;淀粉结构和淀粉粒粒径分布均发生改变,淀粉粒粒径值大于13左右的淀粉粒数量明显低于野生型;突变体种子中蛋白质含量极显著高于野生型,总淀粉含量极显著低于野生型,而直链淀粉含量没有明显改变;在支链淀粉分支结构上,聚合度(DP)在6~9之间的短链及25~35之间的中长链比例有所增加,而DP值在10~24之间的中短链及36~50之间的长链比例有所减少;突变体xb1淀粉的糊化起始温度(To)、峰值温度(Tp)、终止温度(Tc)和糊化距离(Tr)均未发生明显改变,只有热焓值(△H)极显著提高。同时,突变体xb1的RVA谱特征值中,热浆黏度(HPV)、峰值黏度(PKV)、冷胶黏度(CPV)和消减值(SBV)极显著提高,崩解值(BDV)和回复值(CSV)极显著降低。本研究结果为探索垩白形成的生理机制以及进一步的基因克隆奠定了基础。  相似文献   

19.
High-amylose cereal starch has a great benefit on human health through its resistant starch (RS) content. Enzyme hydrolysis of native starch is very helpful in understanding the structure of starch granules and utilizing them. In this paper, native starch granules were isolated from a transgenic rice line (TRS) enriched with amylose and RS and hydrolyzed by α-amylase. Structural properties of hydrolyzed TRS starches were studied by X-ray powder diffraction, Fourier transform infrared, and differential scanning calorimetry. The A-type polymorph of TRS C-type starch was hydrolyzed faster than the B-type polymorph, but the crystallinity did not significantly change during enzyme hydrolysis. The degree of order in the external region of starch granule increased with increasing enzyme hydrolysis time. The amylose content decreased at first and then went back up during enzyme hydrolysis. The hydrolyzed starches exhibited increased onset and peak gelatinization temperatures and decreased gelatinization enthalpy on hydrolysis. These results suggested that the B-type polymorph and high amylose that formed the double helices and amylose-lipid complex increased the resistance to BAA hydrolysis. Furthermore, the spectrum results of RS from TRS native starch digested by pancreatic α-amylase and amyloglucosidase also supported the above conclusion.  相似文献   

20.
以2个杂交稻(淦鑫203和金优402)和4个常规稻(中531、B670、E134和ST66)为材料,于水稻乳熟期进行高温处理3d,处理温度分别为35℃和38℃,以同期田间自然温度为对照,研究乳熟期高温对不同品种早籼稻直链淀粉含量和RVA谱特征参数的影响,并对稻米淀粉RVA谱特征值与直链淀粉含量进行相关分析.结果表明,无论是对照还是高温处理,中531和B670的直链淀粉含量、消减值及回复值较低,但崩解值较高,而E134和ST66表现为直链淀粉含量、消减值及回复值较高,崩解值较低;杂交稻淦鑫203和金优402则介于两者中间.与对照相比,38℃高温显著降低淦鑫203、金优402、中531和E134的崩解值,显著提高淦鑫203、中531的消减值、显著降低金优402、中531、B670和E134的回复值.各处理淀粉RVA谱变化趋势较一致,但因品种及温度而略有差异.38℃高温处理下稻米淀粉黏滞性曲线始终低于对照,但常规稻中531和B670的RVA谱形态与对照差异不大.此外,稻米直链淀粉含量与RVA谱各特征值间存在显著相关性.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号