首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 630 毫秒
1.
生物质炭的制备工艺参数与吸附性能分析   总被引:2,自引:0,他引:2  
生物质炭的理化性质主要受生物质炭的原材料和制备条件如温度、热解时间的影响。在预备性试验基础上,采用正交实验法对生物质炭的制备工艺参数进行工艺研究。根据生物质炭的特性,分析了稻壳,油茶内壳,鸡粪3种原料在不同热解时间和热解温度的组合上对制得生物质炭液相吸附性能的影响。结果表明,在试验设计取值范围内,原料种类对生物质炭吸附性能的影响较显著,其次热解温度,最后是热解时间。因此在此实验条件下,就生物质炭的液相吸附性能而言,较佳的制备工艺参数为:原材料为鸡粪,热解温度为700℃,热解时间为2 h。研究结果对提高生物质炭的经济效益和环境效益具有一定的参考意义。  相似文献   

2.
互花米草生物炭的理化特性及其对镉的吸附效应   总被引:3,自引:1,他引:2  
为确定制备互花米草生物炭的最优热解温度,并了解其对镉的吸附特性,以崇明东滩入侵种互花米草为原料,分析了不同热解温度下生物炭的稳定性、基本理化特性及其对镉的吸附能力,通过吸附动力学拟合、扫描电镜、红外光谱,研究互花米草生物炭对镉吸附特性及吸附前后生物炭的形貌及结构变化。结果表明,450℃热解15 min时制备的生物炭可达吸附平衡,吸附量最大为20.576 mg·g~(-1)。互花米草生物炭对镉的吸附满足二级动力学方程式,以化学吸附为主。电镜扫描镉吸附后互花米草生物炭发现粒状突起,红外光谱显示羟基、羧基等含氧官能团发生较大变动。由此可见,450℃制备的互花米草生物炭具有良好镉吸附效应,羟基、羧基等含氧官能团对生物炭吸附镉发挥主要作用,部分镉在生物炭表面发生表层吸附,且可能形成Cd2+复合体。  相似文献   

3.
以南疆农业废弃物棉花秸秆为原料,采用限氧控温裂解法制备不同温度(200、400和600℃)下的棉花秸秆生物质炭(CSBC200、CSBC400和CSBC600),研究棉花秸秆生物质炭对重金属Pb(Ⅱ)的吸附性能及影响因素,探讨pH、温度、初始浓度和吸附剂投加量对棉花秸秆生物炭吸附Pb(Ⅱ)的影响。研究结果表明:随着热解温度的升高生物炭的pH、比表面积及芳香性增强;不同热解温度制备的棉花秸秆生物炭对Pb(Ⅱ)的快速吸附过程发生在2 h内,吸附在10 h以后逐渐达到平衡状态,准二级动力学吸附模型能较好地描述棉花秸秆生物炭对Pb(Ⅱ)的动力学吸附过程;不同热解温度制备的棉花秸秆生物炭对Pb(Ⅱ)的吸附能力不同CSBC600 CSBC400 CSBC200,且CSBC600远高于其他;CSBC400和CSBC600的吸附过程更符合Freundlich模型,吸附体系既有物理吸附又有化学吸附;棉花秸秆生物炭对Pb(Ⅱ)的吸附最佳pH为5. 00,其饱和吸附量随着体系温度的升高而增加,吸附是自发进行的吸热过程,溶液体系温度升高更有利于吸附的进行。  相似文献   

4.
生物炭灰分和碳结构在抗生素吸附过程中的影响尚不明确。本文以玉米芯为原料,在300~800 ℃下热解制备生物炭(CBCs)及除灰分生物炭(CBCs_AW),研究热解温度对生物炭灰分和碳结构的影响,探究灰分和碳形态与四环素(TC)吸附行为之间的关系。结果表明,随着热解温度升高,生物炭的碳结构由未完全碳化有机质(300 ℃)逐渐转化为石墨碳结构(800 ℃),吸附实验结果显示CBC800_AW的吸附量最大,证实石墨碳结构是促进TC吸附量增加的重要因素。CBCs_AW对TC吸附量高于CBCs,说明灰分对TC吸附有一定抑制作用。分析TC吸附性能与生物炭理化性质的相关性,结果显示吸附量与生物炭比表面积、孔体积、芳香性和石墨化程度相关性较高,推测TC的主要吸附机理为孔隙填充作用和π-π电子供体-受体相互作用。研究结果可为生物质资源化利用和抗生素污染修复提供科学依据。  相似文献   

5.
[目的]探讨热解温度对制备不同类型秸秆生物炭及其吸附去除Cu~(2+)的影响。[方法]以玉米、水稻、芝麻3类秸秆为原料于400~700℃热解炭化制备生物炭,探讨热解温度对秸秆生物炭的结构官能团、比表面积、孔径分布等结构及理化性质的影响,并评价生物炭对Cu~(2+)的吸附性能。[结果]生物炭的pH和比表面积随热解温度的升高而逐渐增大,而产率却逐渐稳定,其中热解温度的变化对水稻和芝麻秸秆生物炭的影响更为明显;此外,生物炭对Cu~(2+)的吸附效率与生物炭的种类和热解温度有关,升高热解温度有利于提高生物炭对Cu~(2+)的吸附去除率,且水稻和芝麻秸秆生物炭的吸附效率明显高于玉米秸秆生物炭,其中700℃下热解所制备的水稻和芝麻秸秆生物炭对Cu~(2+)的去除率可达100%。[结论]该研究可为控制农业环境污染提供科学依据。  相似文献   

6.
生物炭是生物质在限氧条件下通过高温热解得到的富碳固体,其丰富的含氧官能团、较大的比表面积、高度的芳香性结构等特性,使得生物炭对重金属具有很好的固定作用,因此,生物炭在重金属污染土壤的修复方面具有良好的前景。目前关于生物炭的研究大多集中在新制备的生物炭对重金属污染土壤的短期修复,但生物炭进入土壤后,随着时间的推移,会受到各种地球自然力的作用,逐渐发生老化,老化过程会对生物炭的物理化学性质和吸附性能产生不可忽视的影响。本文系统性地综述了国内外生物炭老化方法以及老化处理对生物炭理化性质、重金属吸附性能和生物有效性的影响等方面的研究进展,阐明当前生物炭老化研究现状,并对未来生物炭老化研究的发展方向提出建议,以期为重金属污染土壤的长期修复提供理论支撑。  相似文献   

7.
皇竹草生物炭的结构特征及其对Cr(Ⅵ)的吸附性能   总被引:2,自引:0,他引:2  
以皇竹草茎秆为原料,在限氧控温(300、500、700℃)条件下制备生物炭,研究该生物炭的结构特征及其对Cr(Ⅵ)的吸附行为。结果发现,随着热解温度的升高,皇竹草生物炭的产率下降,而灰分、p H呈上升趋势;电镜扫描(SEM)观察可见不同热解温度下所制备的生物炭结构相似,均具多孔和管状结构,但在700℃条件下所制备的生物炭相对300℃下制备的生物炭孔壁变薄,且孔壁有附着物,切面有突起结构。三种温度下制备的皇竹草生物炭对溶液中的Cr(Ⅵ)都具有较好的吸附作用,且500、700℃下制备的生物炭比300℃下制备的生物炭具有更好的吸附效果。在0~1 h之间,三种热解温度下制备的生物炭对铬的吸附量均随着时间的延长而快速增加,当吸附至1 h时,基本达到饱和状态,随后吸附量无明显变化。  相似文献   

8.
以大豆秸秆、高粱秸秆为原料,在350、500、650℃条件下,限氧控温制备生物炭,探讨不同类型生物炭性质及其对溶液中重金属Pb2+的吸附特性;利用2种等温吸附模型(Langmuir、Freundlich模型)研究了不同类型生物炭对Pb2+的吸附行为。结果表明:不同热解温度下的大豆、高粱生物炭,其灰分、挥发分及固定碳存在一定的差异性;随着热解温度的升高,生物炭对Pb2+的吸附性能增强。大豆生物炭对Pb2+的吸附量明显大于高粱生物炭;采用Langmuir和Freundlich分别对吸附数据进行拟合,两种生物炭的吸附行为更符合Freundlich模型,且属于线性等温吸附。  相似文献   

9.
  目的  考察生物质炭及铁改性生物质炭对土壤吸附砷[As(Ⅴ)]的影响。  方法  以法国梧桐Platanus orientalis修剪枝为原料在650 ℃限氧条件下热解制备生物质炭,并通过氯化铁(FeCl3)溶液浸渍、热解,将其进一步制备成铁改性生物质炭,对比考察改性后生物质炭理化性质和表面官能团的变化;并通过批量吸附试验探究不同As (Ⅴ)初始质量浓度、吸附时间对施炭土壤吸附As (Ⅴ)效果和规律的影响,通过分析吸附等温线特征和吸附动力学特征,探明吸附机制。  结果  铁改性生物质炭较原始生物质炭pH、比表面积及官能团数量降低,但灰分质量分数和电导率有所增加;Langmuir模型能较好拟合施炭土壤对As(Ⅴ)的吸附过程,表明吸附以单分子层为主。当As (Ⅴ)溶液初始质量浓度大于25 mg·L?1后,铁改性生物质炭对As (Ⅴ)的吸附量大于原始生物质炭,且最大吸附量为0.36 mg·g?1。原始生物质炭和铁改性生物质炭对As (Ⅴ)的动力学吸附符合准二级动力学方程,吸附过程在4 h前后分别为快速吸附和慢速吸附2个阶段,在24 h左右趋于平衡,且铁改性生物质炭处理下土壤的饱和吸附量比原始生物质炭处理高11%。  结论  施用2种生物质炭均能提高土壤对As (Ⅴ)的吸附效果,且铁改性生物质炭的吸附效果优于原始生物质炭。因此,施用铁改性生物质炭可以加强土壤对As (Ⅴ)的吸附作用从而降低As生物有效性。图6表3参39  相似文献   

10.
生物炭和乙醇改性生物炭对铜的吸附研究   总被引:1,自引:1,他引:0  
为研究生物炭和乙醇改性生物炭的特性及其对铜的吸附能力,选取小麦秸秆为原料,在300、450、600℃条件下热解制备生物炭,用于研究乙醇改性生物炭的产油率、生物炭和乙醇改性生物炭的表面官能团变化、亲水性能及其对Cu~(2+)的吸附特性。结果表明:乙醇改性生物炭产油率随热解温度升高而增加。生物炭和乙醇改性生物炭不同温度接触角范围为122.6°~89.3°和96.0°~68.7°,乙醇改性生物炭亲水性明显高于未经改性生物炭。生物炭和改性生物炭对Cu~(2+)的吸附符合二级动力学模型,生物炭吸附速率常数达1.535 g·mg~(-1)·h~(-1),乙醇改性生物炭为1.073 g·mg~(-1)·h~(-1)。二者对Cu~(2+)的等温吸附过程符合Langmuir等温吸附模型,生物炭和乙醇改性生物炭最大吸附量分别为44.3 mg·g-1和41.7 mg·g-1,说明使用乙醇萃取生物炭生物质油后,仍能保持90%左右的Cu~(2+)吸附效率。  相似文献   

11.
改性生物炭的制备及其在环境修复中的应用   总被引:1,自引:1,他引:0  
生物炭具有较大的孔隙度和比表面积,吸附能力强,在环境污染修复、土壤改良和固碳方面应用广泛。由于高温热解过程会使生物炭官能团数量减少而降低其对某些特定污染物的吸附性能,同时,由于原始生物炭存在固液分离难的问题,通过改性生物炭提高其理化性质,并应用于环境修复受到了学术界和工业界的广泛关注。然而,目前针对改性生物炭的制备及其在土壤和水体修复中的应用综述较少。本文对近年来有关改性生物炭的文献进行了系统分析,总结生物炭的改性方法,简要阐述改性生物炭在环境(土壤和水体)污染修复中的应用,并深入探讨了磁性生物炭作为吸附剂和催化剂在水污染处理中的应用现状,最后对改性生物炭的研究方向提出了展望。  相似文献   

12.
不同生物质来源生物炭对Pb(Ⅱ)的吸附特性   总被引:10,自引:5,他引:5  
以水稻秸秆、小麦秸秆、荔枝树枝为原料,在300、400、500、600℃下制备生物炭,并表征其理化性质,考察热解温度、初始p H、矿物组分等因素对生物炭吸附Pb(Ⅱ)的影响。结果表明,不同热解温度对水稻和小麦秸秆炭吸附Pb(Ⅱ)的影响很小,而荔枝树枝生物炭对Pb(Ⅱ)的吸附量随热解温度升高而显著增大。在p H3.0~6.0的范围内,三种生物炭对溶液中Pb(Ⅱ)的吸附量呈上升趋势;在25℃时,三种生物炭的等温吸附曲线符合Freundlich吸附模型,荔枝树枝生物炭对Pb(Ⅱ)的吸附效果最佳。三种生物炭吸附Pb(Ⅱ)的主导机制可能是其与矿物组分的共沉淀作用,而荔枝树枝生物炭还可能存在Pb(Ⅱ)与-OH、-COOH之间的离子交换作用,C=C键中的π电子在吸附过程中也有一定的贡献。  相似文献   

13.
生物质炭在农业上的应用   总被引:4,自引:0,他引:4  
生物质炭是由生物质在完全或部分缺氧的条件下经过热裂解、炭化产生的一类高度芳香化、难溶性的固态物质。近年来,生物质炭作为土壤改良剂、肥料缓释载体在农业上的应用越来越广泛。为促进生物质炭在农业上的研究及应用,从生物质炭性质的影响因素,生物质炭对土壤物理性质、化学性质和微生物的影响,以及生物质炭对作物生长和产量的影响等方面进行了阐述和分析,并提出未来生物质炭在农业应用方面的研究方向。  相似文献   

14.
本研究以竹片、山核桃壳、水稻及油菜秸秆等4种生物质为原料,通过热重分析研究各生物质材料性质与热解特性及生物炭产率之间的关系;并在300~700 ℃下热解6 h制备生物炭,分析生物炭的元素组成及官能团结构。结果表明,在低温段(300~400 ℃),生物质材料中的纤维素、木质素等组分对生物炭产率影响较明显,木质素含量高的材料产率较高;而400 ℃以上则是灰分含量对生物炭产率影响较大,水稻及油菜秸秆由于灰分含量高,其400 ℃以上的生物炭产率高于竹片及山核桃壳。随着炭化温度的升高,生物炭灰分含量增加,无灰基的碳含量增大,稳定性增强;仅水稻秸秆炭由于灰分含量较高,在高温(500~700 ℃)条件下仍有部分含氧官能团存在。综上,生物炭在一定温度下的产率取决于生物质材料来源,而生物炭的稳定性则主要由炭化温度决定,且温度越高,性质越稳定。  相似文献   

15.
热解是实现农业废弃物资源清洁、高效利用的重要技术。将污泥与秸秆混合共热解是生物质资源利用的重要方法,两者混合热解制备生物炭不仅能同时处理2种数量庞大的农业废弃物,还能有效解决能源短缺和环境污染带来的问题。本文综述了污泥与秸秆共热解制备生物炭的研究进展,介绍了共热解产物污泥-秸秆炭对土壤的改良作用和吸附炭的利用,以及热解温度、混合比例、停留时间、升温速率、催化剂添加等热解工艺对污泥-秸秆炭的影响,并对污泥与秸秆共热解技术的发展前景进行了展望。  相似文献   

16.
生物质内源矿物对热解过程及生物炭稳定性的影响   总被引:3,自引:2,他引:1  
选用花生壳和牛粪两种富碳生物质,通过酸洗去矿和外加典型矿物的方法,在热重分析仪中模拟热解过程,探讨矿物对热解行为的催化效应;通过元素分析计算碳保留;通过K_2Cr_2O_7化学氧化以及拉曼光谱考察矿物对生物炭稳定性的影响。结果表明:内源矿物对生物质热解中的分解温度有显著催化效应,将碳骨架的主体分解温度从250~400℃降低到200~350℃;花生壳中典型矿物为KCl,牛粪中为CaCl_2;矿物CaCl_2对牛粪的分解催化效应比KCl对花生壳的催化效应更显著。生物质去矿后,热解过程中碳保留率并未发生显著变化,但生物炭产物中碳稳定性提高。K_2Cr_2O_7氧化实验表明,去矿花生壳和去矿牛粪制备的生物炭碳稳定性比原始生物质制备的生物炭分别增加了52.7%和30.6%;通过拉曼光谱观察碳结构,发现生物质去矿后制备的生物炭有序化增强(ID/IG减小),说明矿物质使生物炭更易产生晶格缺陷,对产物稳定性有负面作用。因此,生物质内源矿物的存在,在热解时催化碳分解,使得生物炭碳结构更无序化,降低产物稳定性,但对过程中碳保留率的影响不显著。  相似文献   

17.
生物炭对Cu2+的吸附特性及其影响因素   总被引:2,自引:0,他引:2  
[目的]研究生物炭对溶液中Cu2+的吸附特性及其影响因素。[方法]采用玉米秸在不同温度(200、350、700℃)下制备的生物炭(BC200、BC350、BC700)吸附Cu2+,探讨在不同初始浓度、吸附时间、pH、Zn2+强度条件下对Cu2+的吸附特性。[结果]随着热解温度的升高,生物炭的pH和灰分含量增加。BC350具有最大的CEC和有机碳含量。3种生物炭对Cu2+的吸附能力大小为:BC350〉BC700〉BC200;拟合得到的BC200、BC350、BC700的最大吸附量分别为17.1、30.6、27.2mg/g。可以用准一级动力学模型较好地描述吸附动力学结果,BC200、BC350、BC700拟合得到的平衡吸附量与实测值接近。生物炭的铜吸附量随着溶液初始pH的增加而增大;较高的陪伴Zn2+浓度可以显著降低生物炭对Cu2+的吸附。[结论]该研究可为生物炭在环境科学中合理应用提供科学依据。  相似文献   

18.
三种不同生物质炭对2,4-二氯苯氧乙酸吸附特性的研究   总被引:1,自引:0,他引:1  
以植物类生物质原料(玉米秸秆和毛杨树叶)、城市污泥两类原材料在400℃条件下制备生物质炭(秸秆、毛杨树叶以及城市污泥三种生物质炭分别表示为J400、Y400和W400),使用酸洗法去除生物质炭表面灰分优化生物质炭,采用批量吸附实验的方法分析三种生物质炭对2,4-二氯苯氧乙酸(简称2,4-D)的吸附特性,并结合元素分析及显微红外等分析方法,探讨生物质原料对生物质炭吸附2,4-D吸附特性的影响。结果表明:三种生物质炭的元素含量、O/C、H/C和(H+O)/C存在差异,大小顺序均为W400Y400J400,表明秸秆生物质炭具有更强的疏水性和更低的极性,有利于提高生物质炭对有机物的吸附能力。吸附试验显示秸秆生物质炭、杨树生物质炭、污泥生物质炭对2,4-D的吸附特性及吸附能力不同,吸附量大小依次为2.732、2.650、2.633 mg·g(-2)。三种生物质炭的红外光谱结果相似,但在O-H、饱和C-H和不饱和C-H面外振动等处存在差异;污泥生物质炭在吸附2,4-D后多处位点的吸收峰发生变化,而杨树和秸秆生物质炭发生变化的位点较少;污泥生物质炭与其他两种生物质炭对2,4-D的吸附机制差异较大。  相似文献   

19.
N2O是影响全球气候变化的主要温室气体之一,对臭氧层的消耗起着催化作用。农田土壤作为温室气体第二大排放源,如何降低其N2O的排放已成为不断探索的重大课题。生物炭是在缺氧条件下由含碳量丰富的生物质热解而成的一种高比表面积、多孔性材料,具有提高土壤肥力,促进作物生长等诸多优点,已成为研究热点。对农田N2O排放的影响以及作用机制已有较多研究,但尚未形成统一定论。综述了N2O排放机制,以及生物炭特性、生物炭与环境因子的相互作用对农田N2O排放的影响,并对未来生物炭对温室气体排放的影响研究提出方向性建议。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号