首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
对湘西花垣锰矿、铅锌矿区的部分蔬菜及其种植土壤进行了调查和重金属含量分析,通过污染指数法和经蔬菜途径重金属暴露接触对人体的健康风险进行了系统评价。结果表明,与非矿区比较,两矿区蔬菜、土壤Pb、Zn和Cd含量较高,矿区土壤Pb、Zn、Cd含量均超过GB15618—1995《土壤环境质量标准》二级标准(pH〈6.5)的污染警戒值;矿区蔬菜Pb、Zn和Cd含量均超过国家蔬菜重金属元素限量标准,分别为限量标准的2.0~10.75、0.9~2.5倍和2.2~19.8倍;两矿区蔬菜受到了Pb、Cd的严重污染,Zn的轻-中度污染。重金属暴露接触对人体的风险评估结果表明,两矿区居民通过蔬菜途径摄入的Pb和Cd对其健康存在较大的潜在风险,且对儿童的健康风险高于成年人。因此,矿区土壤上种植蔬菜会对食用这些蔬菜的当地居民产生一定的健康风险,应采取合适的治理措施进行矿区污染土壤的修复。  相似文献   

2.
The To Lich and Kim Nguu Rivers, laden with untreated waste from industrial sources, serve as sources of water for irrigating vegetable farms. The purposes of this study were to identify the impact of wastewater irrigation on the level of heavy metals in the soils and vegetables and to predict their potential mobility and bioavailability. Soil samples were collected from different distances from the canal. The average concentrations of the heavy metals in the soil were in the order zinc (Zn; 204 mg kg?1) > copper (Cu; 196 mg kg?1) > chromium (Cr; 175 mg kg?1) > lead (Pb; 131 mg kg?1) > nickel (Ni; 60 mg kg?1) > cadmium (Cd; 4 mg kg?1). The concentrations of all heavy metals in the study site were much greater than the background level in that area and exceeded the permissible levels of the Vietnamese standards for Cd, Cu, and Pb. The concentrations of Zn, Ni, and Pb in the surface soil decreased with distance from the canal. The results of selective sequential extraction indicated that dominant fractions were oxide, organic, and residual for Ni, Pb, and Zn; organic and oxide for Cr; oxide for Cd; and organic for Cu. Leaching tests for water and acid indicated that the ratio of leached metal concentration to total metal concentration in the soil decreased in the order of Cd > Ni > Cr > Pb > Cu > Zn and in the order of Cd > Ni > Cr > Zn > Cu > Pb for the ethylenediaminetetraaceitc acid (EDTA) treatment. The EDTA treatment gave greater leachability than other treatments for most metal types. By leaching with water and acid, all heavy metals were fully released from the exchangeable fraction, and some heavy metals were fully released from carbonate and oxide fractions. The concentrations of Cd, Cr, Cu, Ni, Pb, and Zn in the vegetables exceeded the Vietnamese standards. The transfer coefficients for the metals were in the order of Zn > Ni > Cu > Cd = Cr > Pb.  相似文献   

3.
Sandy loamy agrosoddy-podzolic soils and plants growing on them were studied. The soils had been treated with sewage sludge from the Lyubertsy aeration station applied as organic fertilizer for 5–10 years before 1990. Initially, these soils were used for cultivating vegetables and fodder crops. The content and mobility of heavy metal compounds increased in the plow horizons of studied soils under the influence of sewage sludge. The concentrations of Cd and Zn exceeded the tentative permissible concentrations (TPC) for these elements by 8–16 and 2–4 times, respectively. The contaminated layer was found at the depths within 30–50 cm, which attests to a low migration rate of heavy metals added to the studied soils with sewage sludge (SS) 25 years ago. The concentration of Cd exceeded the maximum permissible concentration (MPC) of this element in all vegetable and fodder crops cultivated on the studied soils. The content of heavy metals in plants differed by three–five times in dependence on the capacity of particular plants to accumulate them. The period of soil self-purification from heavy metals was found to depend on the soil contamination level and element mobility, as well as on the element removal with harvested crops and with soil water flows. The maximal time of achieving the normal level of Cd concentration was estimated as 288 years for maximally contaminated soils; the corresponding values for Cu and Zn were estimated as 74 and 64 years, respectively.  相似文献   

4.
本文调查分析了江西省余江县39个大型养猪场的饲料、猪粪、以及长期施用这些猪粪的菜地土壤及蔬菜的Cu、Zn、Pb、Cd含量,并对饲料、猪粪、土壤和蔬菜重金属含量进行了相关分析。结果表明,大猪和小猪饲料Cu含量超标率分别达81.6%和30.8%,Zn含量超标率分别达89.5%和94.9%,而Pb、Cd未超标。猪粪Cu、Zn含量亦严重超标,且饲料和猪粪中Cu、Zn、Pb、Cd含量呈显著正相关关系。土壤总Zn和总Cd含量分别有7.8%和5.2%的样品超过三级标准,污染较为严重。所有蔬菜样品Cu、Zn、Pb含量均未超过我国食品卫生质量标准,空心菜和芋头Cd含量超标。土壤总Cu、Zn、Cd含量与提取态呈显著正相关。  相似文献   

5.
The behaviour of metals mainly depends on soil p H, carbonate contents and contamination level, which should be considered for the management of contaminated soils. In this study, kitchen garden topsoils(0–25 cm) were sampled from the area around three smelters in France, with different Cd and Pb contamination levels. Effect of a phosphate amendment(a mixture of diammonium phosphate and hydroxyapatite) on the environmental availability and phytoavailability of Cd and Pb was evaluated by different chemical extractions and cultivating lettuce(Lactuca sativa L.), respectively. Changes in the distribution of Cd and Pb were found in most contaminated soils after phosphate amendment. An increase of Cd and Pb in the residual phase was highlighted in almost all carbonated contaminated soils, whereas a decrease of Pb in the exchangeable, water and acid-soluble phase was observed in most contaminated soils with the lowest carbonate contents. The concentrations of extractable Cd and Pb using calcium chloride and acetic and citric acids generally decreased after the soil amendment. Lettuces grown on amended soils were acceptable for human consumption as regard to Pb concentration. In contrast, some lettuces were unacceptable for human consumption, since the concentrations of Cd in the leaves were higher than the European legislation limit. Surprisingly, in carbonated soils with very low concentration of Cd, the Cd concentrations in lettuce reached up to the European legislation limit, making the lettuce unacceptable for human consumption.Our study highlighted the fact that the total metal concentration in soils does not always allow to predict the metal accumulation in the edible parts of vegetables in order to make a judgement about their acceptability or unacceptability for human consumption.  相似文献   

6.
Urban recreation areas of different sizes were investigated in the city of Vladimir. The degree of their contamination with heavy metals and oil products was revealed. The content of heavy metals exceeded their maximum permissible concentrations by more than 2.5 times. The total content of heavy metals decreased in the sequence: Zn > Pb > Co > Mn > Cr > Ni. The mass fraction of oil products in the studied soils varied within the range of 0.016–0.28 mg/g. The reaction of soils in public gardens and a boulevard was neutral or close to neutral; in some soil samples, it was weakly alkaline. The top layer of all the soils significantly differed from the lower one by the higher alkalinity promoting the deposition of heavy metals there. As the content of Ni, Co, and Mn increased and exceeded the background concentrations, but did not reach the three-fold value of the maximum permissible concentrations, the activity of catalase was intensified. The stimulating effect of nickel on the catalase activity was mostly pronounced at the neutral soil reaction. The urease activity increased when heavy metals and oil products were present together in the concentrations above the background ones, but not higher than the three-fold maximal permissible concentrations for heavy metals and 0.3 mg/g for the content of oil products. The nitrifying activity was inhibited by oil hydrocarbons that were recorded in the soils in different amounts.  相似文献   

7.
苏南地区土壤重金属向蔬菜的迁移研究   总被引:12,自引:0,他引:12  
Vegetable fields in peri-urban areas receive large amounts of extraneous heavy metals because of rapid urbanization and industrialization in China. The concentrations of Cu, Zn, and Pb in 30 soil samples and 32 vegetable samples, collected from 30 different sites in southern Jiangsu Province of China, were measured and their transfer from soil to vegetable was determined. The results showed that the soil samples had wide ranges of pH (4.25-7.85) and electrical conductivity (EC) (0.24-3.42 dS m-1). Among the soil samples, there were four soil samples containing higher Cu and two soil samples containing higher Zn concentrations than those specified in the Chinese Soil Environmental Quality Standard II. However, no vegetable sample was found to contain a high level of Cu or Zn. In contrast, one vegetable sample contained 0.243 mg Pb kg-1 FW, which was above the Chinese Food Hygiene Standard, whereas the corresponding soil Pb concentration was lower than the Chinese Soil Environmental Quality Standard II. The transfer coefficients of Cu of all vegetable samples exceeded the suggested coefficient range, implying that extraneous Cu had high mobility and bioavailability to vegetables. There was no significant correlation between extractable soil heavy metal concentrations with four kinds of extractants and soil pH, EC, heavy metal concentrations in vegetables and soils, except that soil pH correlated well with the extractable soil Cu, Zn, and Pb concentrations with 1.0 mol L-1 NH4NO3. Moreover, diethylenetriamine pentaacetic acid (DTPA) extraction method was a more effcient method of extracting heavy metals from the soils independent of soil pH and EC than other three methods used.  相似文献   

8.
The bioavailability and mobility of heavy metals in soil are strongly influenced by the chemical or geochemical species of the metals in soils. We determined the geochemical fractions of copper (Cu), lead (Pb), and zinc (Zn) in garden soils, using the seven-step Zeien and Bruemmer fractionation scheme in relation to metal uptake by two leaf vegetables (lettuce, Latuca sativa, and amaranthus, Amaranthus caudatus). Our objective was to develop predictive models for assessing the lability of these metals from the soil metal fractions. The sums of fractions of Cu, Pb, and Zn did not differ by more than 10% from the “pseudo” total concentrations of the metals determined independently by aqua regia digestion. The general distribution of Cu and Pb among the soil fractions was in the order organic-matter-bound > Feo and Fec > Mnox > exchangeable > residual > mobile, except for Cu, where residual and the exchangeable were reversed. Zinc was fairly evenly distributed among organic matter (20%), Feo (22%), Fec (20%), and residual (21%). Averaged across sites, Cu, Pb, and Zn concentrations in the lettuce were almost twice as great as the concentrations in amaranthus even though they were raised in the same fields. The variance in Cu, Pb, and Zn uptake by amaranthus was predicted up to 51–99% from soluble, exchangeable, organic matter, and Feo-bound fractions; the variance in metal uptake by lettuce was best predicted from Fec- and Feo-bound fractions up to 76–90%. Our results indicated differential accessibility to metal fractions by lettuce and amaranthus grown in the same field.  相似文献   

9.
The genus Prosopis is a tree or shrub in the leguminosae family, subfamily fabaceae (mimosaceae). Many plants of the genus Prosopis are known to have medicinal properties. Only one species of Prosopis is found in Jordan, Prosopis farcta (Banks & Sol.) J.F. Macbr. The local name is Yanbout, and the English name is locust pods.

The aim of this study was to investigate some selected heavy metals including cadmium (Cd), copper (Cu), lead (Pb), and zinc (Zn) in Prosopis farcta, an unexplored Jordanian species of the Prosopis genus, because no data are available about these levels in this medicinal plant. These metals were tested in different parts of Prosopis farcta including root, aerial, and fruit as ethanolic extract plant and dry plant. Moreover, these metals were investigated in soil samples collected from the same area in which Prosopis farcta was grown. Results revealed that there was a significant difference between root and fruit for all test elements (P < 0.05). Roots were found to contain high average concentrations of Pb (2.14 µg g?1), Cu (18.56 µg g?1), and Zn (13.74 µg g?1). Copper and Zn concentrations in Prosopis farcta were within the permissible limits, whereas Pb concentration exceeded the permissible limit. Moreover, soil samples were analyzed for the metals. Results revealed that there was a positive correlation between the levels of Cu and Zn in medicinal plants and soils, whereas there was a negative correlation for Pb.

Two certified reference materials (tea leaves, NCSDC 73351; soil, GBW 07406) were analyzed to authenticate the accuracy of the method, and the precision was expressed by relative standard deviation.  相似文献   

10.
以甘肃省白银市的日光温室土壤为研究对象,调查分析了土壤剖面养分累积状况和土壤电导率、pH值的变化;对土壤重金属Cd、As、Pb、Cr、Cu、Zn和Ni含量进行了测定,采用单项质量指数与综合质量指数相结合的方法对土壤重金属的环境质量状况进行了评价。结果表明,日光温室土壤有机质、硝态氮、速效磷和速效钾含量显著高于农田土壤,其中速效磷在0-40 cm土层和速效钾在0-60 cm土层累积尤为明显。温室栽培条件下土壤电导率高于农田土壤,雒家滩温室土壤表层EC值为0.94 mS·cm-1,超过蔬菜的生育障碍临界点(EC〉0.50 mS·cm-1)。大部分温室土壤Cd含量超过国家土壤环境质量三级标准,其中雒家滩温室土壤Pb、Zn、Cd、As含量超过温室蔬菜地土壤环境质量评价标准(HJ 333—2006)限量值。根据各重金属的单项与综合质量指数,靖远日光温室土壤环境质量为2级,属于尚清洁水平,而雒家滩和重坪日光温室土壤环境质量为3级,属于超标水平,不适宜发展无公害蔬菜。  相似文献   

11.
Dietary exposure to heavy metals, namely cadmium (Cd), lead (Pb), zinc (Zn) and copper (Cu), has been identified as a risk to human health through the consumption of vegetable crops. This study investigates the source and magnitude of heavy metal contamination in soil and vegetable samples at 46 sites across four vegetable growing regions in New South Wales, Australia. The four regions Boolaroo, Port Kembla, Cowra and the Sydney Basin were a mix of commercial and residential vegetable growing areas. The extent of metal contamination in soils sampled was greatest in regions located in the vicinity of smelters, such as in Boolaroo and Port Kembla. Soil metal concentrations decreased with depth at these two sites, suggesting contamination due to anthropogenic activities. Cadmium, Pb and Zn contamination was greatest in vegetables from Boolaroo, and Cu concentrations were greatest in vegetables sampled from Port Kembla. At Boolaroo, nearly all the samples exceeded the Australian Food Standards maximum level (ML) (0.01 mg kg?1 fresh weight) of Cd and Pb in vegetables. Over 63% of samples exceeded international food standard guidelines set by the Commission of the European Communities and the Codex Alimentarius Commission. All vegetables sampled from Cowra, which is a relatively pristine site had Cd and Pb levels below the Australian and international food standards guideline values. This study suggests that the Australian guideline values are more conservative in defining the ML for Cd and Pb in vegetable crops. This investigation highlights the increased danger of growing vegetables in the vicinity of smelters.  相似文献   

12.
随着中国城市化进程的加快,城乡交错区重金属污染问题越来越受到人们的关注.本文以长三角无锡市城乡交错区某蔬菜基地为例,详细观测了两年期间(2003.7-2005.7)蔬菜生产系统中Cu、Pb、Zn、Cd等重金属元素的平衡状况,其目的是掌握该生产系统重金属的积累趋势,评价系统中土壤和蔬菜的健康风险.结果表明:该系统在管理过程中,重金属的输入途径有施肥和灌溉,有机肥施用是生产系统重金属输入的主要来源,占输入量的88.5% 以上.系统重金属年输入量较高,明显高于荷兰农业区水平,而Cu、Pb、Zn等元素年输出量明显较低,占输入量的10% 以下,表现为盈余.观测田块土壤中Cu、Pb、Zn、Cd含量均低于农田土壤二级标准但明显高于太湖地区人为土元素背景值,存在积累的趋势.蔬菜中重金属健康风险评价结果表明,在目前的生产条件下,叶菜类蔬菜重金属健康风险较高.  相似文献   

13.
南宁市郊部分菜区土壤和蔬菜重金属污染评价   总被引:31,自引:0,他引:31  
对南宁市郊 1 2个主要菜区土壤和蔬菜中重金属 ( Cu、Zn、Cd、Pb)含量调查和分析测定 ,采用重金属污染单因子评价方法对土壤重金属污染状况进行评价 ,以国家规定的蔬菜卫生标准评价蔬菜重金属污染状况 ,结果表明 :南宁市郊部分蔬菜区土壤不同程度地受到了 Cu、 Zn、 Cd、 Pb的污染 ,依次是 :Cd>Pb>Zn>Cu;蔬菜中 Cd、 Pb积累较 Cu、 Zn高 ,供试点中大部分蔬菜 Cd、 Pb含量超出了国家规定的蔬菜卫生标准  相似文献   

14.
Purpose

The evaluation of the ecotoxicity effects of some heavy metals on the plant growth and metal accumulation in Ocimum basilicum L. cultivated on unpolluted and polluted soils represented the objective of the present study.

Materials and methods

The basil aromatic herb was evaluated in a laboratory experiment using soil contaminated with Cd, Co, Cr, Cu, Ni, Pb, and Zn, similar to the one from a mining area. The soils and different organs of the basil plants were analyzed, the total contents of the added elements being determined using inductively coupled plasma optical emission spectrometry. The ability of basil plants to accumulate metals from soil and to translocate them in their organs was evaluated by transfer coefficient, translocation factor, enrichment factor, and geo-accumulation index determinations.

Results and discussion

The basil plants grown in the metal-polluted soil showed stimulation effects comparing with the plants from the control soil. At the end of the exposure period, the plants had a visible increase of biomass and presented inflorescences and the leaves’ green pigment was intensified. The metals gathered differently in plant organs: Cd, Co, Cr, and Pb were accumulated in roots, while Cu, Ni, and Zn in flowers. Cr and Pb exceeded the toxic levels in roots. Also, the heavy metal intake depends on the plant development stages; thus, Cd, Cr, and Pb were accumulated more in mature plant leaves. The Cd and Pb contents were higher than the World Health Organization and European Commission permissible limits.

Conclusions

The experimental results revealed that the basil plants exposed to a mixture of heavy metals have the potential to reduce the metal mobility from soil to plants. Translocation process from roots to flowers and to leaves was observed for Cu, Ni, and Zn, emphasizing a competition between metals. The calculated bioaccumulation factors were insignificant, but Cd and Pb concentrations exceeded the legal limits in the mature plants, being restricted for human or animal consumption.

  相似文献   

15.
16.
肥料重金属含量状况及施肥对土壤和作物重金属富集的影响   总被引:61,自引:5,他引:56  
本文对肥料中重金属的含量状况以及施肥对土壤和农作物重金属累积影响的研究进展进行了系统分析和总结。过磷酸钙中锌(Zn)、 铜(Cu)、 镉(Cd)、 铅(Pb)含量高于氮肥、 钾肥和三元复合肥,有机-无机复混肥料中的Pb含量高于其他化肥。有机肥如畜禽粪便、 污泥及其堆肥中的重金属含量高于化肥,猪粪中的Cu、 Zn、 砷(As)、 Cd含量明显高于其他有机废弃物,鸡粪中铬(Cr)含量高;污泥和垃圾堆肥中Pb或汞(Hg)含量高。商品有机肥Zn、 Pb和镍(Ni)含量高于堆肥,Hg含量高于畜禽粪便。多数研究表明,氮磷钾配施与不施肥相比土壤Cd和Pb含量增加,施用有机肥比不施肥提高土壤Cu、 Zn、 Pb、 Cd含量。施用化肥对农作物重金属富集的影响不明确,而施用有机肥可提高作物可食部位Cu、 Zn、 Cd、 Pb 的含量,影响大小与有机肥种类、 用量、 土壤类型和pH以及作物种类等有很大关系。在今后的研究中应着重以下几个方面, 1)典型种植体系下土壤重金属的投入/产出平衡; 2)不同种植体系下长期不同施肥措施对土壤重金属含量、 有效性影响的动态趋势; 3)典型种植体系和施肥措施下土壤对重金属的最高承载年限; 4)现有施肥措施下肥料中重金属的最高限量标准。  相似文献   

17.
Abstract

Fifty soil samples (0–20 cm) with corresponding numbers of grain, potatoes, cabbage, and cauliflower crops were collected from soils developed on alum shale materials in Southeastern Norway to investigate the availability of [cadmium (Cd), copper (Cu), zinc (Zn), lead (Pb), nickel (Ni), and manganese (Mn)] in the soil and the uptake of the metals by these crops. Both total (aqua regia soluble) and extractable [ammonium nitrate (NH4NO3) and DTPA] concentrations of metals in the soils were studied. The total concentration of all the heavy metals in the soils were higher compared to other soils found in this region. Forty‐four percent of the soil samples had higher Cd concentration than the limit for application of sewage sludge, whereas the corresponding values for Ni, Cu, and Zn were 60%, 38%, and 16%, respectively. About 70% the soil samples had a too high concentration of one or more of the heavy metals in relation to the limit for application of sewage sludge. Cadmium was the most soluble of the heavy metals, implying that it is more bioavailable than the other non‐essential metals, Pb and Ni. The total (aqua regia soluble) concentrations of Cd, Cu, Zn, and Ni and the concentrations of DTPA‐extractable Cd and Ni were significantly higher in the loam soils than in the sandy loam soils. The amount of NH4NCyextractable metals did not differ between the texture classes. The concentrations of DTPA‐extractable metals were positively and significantly correlated with the total concentrations of the same metals. Ammonium nitrate‐extractable metals, on the other hand, were not related to their total concentrations, but they were negatively and significantly correlated to soil pH. The average concentration of Cd (0.1 mg kg‐1 d.w.) in the plants was relatively high compared to the concentration previously found in plants grown on the other soils. The concentrations of the other heavy metals Cu, Zn, Mn, Ni, and Pb in the plants were considered to be within the normal range, except for some samples with relatively high concentrations of Ni and Mn (0–11.1 and 3.5 to 167 mg kg‘1 d.w., respectively). The concentrations of Cd, Cu, Zn, Ni, and Mn in grain were positively correlated to the concentrations of these respective metals in the soil extracted by NH4NO3. The plant concentrations were negatively correlated to pH. The DTPA‐extractable levels were not correlated with plant concentration and hence DTPA would not be a good extractant for determining plant availability in these soils.  相似文献   

18.
对山东省露地蔬菜产地的土壤进行了重金属Cd、Hg、As、Pb、Cr、Cu、Zn和Ni含量的抽样调查分析,并采用单项质量指数与综合质量指数相结合的方法对重金属的环境质量状况进行了评价。结果表明,莱阳露地蔬菜产地、金乡大蒜、章丘大葱产地土壤各重金属的平均含量均低于"食用农产品产地环境质量评价标准"(HJ332—2006)规定的限值,三地土壤重金属的单项质量指数均≤0.7,综合质量指数分别为0.56、0.50和0.43,土壤环境质量均为1级,属于清洁水平,适宜发展无公害蔬菜。同时发现,部分地区有重金属含量超标现象,莱阳Cu的样本超标率为13.64%,金乡Cd、Cu和Hg的样本超标率分别为5.41%、5.41%和2.70%,章丘Ni的超标率为4.76%。重金属含量之间多呈正相关关系,其中Cd与Zn,Cu与Zn,Pb与Cr之间的相关性达到极显著水平(P〈0.01),As与Ni,Ni与Zn,Zn与Pb,Pb与Cu,Cu与Cr之间的相关性达到显著水平(P〈0.05)。大部分监测点的重金属含量均高于山东农业土壤自然背景值,表明在监测点土壤中产生了重金属累积。对山东省其他露地蔬菜产区土壤的随机调查,没有发现重金属含量超标。  相似文献   

19.
为了解包头市铜厂周边地区土壤剖面中重金属污染状况,采用火焰原子吸收分光光度法和Tessier连续提取法,对土壤中6种重金属(Cu,Zn,Mn,Ni,Pb和Cd)的垂直分布特征、形态及潜在生物可利用性进行了分析。结果表明:研究区土壤剖面各层土壤中6种重金属含量均超过内蒙古土壤背景值,Cu,Pb和Cd为主要污染物。随采样深度的增加,Cu,Zn,Pb和Mn的含量呈现下降趋势,且由相关性系数可知重金属Cu,Zn和Pb可能有相同人为或自然污染源;土壤剖面中6种重金属均主要以残渣态存在,含量均在50%以上,对生物危害较小;潜在生物可利用性分析结果为:Cu(32.61%) > Mn(31.85%) > Ni(24.90%) > Zn(16.60%) > Cd(15.23%) > Pb(14.87%),Cu和Mn的潜在生物可利用性较大,其次为Ni,Zn,Cd和Pb潜在生物可利用性较小。  相似文献   

20.
In previous greenhouse experiments red mud, a residue of the alumina industry, was identified as effective amendment for in situ fixation of heavy metals. In the present study, we further evaluated the efficiency and potential drawbacks of red mud in an outdoor pot experiment. Application of 5 % (w/w) red mud (RM) should reveal possible drawbacks of red mud due to indigenous pollutants such as As, Cr, and V. Three soils from arable land in Lower Austria named Untertiefenbach (U) (Eutric Cambisol), Weyersdorf (W) (Dystric Cambisol), and Reisenberg (R) (Calcic Chernozem) were spiked with Cd, Zn, Cu, Ni, and V at two concentration levels in 1987, two soils originate from long‐term industrially polluted sites, located in Carinthia (Arnoldstein – Rendzic Leptosol; Zn, Cd, and Pb) and Tyrol (Brixlegg – Dystric Fluvisol; Cu, Zn). Zea mays was cultivated in pots for three months in outdoor conditions. Extraction with 1 M NH4NO3 was used to assess the influence of RM on the labile metals. Lability of Cd, Zn, Ni, and Pb was reduced upon RM treatment on a sandy soil up to 91 %, 94 %, 71 %, and 83 % of the control, respectively. Metal accumulation in shoots was reduced for Cd and Zn up to 54 % and for Ni up to 75 % (soil W), but not for Pb (soil A). Addition of RM (5 % w/w) increased the total As, Cr, and V concentrations in soils by 5, 20, and 50 mg kg–1, respectively. Whereas the lability of Cr was not affected, 1 M NH4NO3‐extractable As and V exceeded the trigger value for water quality according to Prüeß (1994). Lability of Cu increased upon RM application, especially on the Cu polluted industrial soil (B), while Cu toxicity appeared to be reduced as indicated by the higher corn biomass production. Red mud holds promise as soil amendment in terms of reduction Cd, Zn, and Ni bioavailability. However, at additions as high as 5 % (w/w) large As, Cr, and V concentrations of this material may limit its application.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号