首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract

A single biosolids application was made to 1.5×2.3 m confined plots of a Davidson clay loam (Rhodic Kandiudult) in 1984 at 0, 42, 84, 126, 168, and 210 Mg ha?1. The highest biosolids application supplied 750 and 600 kg ha?1 of Cu and Zn, respectively. Corn (Zea mays L.), from 1984 to 2000, and radish (Raphanus sativus L.) and romaine lettuce (Lactuca sativa var. longifolia), from 2001 to 2004, were grown at the site to assess heavy‐metal bioavailability. Extractable (0.005 diethylenetriamine (DTPA) and Mehlich 1) Cu and Zn were determined on 0 to 15‐cm depth samples from each plot. Corn yield increased with biosolids rate each year until 1993 to 1997, when yield decreased with biosolids rate because of phytotoxicity induced by low (<5.0) soil pH. The corn yield reduction was reversed between 1998 and 2000 upon raising the soil pH to approximately 6.0 by limestone addition following the 1997 season. Between 2001 and 2004, radish and lettuce yields were either not affected or slightly increased with biosolids rate, even as soil pH declined to below 5.5. Plant‐tissue metal concentrations increased with biosolids rate and as pH declined but were always within the normal range of these crops. Mehlich 1 and DTPA extractable metals increased linearly with biosolids rate. Extractability of Cu and Zn decreased approximately 50% over the past 20 years despite a decrease in soil organic matter concentration and greater than 95% conservation of the metals.  相似文献   

2.
Seventeen Mollisols having pH(1:2) in the range of 6.00 to 8.42 were analyzed with five extractants, and the extractable zinc (Zn) ranges were 0.84 to 2.75 mg Zn kg?1 soil for diethylenetriaminepentaacetic acid (DTPA) (pH 7.3), 0.91 to 2.72 mg Zn kg?1 soil for DTPA + ammonium bicarbonate (pH 7.6), 1.82 to 7.18 mg Zn kg?1 soil for Mehlich 3, 1.22 to 3.83 mg Zn kg?1 soil for ethylenediaminetetraacetic acid (EDTA) + ammonium carbonate, and 0.88 to 1.18 mg Zn kg?1 soil for 1 mol L?1 magnesium chloride (MgCl2) (pH 6.0). Zinc extracted by DTPA (pH 7.3) and Mehlich 3 showed significant positive correlation with sand content, whereas only Mehlich 3 showed negative correlation with soil pH. All extractants showed significant positive correlation with each other except for 1 mol L?1 MgCl2‐extractable Zn, which had significant positive correlation with only Mehlich 3– and EDTA + ammonium carbonate–extractable Zn. A greenhouse experiment showed that Bray's percentage yield of rice was poorly correlated to extractable soil Zn but had a significant and negative linear correlation with soil pH (r = ?0.662, significant at p = 0.01). Total Zn uptake by rice had a significant positive correlation with 1 mol L?1 MgCl2– and Mehlich 3–extractable Zn. A proposed parameter (p extractable Zn + p OH?) involving both soil extractable Zn and pH terms together showed significant and positive correlation with Bray's percentage yield and total Zn uptake of rice. The calculated values of critical limits of soil Zn in terms of the proposed parameter were 14.1699 for DTPA (pH 7.3), 13.9587 for DTPA + ammonium bicarbonate, 13.7016 for Mehlich 3, 13.9402 for EDTA + ammonium carbonate, and 14.1810 for 1 mol L?1 MgCl2 (pH 6.0). The critical limits of Zn in rice grain and straw were 17.32 and 22.95 mg Zn kg?1 plant tissue, respectively.  相似文献   

3.
Soil sampling is an integral component of fertility evaluation and nutrient recommendation for efficient use of nutrients in crop production. Little attention has been devoted to evaluating methodology for sampling watersheds under dryland agriculture. A stratified random sampling methodology for sampling the Appayapally watershed in Mahabubnagar district of Andhra Pradesh state in the semi‐arid tropical region of India was adopted and evaluated. The watershed has an area of about 500 ha, with gentle sloping lands (<1% slope), and 217 farmers own land in the watershed. The soils are Alfisols. A total of 114 soil samples were collected from the top 15‐cm layer to represent the entire watershed. Each sample was a composite of 7–8 cores, randomly collected from the area represented by a crop and group of farmers. The soil samples were air dried, ground, and analyzed for pH, electrical conductivity (EC), organic carbon (C), total nitrogen (N), and extractable phosphorus (P), potassium (K), calcium (Ca), magnesium (Mg), sodium (Na), sulfur (S), zinc (Zn), manganese (Mn), iron (Fe), copper (Cu), and boron (B). Statistical analysis of the results on soil fertility parameters showed that the mean‐ or median‐based results of soil tests performed in the study did not differ significantly when the sample set size varied from 5 to 114 (100% of the population). Our results indicate that farmers' fields in the Appayapally watershed are uniform in the chemical fertility parameters studied, and even a small sample set size can represent the whole population. However, such a sampling strategy may be applicable only to watersheds that are very gently sloping and where fertilizer use is very low, resulting in an overall low fertility in the whole watershed.  相似文献   

4.
Abstract

Soil color is a soil property that may be used as an interpreting index in estimating processes and properties. Quantifying color allows one to obtain information for rapidly estimating the related processes in soils. CIELAB color parameters L*, a*, and b* of ground (air‐dried and sieved) soil samples and aggregate surfaces of four soil profiles formed in calcareous colluviums in northern Turkey were analyzed. Values of color parameters measured in ground and intact soils were compared and related to soil properties by the regression technique. Results revealed that the L* value obtained with a ground soil sample was a significant predictor of organic matter in A horizons (p < 0.001). Although calcic horizons yielded the highest L* values, no significant relationship was obtained between calcium carbonate contents and lightness of soils in any of horizons studied. The parameters of b* could adequately be used to quantify dithionite‐extractable iron oxide contents in soils studied. The results further showed that the CIELAB color parameters obtained with ground samples were more informative than that of aggrevated samples in relating color parameters to soil properties.  相似文献   

5.
The suitability of loss‐on‐ignition (LOI) as an alternative to direct measurement of organic carbon (OC) has been debated for decades without resolution. The literature contains an abundance of different linear regression models to describe the LOI–OC relationship, most based on untransformed values of LOI and OC. Such regression is suspect because the variables are unable to occupy Euclidean space. Logratio transformation—based on relative rather than absolute differences—eliminates this constraint. Re‐analysis of the relationship on new and 10 previously published datasets using logratio techniques reveals that the relationship is nonlinear and that the profusion of regression models is in part a function of the range of LOI. Although LOI may offer a crude estimate of OC at high LOI levels, OC/LOI ratios when LOI is less than about 25% are too variable for reliable OC estimation, and interstudy comparisons remain dubious. Direct measurement of OC is recommended.  相似文献   

6.
A reliable soil test is needed for estimating mercury (Hg) availability to crop plants. In this study, four extraction procedures including 0.1 M hydrochloric acid (HCl), 1 M ammonium acetate (NH4OAc) (pH 7.0), 0.005 M diethylenetriaminepentaacetic acid (DTPA), and 0.1 M calcium chloride (CaCl2) (pH5.0) were compared for their adequacy in predicting soil Hg availability to crop plants of a rice–cabbage–radish rotation system. The amounts of Hg extracted by each of the four procedures increased with increasing equilibrium time. The optimal time required for extraction of soil Hg was approximately 30 min, though it varied slightly among the four extractants. The amounts of Hg extracted decreased with increasing soil/solution ratio, and a soil/solution ratio of 1:5 appeared to be adequate for soil Hg availability tests. The amounts of Hg extracted increased in the order of NH4OAc < CaCl2 < DTPA < HCl in silty loam soil (SLS) soil, and the order was NH4OAc < CaCl2 ≈ DTPA < HCl in yellowish red soil (YRS) soil. Significant positive correlations among the four extractants were obtained in SLS soil. In contrast, the correlations were poor in YRS soil, especially for HCl. There were significant correlations between concentrations of Hg in edible tissue of three plants and the amounts of soil Hg extractable to the four extractants for soil–rice system and soil–radish system, but not for soil–Chinese cabbage system. The 0.1M HCl extraction overall provided the best estimation of soil‐available Hg and could be used to predict phytoavailability of Hg in soil–crop systems.  相似文献   

7.
《Journal of plant nutrition》2013,36(10-11):2031-2041
Abstract

In this study we have tested the hypothesis that lime‐induced Fe deficiency chlorosis of kiwifruit may be prevented by the application of a synthetic iron(II)‐phosphate analogous to the mineral vivianite [(Fe3(PO4)2·8H2O)]. Two experiments, under greenhouse and field conditions, were performed. In the greenhouse, 1‐year old micropropagated plants (Actinidia deliciosa, cv. Hayward), grown in 3‐L pots on a calcareous soil, were treated in early autumn with soil‐applied: (1) synthetic vivianite (1.35 g plant?1) and (2) Fe‐EDDHA (24 mg Fe plant?1). The synthetic vivianite suspension, prepared by dissolving ferrous sulfate and mono‐ammonium phosphate, was injected into the soil as a sole application whereas the Fe‐EDDHA solution was applied four times at weekly intervals. The field experiment was conducted in a mature drip‐irrigated kiwifruit orchard located on a calcareous soil in the Eastern Po Valley (Italy). Treatments were performed in early autumn by injecting synthetic vivianite (1.8 kg tree?1) and Fe‐EDDHA (600 mg Fe tree?1) into four holes in the soil around each tree, at a depth of 25–30 cm. The Fe‐chelate application was repeated at the same rate in the following spring. Untreated (control) plants were used in both experiments. Autumn‐applied Fe fertilisers significantly prevented development of Fe chlorosis under greenhouse conditions whereas in the field only vivianite was effective. In conclusion, these 1‐year results show that vivianite represents an effective alternative to soil‐applied Fe chelates for preventing Fe chlorosis in kiwifruit orchards.  相似文献   

8.
Abstract

Profiles of semi‐arid–zone soils in Punjab, northwest India, were investigated for different forms of zinc (Zn), including total, diethylenetriamine penta‐acetic acid (DTPA)-extractable, soil solution plus exchangeable (Zn), Zn adsorbed onto inorganic sites, Zn bound by organic sites, and Zn adsorbed onto oxide surfaces. Irrespective of the different fractions of Zn present, its content was higher in fine‐textured Alfisols and Inceptisols than in coarse‐textured Entisols. In general, the higher content of Zn was observed in the surface horizon and then decreased in the subsurface horizons. However, none of the forms of Zn exhibited any consistent pattern of distribution. Organic matter and size fractions (clay and silt) had a strong influence on the distribution of different forms of Zn. Based upon the linear coefficient of correlation, the soil solution plus exchangeable Zn, adsorbed onto inorganic sites, and DTPA‐Zn increased with increase in organic carbon but decreased with increase in pH and calcium carbonate content. Total Zn increased with increase in clay and silt content. Among the different forms, Zn bound by organic sites, water soluble plus exchangeable Zn and Zn adsorb onto oxide (amorphous surfaces) were all correlated with DTPA extractable Zn. The uptake of Zn was more in recent floodplain Entisols than very fine textured Alfisols and Inceptisols. Among the different forms soil solution +exchangeable and DTPA‐extractable Zn was positively correlated with total uptake of Zn.  相似文献   

9.
Abstract

No studies have been conducted to evaluate the potassium (K) quantity‐intensity (Q/I) relationships that exist in eastern South Dakota soils and how that may affect K fertility interpretations. The objectives of this study were to i) evaluate the K status of smectite‐dominant soils through quantity‐intensity relationships and (ii) relate the findings to current research on soil K release and plant availability. Soil and plant tissue samples were collected from eight different corn production fields across east‐central South Dakota. Samples were collected from areas where corn plants did or did not exhibit K deficiency symptoms. Quantity‐intensity plots were developed and used to derive the typical Q/I parameters. Little difference existed in Q/I parameters and the form of Q/I plots among field sites. The ARe K and ΔK0 values ranged from 0.0013 to 0.0113, and ?0.47 to 0.18 cmolc kg?1, respectively, and most sites were considered K insufficient. The predominant phyllosilicate present in the clay‐sized fraction was montmorillonite with an estimated 17% tetrahedral charge. These soils would not be expected to contribute much plant‐available, nonexchangeable K and would be in need of frequent K fertilization. Presumably, these and similar soils, upon K exhaustion, rely heavily on K released from K‐bearing silt‐sized particles and may be highly dependent on surface‐controlled dissolution processes for labile K replenishment. Additional research needs to be conducted concerning the release kinetics of K from K‐bearing minerals of these soils.  相似文献   

10.
Abstract

Humic acids have many benefits for plant growth and development, and these effects may be maximized if these materials are combined with micronutrient applications. In the present study, pot experiments were conducted to evaluate the effects of zinc (Zn) humate and ZnSO4 on growth of wheat and soybean in a severely Zn‐deficient calcareous soil (DTPA‐Zn: 0.10 mg kg?1 soil). Plants were grown for 24 (wheat) and 28 days (soybean) with 0 or 5 mg kg?1 of Zn as either ZnSO4 or Zn humate. Zinc humate used in the experiments was obtained from Humintech GmbH, Germany, and contained 5% of Zn. When Zn was not supplied, plants rapidly developed visible symptoms of Zn deficiency (e.g., chlorosis and brown patches on young leaves in soybean and necrotic patches on middle‐aged leaves in wheat). Adding Zn humate eliminated Zn‐deficiency symptoms and enhanced dry matter production by 50% in soybean and 120% in wheat. Zinc‐humate and ZnSO4 were similarly effective in increasing dry matter production in wheat; but Zn humate increased soybean dry matter more than ZnSO4. When Zn was not supplied, Zn concentrations were 6 mg kg?1 for wheat and 8 mg kg?1 for soybean. Application of Zn humate and ZnSO4 increased shoot Zn concentration of plants to 36 and 34 mg kg?1 in wheat and to 13 and 18 mg kg?1 in soybean, respectively. The results indicate that soybean and wheat plants can efficiently utilize Zn chelated to humic acid in calcareous soils, and this utilization is comparable to the utilization of Zn from ZnSO4. Under Zn‐deficient soil conditions, plant growth and yield can be maximized by the combined positive effects of Zn and humic acids.  相似文献   

11.
Abstract

Most agricultural soils in the Indian River area, South Florida, are sandy with minimal holding capacity for moisture and nutrients. Phosphorus (P) leaching from these soils has been suspected of contributing to the eutrophication of surface waters in this region. Dolomite phosphate rock (DPR) and N‐viro soil are promising amendments to increase crop production and reduce P loss from sandy soils. Soil incubation and greenhouse pot experiments were conducted to examine the effects of Florida DPR–N‐viro soil mixtures on the growth of a horticultural crop in an acidic sandy soil and to generate information for developing a desired formula of soil amendments. Dolomite phosphate rock and N–viro soil application increased soil pH, electrical conductivity (EC), extractable P, calcium (Ca), and magnesium (Mg). N–viro soil had greater effect on soil pH, organic matter content, and microbial biomass than the DPR. Comparatively higher nitrification rates were found in the N–viro soil treatment than the DPR treatment. A systematic decrease in soil‐extractable P was found with increasing proportions of N‐viro soil from the combined amendments. Greenhouse study demonstrated that the application of DPR and N‐viro soil significantly improved dry‐matter yield and increased plant P, Ca, and Mg concentrations of radish (Raphanus sativus L.). Based on dry‐matter yield and plant N uptake, the combined amendments that contained 30% or 20% of DPR materials appear to be optimal but remain to be confirmed by field trials.  相似文献   

12.
Abstract

Availability of lead (Pb) and cadmium (Cd) in farmland soils and its distribution in individual plants of dry‐seeded rice were investigated utilizing graphite furnace atomic absorption spectrometry (GFAAS) with a matrix modification technique. Five extractants were compared, and the operating conditions for GFAAS were optimized. The detection limits were 4.2 ng for Pb with the precision of 1.54% and 0.1 ng for Cd with the precision of 2.38%. The contents of the extractable Pb and Cd in soils were determined with the five extractants, and availability of Pb and Cd in farmland soil was discussed. The contents of Pb and Cd in different parts of dry‐seeded rice were lower than those in dry‐seeded rice soil. The contents of Pb and Cd in rice were lower than in other parts. The end top leaves accumulated the highest amounts of Pb and Cd.  相似文献   

13.
Abstract

Tillage, cropping system, and cover crops have seasonal and long‐term effects on the nitrogen (N) cycle and total soil organic carbon (C), which in turn affects soil quality. This study evaluated the effects of crop, cover crop, and tillage practices on inorganic N levels and total soil N, the timing of inorganic N release from hairy vetch and soybean, and the capacity for C sequestration. Cropping systems included continuous corn (Zea mays L.) and stalk residue, continuous corn and hairy vetch (Vicia villosa Roth), continuous soybeans (Glycine max L.) plus residue, and two corn/soybean rotations in corn alternate years with hairy vetch and ammonium nitrate (0, 85, and 170 kg N ha?1). Subplot treatments were moldboard plow and no tillage. Legumes coupled with no tillage reduced the N fertilizer requirement of corn, increased plant‐available N, and augmented total soil C and N stores.  相似文献   

14.
Abstract: Soil quality indicators and nematode abundance were characterized in a loessial soil under long‐term conservation tillage to evaluate the effects of no‐till, double‐disk, chisel, and moldboard plow treatments. Indicators included soil electrical conductivity (EC), soil texture, soil organic matter (SOM), and total particulate organic matter (tPOM). Nematode abundance was positively correlated with EC, silt content, and total POM and negatively correlated with clay content. Clay content was the main source of variation among soil quality indicators and was negatively correlated with nematode abundance and most indicators. The gain in SOM in the no‐till system amounted to 10887 kg over the 24 years or 454 kg ha?1 year?1, about half of this difference (45%) resulting from soil erosion in plowed soils. The balance of gain in SOM with no till (249 kg ha?1 year?1) was due to SOM sequestration with no till. No‐till management reduced soil erosion, increased SOM, and enhanced soil physical characteristics.  相似文献   

15.
Profiles of arid and semi‐arid zones soils of Punjab, northwestern India, were investigated for different forms of iron (Fe): total Fe, diethylenetriamine penta‐acetic acid (DTPA)–extractable Fe, soil solution plus exchangeable Fe, Fe adsorbed onto inorganic sites and oxide surfaces, and Fe bound by organic sites. Irrespective of the different fractions of Fe present, its content was higher in the fine‐textured Alfisols and Inceptisols than in the coarse‐textured Entisols and Aridisols. Lower content of total Fe was observed in the surface horizon and then increased in the subsurface horizons, whereas no set pattern was observed in Entisols. Also, irrespective of the soil orders, the contents of different forms of Fe were higher in the surface horizon and then decreased by depth. None of the forms of Fe exhibited any consistent pattern of distribution.

Organic matter and the content of clay and silt fractions had a strong bearing on the distribution of forms of Fe. Based on a linear coefficient of correlation, the soil solution plus exchangeable Fe adsorbed onto inorganic sites and DTPA‐extractable Fe increased with increase in soil organic carbon but decreased with increase in soil pH and calcium carbonate content. Total Fe increased with increase in cation exchange capacity (CEC) and clay and silt content. The results also revealed that there was equilibrium in different fractions of this element. Among the different Fe forms, Fe bound by organic sites, water‐soluble plus exchangeable Fe, and Fe adsorbed onto oxides (amorphous surfaces) were positively correlated with the DTPA‐extractable Fe. Though some forms are interrelated, none of the forms had any relationship with the total Fe.  相似文献   

16.
Abstract

Soil preparation can affect soil test results. This study was conducted to compare soil‐grinder effects on grams of soil scooped. Soil samples (n=15,000) were ground by two types of soil grinders, a roller and hammer mill, and then the soil was sieved (10‐mesh), and scooped with a one‐gram scoop (0.85 cm3). The contents of the soil scoop were weighed. Grams of soil scooped ranged from 0.4 to 1.8 g for both soil grinders. The bell‐shaped distribution was centered around 0.8 and 1.0 g for the roller‐ and hammer mill‐type grinder, respectively. When the soil was ground by the roller‐type grinder, 85% of the ground soil was retained on a 50‐mesh sieve. In contrast, with the hammer mill grinder, 45% of the soil was retained on a 50‐mesh, 13% retained on a 100‐mesh, and 42% passed a 100‐mesh sieves. The “heavier” soil scoops with the hammer mill grinder could be explained by the fact that the finer soil particles could pack into the voids that the coarse soil particles created. Bray extractable P and ammonium actetate extractable K, Mg, and Ca were increased 11 to 15% by the “heavier” scooping weight. Grams of soil scooped and soil test levels were affected by the type of soil grinder and soil type.  相似文献   

17.
Abstract

Fixation and recovery of added phosphorus (P) and potassium (K) were studied in different soil types of pulse‐growing regions. Amounts of P and K fixed increased in all the soils irrespective of type and texture. With the increase in levels of added P and K, maximum P fixation was observed at lower levels of added P (50 mg kg?1). Alfisols showed maximum P‐fixation capacity (92.7%), followed by Vertisols (86.5%) and Inceptisols (76.6%) at 50 mg kg?1 added P. However, K fixation increased with increasing levels of added K up to 200 mg kg?1, and thereafter fixation either decreased or was maintained at similar levels. Vertisols showed higher K fixation than Inceptisols and Alfisols. Fertilizer P requirement per unit increase in available P in soil was highest in Bangalore (3.23) and lowest in Delhi (2.38). Fertilizer K requirement per unit increase in available K in soil was highest in Raipur and Gulbarga (1.75) and lowest in Ranchi (1.28).  相似文献   

18.
Abstract

The actual content of the soil organic carbon (SOC) has to be periodically measured for soil classification and nutrient management purposes. Traditional SOC tests are relatively time consuming and costly. A rapid field test would be valuable to delineate soil map units with similar SOC to simplify the process of land evaluation while increasing precision. The objectives of this study were to develop and evaluate a new field measurement technique for the quick assessment of SOC. The new method measures the emitted CO2 concentration 3 min after treatment of the soil sample with acidic potassium (K) permanganate solution. The inorganic carbonate content of the soil is measured separately with the addition of sulphuric acid only. Carbon dioxide concentration from both procedures is measured with a portable infrared gas analyzer. The difference between the concentrations measured after the two separate reactions provide an estimate of SOC. Samples from brown forest soils (ca Hapludalf) (0.19–5.53% SOC) were used for the method development. The correlation coefficient between the SOC determined by the new method and laboratory wet combustion method content was 0.76 for the full range of SOC and 0.81 for the soil samples with less than 20% carbonate.  相似文献   

19.
Measurement of soil carbon (C) is important for determining the effects of Everglades restoration projects on C cycling and transformations. Accurate measurement of soil organic C by automated carbon–nitrogen–sulfur (CNS) analysis may be confounded by the presence of calcium carbonate (CaCO3) in Everglades wetlands. The objectives of this study were to compare a loss‐on‐ignition (LOI) method with CNS analysis for assessment of soil C across a diverse group of calcareous Everglades wetlands. More than 3168 samples were taken from three soil depths (floc, 0–10, 10–30 cm) in 14 wetlands and analyzed for LOI, total C, and total calcium (Ca). The LOI method compared favorably to CNS analysis for LOI contents ranging from 0 to 1000 g kg?1 and for soil total Ca levels from 0 to 500 g Ca kg?1. For all wetlands and soil depths, LOI was significantly related to total C (r2 = 0.957). However, LOI was a better predictor of total C when LOI exceeded 400 g kg?1 because of less interference by CaCO3. Total C measurement by CNS analysis was problematic in soils with high total Ca and low LOI, as the presence of CaCO3 confounded C analysis for LOI less than 400 g kg?1. Inclusion of total Ca in regression models with LOI significantly improved the prediction of total C. Estimates of total organic C by CNS analysis were obtained by accounting for C associated with CaCO3 by calculation, with results being similar to total organic C values obtained from LOI analysis. The proportion of C in organic matter measured by the LOI method (51%) was accurate and applicable across wetlands, soil depths, and total Ca levels; thus LOI was a suitable indicator of total organic C in Everglades wetlands.  相似文献   

20.
Abstract

The nitrate distribution in the soil profile varies with fertilization and tillage practices in potato (Solanum tuberosum L.) production. Band‐applied fertilizers localized near the seed at planting must diffuse through the bulk soil during the growing season. The hilling operation transforms soil surface into an undulating field landscape and redistributes the split‐applied nitrogen fertilizers between the hill and the interrow. The soil sampling procedure during the growing season thus becomes extremely tedious when searching to quantify nitrate accumulation in the entire soil volume. The objective of this study was to assess seasonal nitrate accumulation in a soil volume from a single boring in the potato hill. An intensive sampling was conducted at four places in the 0‐ to 50‐cm profile in potato fields receiving three rates of split-applied nitrogen (N) before hilling. Treatment and time effects provided a large range of nitrate concentrations throughout the soil profile. Nitrate content increased with N fertilization and organic‐matter mineralization and decreased as a result of plant uptake and nitrate leaching. Averaged across the season, nitrate accumulation in the 0‐ to 50‐cm profile represented 78% of that accumulated in the center of the hill on a per ha basis (r2=0.90). A single boring in the center of the hill considerably reduced sampling time and cost and provided a fair estimate of seasonal nitrate accumulation in the 0‐ to 50‐cm soil profile.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号