首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Lymphocystis disease is a prevalent, non-fatal disease that affects many teleost fish and is caused by the DNA virus lymphocystis disease virus (LCDV). Lymphocystis-like lesions have been observed in yellow perch, Perca flavescens (Mitchell), in lakes in northern Alberta, Canada. In an effort to confirm the identity of the virus causing these lesions, DNA was extracted from these lesions and PCR with genotype generic LCDV primers specific to the major capsid protein (MCP) gene was performed. A 1357-base pair nucleotide sequence corresponding to a peptide length of 452 amino acids of the MCP gene was sequenced, confirming the lesions as being lymphocystis disease lesions. Phylogenetic analysis of the generated amino acid sequence revealed the perch LCDV isolate to be a distinct and novel genotype. From the obtained sequence, a real-time PCR identification method was developed using fluorgenic LUX primers. The identification method was used to detect the presence/absence of LCDV in yellow perch from two lakes, one where lymphocystis disease was observed to occur and the other where the disease had not been observed. All samples of fin, spleen and liver tested negative for LCDV in the lake where lymphocystis disease had not been observed. The second lake had a 2.6% incidence of LCD, and virus was detected in tissue samples from all individuals tested regardless of whether they were expressing the disease or not. However, estimated viral copy number in spleen and liver of symptomatic perch was four orders of magnitude higher than that in asymptomatic perch.  相似文献   

2.
To lay a solid foundation of in vitro investigations of fish viral diseases, cytotechnology and cytotoxicology, a novel fin cell line from brown-marbled grouper, Epinephelus fuscoguttatus , was established and its viral susceptibility was evaluated. The fin tissues, digested with hyaluronidase and collagenase II, were used to initiate primary culture at 24 °C by using 20% foetal bovine serum-Dulbecco's modified Eagle medium/F12 medium, which was further supplemented with carboxymethyl–chitooligosaccharide, basic fibroblast growth factor and insulin-like growth factor-I. The fibroblastic fin cells grew at a steady rate during subsequent subculture and had a population doubling time of 50.6 h at passage 60. The modal diploid chromosome number was 48. A brown-marbled grouper fin cell line (bmGF-1) has been established and subcultured to passage 75 by now. Viral susceptibilities revealed that typical cytopathic effects of bmGF-1 cells emerged after being infected by turbot reddish-body iridovirus (TRBIV) or lymphocystis disease virus (LCDV). However, a large number of TRBIV and LCDV particles were also found in infected bmGF-1 cells. All these indicate that the bmGF-1 cell line has good susceptibility to TRBIV and LCDV, which may serve as a valuable tool for studies of cell–virus interactions and have potential applications in fish virus propagation and vaccine development.  相似文献   

3.
Lymphocystis disease virus (LCDV), a large icosahedral DNA virus classified to the iridovirus family, is the causative agent of lymphocystis, a disease which occurs in marine and freshwater fish species and is characterized by formation of papilloma-like lesions on the surface of the skin. In vitro, LCDV infection causes flounder gill cells, an adherent cell line, to exhibit an obvious cytopathic effect (CPE). In order to test whether apoptosis is responsible for the observed CPE, cells infected with LCDV at a multiplicity of infection (m.o.i.) of 5 PFU per cell were examined at various time intervals for the appearance of apoptotic signs. Nuclear fragmentation, DNA laddering and caspase activation were observed in the infected cells at the time (i.e. 10 days post-infection) when an intensive CPE was observed. These findings demonstrate that LCDV is capable of inducing apoptosis in vitro, which is different from the result of LCDV infection in vivo, and consequently suggest an intricate LCDV-host interaction.  相似文献   

4.
The transmission of lymphocystis disease virus (LCDV) to gilthead seabream, Sparus aurata L., larvae was investigated using fertilized eggs from a farm with previous reports of lymphocystis disease. LCDV genome was detected by PCR‐hybridization in blood samples from 17.5% of the asymptomatic gilthead seabream broodstock analysed. Using the same methodology, eggs spawned from these animals were LCDV positive, as well as larvae hatched from them. The presence of infective viral particles was confirmed by cytopathic effects development on SAF‐1 cells. Whole‐mount in situ hybridization (ISH) and immunohistochemistry (IHC) showed the presence of LCDV in the epidermis of larvae hatched from LCDV‐positive eggs. When fertilized eggs were disinfected with iodine, no viral DNA was detected either in eggs (analysed by PCR‐hybridization) or in larvae (PCR‐hybridization and ISH). These results suggest the vertical transmission of LCDV, the virus being transmitted on the egg surface. Larvae hatched from disinfected eggs remain LCDV negative during the endotrophic phase, as showed by PCR‐hybridization, ISH and IHC. After feeding on LCDV‐positive rotifers, viral antigens were observed in the digestive tract, which suggests that viral entry could be achieved via the alimentary canal, and that rotifers can act as a vector in LCDV transmission to gilthead seabream larvae.  相似文献   

5.
A novel cell line (SFL) was established from the liver of stone flounder, Kareius bicoloratus, and its susceptibility to different iridoviruses was evaluated. The SFL cells grew well in Dulbecco's Modified Eagle Medium supplemented with fetal bovine serum, basic fibroblast growth factor, and insulin‐like growth factor‐II, and have been subcultured over 82 passages. The optimal growth temperature was 22 C. The SFL cells were fibroblastic in morphology and grew at a steady rate, with a population doubling time of 38.8 h. Karyotype analysis showed that SFL cells exhibited chromosomal aneuploidy with a modal chromosome number of 48. The susceptibility evaluation of SFL cells revealed that cytopathic effects (CPE) appeared after infection by different iridoviruses, lymphocystis disease virus (LCDV) and turbot reddish body iridovirus (TRBIV). In addition, a large number of TRBIV and LCDV particles were observed in the infected SFL cells by electron microscope examination. It is suggested that the SFL cell line could be used as a valuable tool for isolation and propagation of different iridoviruses.  相似文献   

6.
淋巴囊肿病毒(LCDV)、肿大细胞病毒属虹彩病毒(Mega)、赤点石斑鱼神经坏死病毒(RGNNV)、传染性造血器官坏死病毒(IHNV)、传染性胰脏坏死病毒(IPNV)、病毒性出血败血症病毒(VHSV)和传染性鲑鱼贫血症病毒(ISAV)是养殖鱼类主要的病毒性病原,危害巨大。为实现这7种病原的高通量、同步检测,本研究在分析这7种病毒基因序列的基础上,设计了9组扩增子拯救多重PCR(Arm-PCR)引物,并对扩增体系中的Taq酶、Mg2+、dNTP、Primer Mix浓度及退火温度等参数进行调整和优化,结合基因芯片检测技术,建立了同步检测7种鱼类病毒的Arm-PCR方法。优化后的Arm-PCR方法第一步PCR体系为:Taq酶(2.5 U/μl)1.0μl,10×PCR Buffer(含20 mmol/L的Mg2+)5μl,dNTP(各2.5 mmol/L)5μl,10×Primer Mix(各2μmol/L)9μl,模板1μl,ddH2O补足至50μl,退火温度为56℃。研究结果显示,该方法可以在1支反应管内对上述7种病毒的9个致病基因同步进行扩增和检测,检测灵敏度分别为101 copies/μl (RGNNV、VHSV、ISAV-NS、ISAV-MA)、102 copies/μl (LCDV、Mega、IHNV、IPNV)和103 copies/μl (大菱鲆红体病虹彩病毒,TRBIV)。该方法特异性强,与半滑舌鳎、石斑鱼、大菱鲆和牙鲆基因组DNA不产生交叉反应。本研究建立的可同步检测7种鱼类病毒的Arm-PCR方法具有高通量、高灵敏度、高准确性的优势,能有效提高工作效率,在鱼类病毒的筛查和流行病学调查领域有广泛的应用前景。  相似文献   

7.
Although the major capsid proteins (MCPs) of lymphocystis disease virus (LCDV) have been characterized, little is known about the host-derived immune response to MCPs and other LCDV antigenic proteins. To identify antigenic proteins of LCDV that could be used as vaccine candidates in olive flounder, Paralichthys olivaceus, we analysed the viral proteins responsible for its virulence by applying immuno-proteomics. LCDV proteins were separated by one-dimensional gel electrophoresis, transferred to polyvinylidene difluoride membrane, and probed with homogeneous P. olivaceus antisera elicited by LCDV natural infection and vaccination with formalin-killed LCDV. Four immune-reactive proteins were obtained at 68-, 51-, 41- and 21 kDa using antisera collected from natural infection while two proteins at 51- and 21 kDa exhibited response to antisera from vaccinated fish, indicating that the latter two proteins have vaccine potential. Using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry and nanoelectrospray MS/MS, the 51 and 21 kDa proteins were identified as MCP and an unknown protein, respectively.  相似文献   

8.
In this study, we found that an intramuscular injection of Japanese flounder (Paralichthys olivaceus, 60–80 g in weight and 15–20 mL in length) with 5 μg of a DNA vaccine (pEGFP‐N2‐LCDV‐cn‐MCP 0.6 kb, containing lymphocystis disease virus major capsid protein gene) induced a strong immune response. Subsequent real‐time polymerase chain reaction showed that the expression of immune‐related genes [e.g., major histocompatibility complex (MHC) class I α, MHC II α, T‐cell receptor (TCR), tumour necrosis factor (TNF), tumour necrosis factor receptor (TNFR), Mx, interleukin (IL)‐1β, CXC and IL‐8R] was significantly changed after DNA vaccination. The most remarkable alternation was the expression of MHC I α and MHC II α genes: MHC II α reached the maximum on day 8 in different tissues, and MHC I α on day 2 in the intestine and gills. The expression of TCR increased and reached a plateau in 2 days in the spleen, gills, kidney and liver after vaccination and then decreased after day 8. In contrast, the expression of TCR in the intestine increased and reached a plateau in 8 days. The expression of IL‐8R reached the maximum on day 2 in different tissues and then decreased on day 8. Mx increased in the gills, kidney, spleen and liver on days 2, 8, 2 and 2, but decreased in the intestine, gills, spleen and liver on days 2, 8, 8 and 8 respectively. The TNFR expression increased in the spleen, kidney and gills on days 2, 8 and 8, but decreased in intestine, liver and gills on days 2, 8 and 8 respectively. The expression of TNF, CXC and IL‐1β increased 2 and 8 days after the injection of DNA vaccine. However, the expression of TNF, CXC and IL‐1β altered on days 2 and 8 with different patterns in different tissues respectively. The fish responded to the DNA vaccine by yielding a specific immunoglobulin against lymphocystis disease virus (LCDV) as observed with indirect ELISA. The DNA vaccine induced a unique humoral response, suggesting that the DNA vaccine activated both cellular and humoral defences of the specific immune system of Japanese flounder.  相似文献   

9.
10.
Two viruses were isolated from cultured sole, Solea senegalensis, and wild blackspot sea bream, Pagellus bogaraveo, and preliminarily characterized as lymphocystis disease viruses (LCDVs). Viral isolates were characterized by morphological, biochemical and biophysical properties. In addition, the susceptibility of four fish cell lines was also tested. LCDV isolates developed cytopathic effects on the SAF-1 cell line at 5 and 6 days post-infection and reached titres of 10(6) TCID50 mL(-1). The antigenic and structural protein analysis of the two new LCDV isolates showed identical profiles to that obtained for LCDV strain Leetown NFH (ATCC VR-342), used as a reference viral strain, and for an LCDV isolate collected from gilt-head sea bream, Sparus aurata, cultured in southern Spain. Molecular confirmation was performed by polymerase chain reaction. Specific primers for LCDV produced a 270-bp DNA fragment, the expected size for LCDV.  相似文献   

11.
应用同源PCR技术,从被一种球状病毒感染的患病大菱鲆(Scophthalmus maximus)脾脏和肾脏组织中扩增出了一段长度为620bp的DNA片断。序列测定和Blast分析表明,该DNA片断与鱼类虹彩病毒主要衣壳蛋白(MCP)C末端编码区的DNA序列高度相似,由此证实感染养殖大菱鲆的这种球状病毒为一种鱼类虹彩病毒,暂命名为大菱鲆红体病虹彩病毒(TRBIV)。多序列比对和分析发现,TRBIV MCP C末端的205个氨基酸序列与GenBank中20种虹彩病毒相应序列的相似性分别为99.47%(韩国大菱鲆虹彩病毒)、97%~98%(待指定病毒属的7种病毒),以及50%以下(蛙病毒属、淋巴囊肿病毒属、虹彩病毒属的12种病毒),由此绘制出了包含TRBIV在内的21种虹彩病毒的系统发育树。研究结果表明,感染中国养殖大菱鲆的TRBIV属于虹彩病毒科待指定病毒属,位于该属ISKNV亚群和RSIV亚群之间,是该病毒属的一个新成员。  相似文献   

12.
A new marine fish cell line, derived from the heart of giant grouper, Epinephelus lanceolatus (Bloch), was established and characterized. The cell line was designated as ELGH and subcultured with more than 60 passages. The ELGH cells were mainly composed of fibroblast-like cells and multiplied well in Leibovitz's L-15 medium supplemented with 10% foetal bovine serum (FBS) at 28 °C. Chromosome analysis indicated that the modal chromosome number was 48. The fluorescent signals were detected in ELGH when transfected with green fluorescent protein reporter plasmids. The 50% cytotoxic concentration (CC50) of the extracellular products (ECPs) from Streptococcus iniae and Vibrio alginolyticus E333 on ELGH cells was 60.02 and 12.49 μg mL−1, respectively. Moreover, the ELGH cells showed susceptibility to Singapore grouper iridovirus (SGIV), but not to soft-shelled turtle iridovirus (STIV), red-spotted grouper nervous necrosis virus (RGNNV) and spring viremia of carp virus (SVCV), which was demonstrated by the presence of a severe cytopathic effect (CPE) and increased viral titres. In addition, electron microscopy observation showed that abundant virus particles were present in the infected cells. Taken together, our data above provided the potential utility of ELGH cells for transgenic and genetic manipulation, as well as cytotoxicity testing and virus pathogenesis.  相似文献   

13.
石斑鱼虹彩病毒ORF050的分子特征和功能初步分析   总被引:1,自引:0,他引:1  
新加坡石斑鱼虹彩病毒(Singapore grouper iridovirus,SGIV)是导致石斑鱼养殖产业严重经济损失的主要病毒病原之一。SGIV 是大分子DNA病毒,包含162个基因开放阅读框,其中ORF050是一个肿瘤坏死因子受体类似物,可能在SGIV的免疫逃避中发挥作用。本研究克隆了SGIV ORF050基因,并构建了全长基因的真核表达重组质粒和四个半胱氨酸富集结构域(CRD)分别缺失的突变体。RT-PCR和药物抑制实验结果表明,SGIV ORF050是病毒的一个立即早期基因。亚细胞定位结果表明,该基因在细胞质内均匀地弥散性分布,并在细胞核周围聚集;第一个CRD缺失后,基因的定位发生明显的变化,即呈点状分布在胞质中,推测第一个CRD对其功能有影响。在过表达SGIV ORF050的鱼类细胞中观察SGIV感染引起的CPE,发现与对照相比没有明显区别;荧光定量PCR检测SGIV 主要衣壳蛋白MCP的转录表达水平,也没有明显变化,提示该基因对SGIV在宿主细胞内的复制增殖可能没有影响。荧光定量PCR检测过表达ORF050的细胞在SGIV感染后宿主TNF/TNFR的转录水平,结果显示在感染10 h后TNF1、TNF2和TNFR2的表达量升高了2~3倍,而TNFR1的表达量没有明显变化,说明SGIV可能通过ORF050来调节细胞TNF和TNFR的表达,从而逃避宿主的免疫攻击。  相似文献   

14.
Molecular characterization was carried out on an iridovirus isolated from yellow grouper, Epinephelus awoara . The major capsid protein (MCP) gene was located, sequenced and compared with homologous genes from other iridoviruses. The nucleotide sequence is 1392 bases long and contains a single open reading frame beginning at an ATG codon from the 5' end and terminating at a TAA codon at the 3' end. The open reading frame encodes a protein of 463 amino acids with a predicted molecular weight of 50 272 Da. Pairwise amino acid alignments detected a high degree of sequence identity between grouper iridovirus (GIV) MCP and the homologous genes of other iridoviruses. The MCP gene of GIV was most similar to the MCP gene from frog virus 3 (FV3) with 70% nucleotide and 73% amino acid sequence identity. The predicted molecular weight of the protein of this gene is comparable with the apparent weight obtained by SDS–PAGE. Pathogenicity of the GIV was investigated in yellow grouper by intraperitoneal injection of 107 and 104 TCID50 virus. Cumulative mortalities reached 100% within 11 and 25 days post-infection, respectively, while no grouper died in the control group. The molecular studies demonstrated that GIV is a member of the genus Ranavirus .  相似文献   

15.
Olive flounder artificially infected with lymphocystis disease virus (LCDV) were reared at 10, 20 and 30 °C for 60 days, to compare LCD-incidence. In the fish reared at 20 °C, lymphocystis cells appeared on the skin and fins at 35 days post-challenge, and the cumulative LCD-incidence was 80% at 60 days. High levels of LCDV, with a mean polymerase chain reaction (PCR) titre of 106 PCR-U mg−1 tissue, were detected in the fins and skin of LCD-affected fish at 20 °C, but were not detected in the spleen, kidney, brain and intestinal tissues of these fish. No LCD clinical signs were observed in the fish reared at 10 °C and 30 °C; however, a low level of LCDV (103 PCR-U mg−1 tissue) was detected in the fins and skin of these fish. By increasing the rearing temperature from 10 to 20 °C, lymphocystis clusters appeared on the skin and fins of the fish with no previous LCD clinical signs within 33 days after the temperature change. It was shown that permissive cells for LCDV infection exist in the epidermis of olive flounder. At low temperatures, small amounts of LCDV were able to persist over a period extended for a further 45 days in the fish epidermis, even though the fish showed no LCD clinical signs. The optimum growth temperature of LCDV is near 20 °C.  相似文献   

16.
程顺峰 《水产学报》2006,30(4):544-548
以牙鲆淋巴囊肿病毒(LCDV)为抗原免疫Balb/c小鼠,而后将小鼠脾细胞与P3U1骨髓瘤细胞融合,以囊肿组织冰冻切片的免疫荧光染色筛选杂交瘤细胞,阳性结果显示特异性块状荧光信号集中在囊肿细胞的细胞质边缘部分,且多个荧光信号相连呈现链圈状,有限稀释 法克隆阳性杂交瘤细胞,三次克隆后获得4株稳定产生抗LCDV抗体的单克隆杂交瘤细胞株(1A8、1D7、2B6、2D11)。应用Western-blotting法分析单抗识别蛋白的分子量,结果显示,单抗1D7 和2B6均能特异性结合一条分子量116 kD病毒多肽;应用免疫电镜技术定位单抗识别的抗原决定簇,结果发现胶体金颗粒集中吸附在病毒粒子衣壳周围,且背景清洁,无散在的金颗粒或其他污染物。实验结果说明分子量约为116 kD的蛋白多肽为LCDV病毒衣壳蛋白,且具有线性抗原决定簇。  相似文献   

17.
虎纹蛙病毒甲基转移酶基因的克隆和分析   总被引:1,自引:0,他引:1  
苗素英 《水产学报》2002,26(2):157-160
经PCR扩增得到虎纹蛙病毒DNA甲基转移酶完整基因片段,并将其克隆到pUCm-T载体,测序可知该基因读码框大小为642bp,编码一由214个氨基酸组成的,预期分子量为24.8kD的多肽。RTV的MTase基因与蛙病毒属的蛙病毒-3型、叉尾Hui病毒和Regina病毒的一致性为96%~97%,与淋巴囊肿病毒属的比目鱼病毒的一致性为56%,从而进一步证明RTV蛙病毒的分类地位;与其它脊椎动物的虹彩病毒一样,该基因包含原核生物5′甲基转移酶的前四个高度保守区而缺少第五个区域,可能只是构成甲基转移酶的一个亚基,RTV、裂唇鱼病毒和大口黑鲈病毒之间MTase基因的一致性与衣壳蛋白基因的差异较大,说明同一种类的不同基因甚至同一基因的不同区域间演化速率不同,因此在虹彩病毒的演化研究中选择合适的基因或基因区域极为重要。  相似文献   

18.
Two iridovirus-susceptible cell lines were established and characterized from grouper Epinephelus awoara kidney and liver tissues. These cell lines have been designated GK and GL, respectively. The cells multiplied well in Leibovitz's L-15 medium, supplemented with 10% foetal bovine serum, at temperatures between 20 and 32 °C, and have been subcultured more than 120 times, becoming continuous cell lines. The cell lines consist of a heterogeneous mixture of fibroblastic and epithelial cells. The viability of cells, stored frozen in liquid nitrogen (−196 °C), was 95% after 1 year. Chromosome morphologies of GK and GL cells were homogeneous. Both cell lines were susceptible to grouper iridovirus, and yielded high titres of up to 108 TCID50 mL−1. In addition, both cell lines effectively replicated the virus, which could be purified to homogeneity by cesium chloride gradient centrifugation. Electron microscopy studies showed that purified virus particles were 170±10 nm in diameter, and were hexagonal in shape. Virus-infected cells showed an abundance of virus particles inside the cytoplasm. These results show that the GK and GL cell lines effectively replicate grouper iridovirus, and can be used as a tool for studying fish iridoviruses.  相似文献   

19.
A new cell line was established from the heart of a cultured marine fish, half smooth tongue sole (Cynoglossus semilaevis), designated as CSH (Cynoglossus semilaevis heart cell line). The CSH cells grow over 400 days in minimum essential medium (MEM) supplemented with 10% fetal bovine serum (FBS) and 2 ng/ml basic fibroblast growth factor (bFGF). The suitable temperature for the cell growth was 24–30°C with the optimum growth at 24°C and a reduced growth at 12 and 30°C. FBS and bFGF concentration were the two important components for CSH cells proliferation. Twenty percent FBS in the medium was found to be the optimum concentration and bFGF promoted the growth of CSH cells. The double time of the cells at 24°C was determined to 73.39 h. Chromosome analysis revealed that 44% of the cells maintained a normal diploid chromosome number (2n = 42) in the CSH cells at Passage 58. The fluorescent signals were observed in CSH after the cells were transfected with green fluorescent protein (GFP) reporter plasmids. CSH cells showed the cytopathic effect (CPE) after infection with lymphosystis disease virus (LCDV). Moreover, the LCDV particles can be observed in the cytoplasm of virus-infected cells by electron microscopy, and a segment of MCP gene for major capsid protein of LCDV was found by PCR amplification DNA of virus-infected cells.  相似文献   

20.
Grouper iridovirus causes high mortality rates in cultured groupers, and effective treatment for grouper iridovirus infection is urgently required. Illicium verum Hook. f. is a well-known medicinal plant with a variety of biological activities. The aim of this study was to analyse the use of I. verum extracts to treat grouper iridovirus infection. The safe working concentration of each I. verum extract was identified both in vitro and in vivo as follows: I. verum aqueous extract (IVAE) ≤ 500 μg/ml; I. verum ethanol extract (IVEE) ≤ 250 μg/ml; shikimic acid (SKA) ≤ 250 μg/ml; trans-anethole (TAT) ≤ 800 μg/ml; 3,4-dihydroxybenzoic acid (DDBA) ≤ 400 μg/ml; and quercetin (QCE) ≤ 50 μg/ml. The inhibitory activity of each I. verum extract against grouper iridovirus infection was analysed using aptamer (Q2)-based fluorescent molecular probe (Q2-AFMP) and RT-qPCR. All of the I. verum extracts displayed dose-dependent antiviral activities against grouper iridovirus. Based on the achieved per cent inhibition, IVAE, IVEE, DDBA and QCE were associated with the greatest antiviral activity (all > 90%). Together, our results indicate that I. verum extracts have effective antiviral properties, making it an excellent potential source material for the development of effective treatment for grouper iridovirus infection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号