首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
为查明赵口引黄灌区中牟境内深层地下水允许可开采量,采用地下水流数值模拟软件GMS建立三维水流数值模型,对地下水资源进行评价计算。将开采井的开采层位根据其具体坐标和开采量加载在模型相应的网格上,在规划开采条件下按运行20年预测模型,得出该水源地2030年末深层地下水预测流场,分析深层采井附近的降落漏斗。  相似文献   

2.
人类活动影响下乌苏市地下水埋深演化趋势   总被引:2,自引:0,他引:2  
【目的】研究人类活动影响下乌苏市地下水位变化趋势,以及各因素变化对该地区地下水位演化的影响程度。【方法】对2018年9月乌苏市地下水埋深进行了统测,通过Mapgis软件分析了地下水流场及埋深,组合2008—2017年耕地面积、地下水开采量、节水灌溉面积、地表水引水量、总灌溉面积、机井数量等变化因素对地下水埋深演化趋势进行分析,并利用灰色关联方法评价了各因素与地下水埋深的关联程度。【结果】乌苏市地下水流向由南向北,后转向西流入艾比湖,部分地方存在降落漏斗;在人类活动影响下,地下水位整体呈下降趋势;地表水引水量与地下水开采量的灰色关联度均大于0.6。【结论】地表水引水量与地下水开采量为影响地下水位演化的主要驱动力;乌苏市实施控制用水总量方案后水位有所回升,在地下水开发利用过程中仍需掌握地下水位动态变化。  相似文献   

3.
【目的】揭示不同降水年型下东北寒区水稻需水对地下水埋深变动与灌溉的响应规律,进一步优化寒区水稻灌溉制度。【方法】以黑龙江庆安和平灌区灌溉试验站多年水稻灌溉试验及2017年地下水动态观测数据为依据,分析不同灌水模式下水稻耗水及地下水变化动态,验证AquaCrop模型在东北寒区水稻生长模拟中的适用性,并用于模拟分析25%、50%、75%降水年型下水稻需水与不同地下水埋深的相互关系及灌水量的响应规律,提出适宜该地区水稻高产的地下水埋深范围及其生育期净灌水量。【结果】①水稻生育期内,地下水埋深先浅后深,其中,分蘖期、拔节孕穗期和抽穗开花期耗水量大,灌溉和降雨较多,地下水埋深较浅;②构建了3种降水年型下ET与GD、I的多元回归方程,综合考虑了水稻需水量与地下水埋深、生育期灌水量之间的相关关系,可用于稻田高效耗用水管理和地下水资源持续利用;③为实现东北寒区水稻高产和地下水埋深基本稳定的双重目标,地下水埋深应控制在2.0~2.5 m之间,水稻生育期净灌水量为:枯水年不宜低于现状灌水量,即300 mm;丰水年和平水年净灌水量可适当减少至现状灌水量的0.8倍,即240 mm。【结论】提出了适宜该地区水稻高产的地下水埋深范围及生育期净灌水量,为促进我国东北地区节水增粮,保护湿地生态环境,提高农业用水效率提供了理论依据。  相似文献   

4.
【目的】明确平罗县不同水位分布区的地下水埋深变化特征,更好地指导合理用水和防治土壤盐渍化。【方法】选取2007—2017年平罗县不同地下水位分布区内9眼地下水位观测井的月观测数据以及引黄水量、地下水取水量、水稻种植面积、降雨量和年平均气温等数据,分析了平罗县不同地下水位分布区地下水埋深变化特征及其影响因素。【结果】平罗县地下水埋深年内变化幅度大于年际,随月份呈"W"形变化,随年份呈平缓波浪形变化,5—8月和11月—次年1月,各观测点地下水埋深变化曲线呈聚集状态,其他月份则呈离散状态;不同地下水位分布区地下水埋深年际间变异系数表现为:高地下水位中地下水位低地下水位,年内无明显规律。与中、低水位分布区相比,高水位分布区地下水埋深不稳定;从各观测点年均地下水埋深与降雨量、平均气温、水稻种植面积、引黄水量和地下水取水量相关性来看,平罗县高、中水位分布区地下水埋深变化更多地受引黄水量影响,水稻种植面积的增加对降低高水位分布区地下水埋深起到了积极作用。【结论】建议平罗县高、中水位盐碱地的改良应减少引黄水量、利用浅层地下水或农田退水灌溉以降低地下水位。  相似文献   

5.
针对白城地区浅层地下水位动态变化的复杂性和非线性,采用小波分析和人工神经网络相结合的小波神经网络模型(WA-ANN)对白城地区浅层地下水埋深进行分析和预报。将研究区5口井2002-2009年逐月的降水量、蒸发量、人工开采量和前期水位埋深4个因素作为输入层,地下水埋深作为输出层,建立浅层地下水埋深预测模型,并采用"后验差"法对模型精度进行检验。检验结果表明,WA-ANN模型能很好地模拟该区地下水埋深变化规律,且拟合和预报精度均较高,相对误差小于10%。2010年以后的预报结果显示研究区地下水位呈逐年下降趋势,预计到2015年将下降1m,应及时加以控制。同时,笔者希望本次研究能为浅层地下水埋深预测提供一种新的途径。  相似文献   

6.
降水是生态脆弱草原区地下水系统的关键补给源,研究地下水位对降水强度、降水次数等降水要素的响应特征对揭示草原生态系统"四水"转化规律具有一定的指导意义。以锡林浩特市典型草原为研究区,基于M-K检验将地下水位长时序变化过程划分为浅埋期和深埋期,通过Poisson分布模型及其改进模型分析降水强度、降水次数等降水要素的时序演变规律,定量研究地下水位对不同降水要素的响应程度。研究结果表明,锡林浩特市各个观测井地下水位呈逐年下降趋势,地下水埋深整体较浅,对降水要素的响应程度由强至弱依次是日均降水强度、降水次数和次雨深,其中农场三队和欣康村监测井的水位对降水要素变化最为敏感;2001年左右,区域地下水位步入深埋期,水位降幅显著,埋深增加导致包气带增厚,延缓了降水入渗补给过程,地下水位对各个降水要素的响应程度也不断减弱。  相似文献   

7.
采用协同克里金插值方法,以2005、2009、2013、2017年4 a翁牛特旗地下水埋深为主变量,以NDVI(归一化植被指数)、降水量和河网密度为协变量,计算研究区内的地下水埋深,运用改进水文响应单元模式,在空间上将协同克里金插值后的地下水埋深栅格数据转换为矢量数据,将传统的简单插值分析方法运用协同克里金和最小响应单元进行改进,使之更贴合实际地下水汇流情况,获取最小响应单元551个,并据此进行空间整体与局部自相关分析。结果表明,在研究区空间上,地下水埋深东西分异规律明显,地下水位呈现西高、东低的态势,受降水和河流影响逐渐变大;在时间序列上,地下水埋深平均变化不大,但逐渐呈现聚集的趋势。  相似文献   

8.
青铜峡灌区地下水埋深演变及驱动要素贡献率解析   总被引:1,自引:0,他引:1  
【目的】定量分析青铜峡灌区地下水埋深演变规律及影响因素,科学指导灌区合理调控地下水位,维持水系统健康平衡。【方法】采用水量平衡法分析了青铜峡灌区1998—2017年地下水时空演变特征及地下水补排平衡贡献率。【结果】1998—2017年青铜峡灌区地下水埋深增大了0.69 m,增加速率为0.038 m/a,年内地下水埋深呈双峰双谷特征,空间上银川灌区地下水埋深增大明显,银川市区和银北灌区的大武口区形成大漏斗区。年际地下水变化的主要影响要素依次为渠系渗漏补给(39.71%)侧向排泄(28.24%)潜水蒸发(14.16%)田间入渗补给(7.46%);4—8月和11月渠系渗漏补给对地下水变化贡献最大(45.33%),9—10月和12月地下水侧向排泄是地下水变化第一驱动因素(45.6%);空间上,水位变化的第一驱动要素均为渠系渗漏补给,第二驱动要素各有不同,银川、银南和河东灌区为侧向排泄,银北灌区为潜水蒸发。【结论】引黄水量持续减少是青铜峡灌区地下水埋深增大的最主要原因,而合理的地下水埋深对于维持灌区的生态平衡具有重要意义。  相似文献   

9.
【目的】研究河套灌区地下水埋深和矿化度的时空变异规律。【方法】以内蒙古河套灌区为研究区域,应用地统计学方法和ArcGIS等工具分别研究了1998—2017年灌区地下水埋深和矿化度的时空变异性和空间分布及其影响因素。【结果】①从1998—2017年灌区地下水埋深及其空间变异性逐渐增大,地下水矿化度及其空间变异性先增大后减小。地下水埋深和矿化度的块金系数均较小,表明其主要影响因素为灌区的环境。地下水矿化度块金系数逐渐增大,空间结构性变差,受人为因素影响造成的随机变异性增强。地下水埋深及矿化度的空间自相关性距离逐渐增大,空间连续性逐渐增强;②灌区西南部沿黄河附近地下水埋深相对较浅,基本在2 m以下;西北部和东北部沿狼山山前地下水埋深相对较深,部分区域埋深可达10 m以上,机电井的分布与地下水埋深高值区域的分布相似。矿化度较高的区域分布在灌区西北部和东南部地区,西南及中部局部地区地下水矿化度较低;③丰水年大量的降雨对灌区整体地下水的补给作用,使得丰水年地下水埋深较浅,地下水得到淡化使其矿化度减小。【结论】地下水矿化度较高的区域地下水埋深相对较小,地下水矿化度较低的区域地下水埋深相对较大。  相似文献   

10.
【目的】确定人民胜利渠灌区合理的农业水资源优化配置方案,为灌区水资源管理和机井布置提供科学依据。【方法】针对人民胜利渠灌区水资源分配不合理及灌区生态环境恶化问题,按照灌区地形地貌、工程类型和灌溉水源特点将灌区分为Ⅰ、Ⅱ、Ⅲ共3个计算单元,基于线性规划方法和MODFLOW地下水数值模型对灌区各计算单元进行不同水文年水资源优化配置,并模拟优化配置后地下水位动态变化。【结果】确定了不同水文年灌区的水资源优化配置方案:灌区计算单元Ⅰ、Ⅱ、Ⅲ区不同水文年的井渠比例有所不同,平水年井渠比分别为1/3.14、1/3.25、1/2.92,丰水年分别为1/3.47、1/3.66、1/3.24,枯水年分别为1/2.75、1/2.77、1/2.60;平水年计算单元Ⅰ区模拟地下水埋深相比初始埋深下降0.01 m,水资源总量基本处于平衡状态;计算单元Ⅱ、Ⅲ区模拟地下水埋深相对于初始埋深分别上升了0.12、0.15 m;丰水年灌区计算单元Ⅰ、Ⅱ、Ⅲ区模拟地下水埋深相比初始埋深分别上升了0.1、0.23、0.3 m;枯水年灌区计算单元Ⅰ、Ⅱ、Ⅲ区模拟地下水埋深相比初始埋深分别下降了0.17、0.08、0.04 m。【结论】线性规划方法和MODFLOW地下水数值模型相结合能较好地模拟灌区地下水流场和预测地下水动态变化趋势,进而确定合理的水资源优化配置方案。  相似文献   

11.
通过对山东省特别是鲁北地区引黄发展过程的研究,定量分析了鲁北地区大规模引黄灌溉前后地表径流系数的变化。结果表明,降雨量基本相同时,区域地表径流系数随引黄量的增大而增大。同时,大规模引黄灌溉后,增加了对浅层地下水的补给量,并且成为浅层地下水的主要补给来源。可利用黄河水替代深层地下水,控制和停止开采深层地下水或回灌深层承压含水层,能缓解淡水地下水漏斗扩大的问题。  相似文献   

12.
近几年锡林河流域开始进入降水偏丰周期,但地下水“入不敷出”的情况愈加明显,过量的地下水开采需求只能通过消耗地下水储蓄量来实现。基于水均衡原理和统计学方法分析锡林河平原区地下水位对降水量和开采量间的响应程度。研究结果表明,各个观测井对降水时序变化的响应差异较大,其中饲草料基地井与农场三队井地下水位变幅对降水较为敏感;水位埋深与开采量之间存在明显的正相关关系,从水位-开采量关系曲线变化趋势来看,随着地下水开采量增加,农场三队、饲草料基地和奶牛场的水位响应最明显;农作物大棚种植区地下水位主要受降水量与开采量共同作用,响应程度为51.16%,而饲草料基地受开采量影响最大,达到60.71%,压减灌溉饲草料地规模、调整集中连片布局为分散式利用是缓解农灌区地下水超采、促进农牧业安全发展的主要途径。  相似文献   

13.
揭示区域地下水埋深的时空变异规律及开采适宜性,对于实现地下水资源的可持续利用具有重要的意义。以山东省德州市为研究区,借助GIS技术和统计学方法,在分析该区近10a(2005-2014年)地下水埋深基本特征、年际变化规律和空间分布格局的基础上,以地下水临界深度、漏斗区、超采区为评价指标,研究地下水开采的适宜性。结果表明:1研究区地下水埋深普遍较浅,10a的平均埋深为4.6m,但各县区存在较大的差异,并且在10a间,地下水埋深变化波动较大,7个县区的CV大于10%,达到中等变异程度;2研究区10a间地下水埋深下降趋势明显,除庆云县、禹城市、齐河县和武城县外,其他区域达显著(P0.05)或极显著(P0.01)水平;3研究区2005、2009和2013年的地下水埋深空间分布格局相似,但也存在明显的区别,非漏斗区(埋深≤6m)面积逐渐增大,浅层地下水降落漏斗(埋深6m)的范围不断缩小;4研究区的可大量开采区主要位于庆元县、禹城市、齐河县等县区,总面积为2 290km~2,适宜开采区主要位于中部、东北部和西部,总面积为3 790km~2,限采区在各县区均有分布,总面积为4 289km~2。  相似文献   

14.
研究洱海近岸菜地浅层地下水埋深是合理调控浅层地下水位和防止土壤氮磷随浅层地下水流失的基础。通过对洱海近岸菜地2 a(2014年6月—2016年5月)浅层地下水埋深进行监测,分析了浅层地下水埋深的时空变化特征和影响因素。结果表明,洱海近岸菜地 5 个高程浅层地下水埋深均服从正态分布,其平均值为 25.21~45.07cm,变异系数在 0.26~0.43 之间。浅层地下水埋深旱季深、雨季浅,其月变化和雨、旱季不同期,存在滞后现象,雨季浅层地下水埋深变异系数大于旱季。旱季和雨季浅层地下水埋深空间变化随等高线均呈不规则带状分布。洱海水位、降雨、灌溉、潜水蒸发和土壤物理特性的空间变异均是影响洱海近岸菜地浅层地下水埋深变化的主要因素。其中,1 966 m高程浅层地下水埋深与洱海水位极显著线性相关(p<0.01),二者互为连通,相互补给;其他高程浅层地下水埋深与降雨量和灌溉量显著线性相关(p<0.05),随降雨量增加,浅层地下水埋深逐渐变浅,随潜水蒸发量和灌溉量增加,浅层地下水埋深逐渐变深。距洱海由近及远土壤母质为河湖相沉积物到第四纪红黏土,使得不同发生层土壤渗水性由强变弱,造成离洱海越远,海拔越高,浅层地下水埋深越浅,变幅越小。  相似文献   

15.
洱海近岸菜地浅层地下水动态变化特征及影响因素   总被引:2,自引:2,他引:0  
研究洱海近岸菜地浅层地下水埋深是合理调控浅层地下水位和防止土壤氮磷随浅层地下水流失的基础。通过对洱海近岸菜地2 a(2014年6月—2016年5月)浅层地下水埋深进行监测,分析了浅层地下水埋深的时空变化特征和影响因素。结果表明,洱海近岸菜地5个高程浅层地下水埋深均服从正态分布,其平均值为25.21~45.07cm,变异系数在0.26~0.43之间。浅层地下水埋深旱季深、雨季浅,其月变化和雨、旱季不同期,存在滞后现象,雨季浅层地下水埋深变异系数大于旱季。旱季和雨季浅层地下水埋深空间变化随等高线均呈不规则带状分布。洱海水位、降雨、灌溉、潜水蒸发和土壤物理特性的空间变异均是影响洱海近岸菜地浅层地下水埋深变化的主要因素。其中,1 966 m高程浅层地下水埋深与洱海水位极显著线性相关(p0.01),二者互为连通,相互补给;其他高程浅层地下水埋深与降雨量和灌溉量显著线性相关(p0.05),随降雨量增加,浅层地下水埋深逐渐变浅,随潜水蒸发量和灌溉量增加,浅层地下水埋深逐渐变深。距洱海由近及远土壤母质为河湖相沉积物到第四纪红黏土,使得不同发生层土壤渗水性由强变弱,造成离洱海越远,海拔越高,浅层地下水埋深越浅,变幅越小。  相似文献   

16.
气候变化与人类活动对地下水埋深变化的影响   总被引:3,自引:0,他引:3  
以通辽市科尔沁区为研究区,利用累积距平、M-K突变检验和累积量斜率变化率比较法,对降水量变化与地下水埋深变化进行突变检验,定量评估研究区气候变化与人类活动对地下水埋深变化的贡献度。结果表明:地下水埋深多年来呈显著上升趋势,降水对地下水埋深动态变化的影响存在明显的滞后现象,滞后期为3 a;研究区地下水埋深与降水量突变点为1998年,前期1980—1998年为基准期,后期1999—2016年为影响期;研究区气候变化对地下水埋深变化影响的贡献度为24.5%,人类活动对地下水埋深变化影响的贡献度为75.5%,人类活动是造成地下水埋深下降的主要原因。  相似文献   

17.
【目的】探究不同地下水埋深和灌水量对土壤水与地下水交换的影响,提高灌溉水利用效率。【方法】在河套灌区开展了不同地下水埋深与灌水量对土壤含水率、地下水埋深及土壤水与地下水交换影响的田间试验,分析变化地下水埋深与灌水量对土壤水与地下水交换的影响。【结果】不同灌水量下,灌水前后0~60 cm土壤含水率变化明显,灌水主要补充耕作层,生育期第3次灌水入渗量约占灌水总量25%,灌水量越大,土壤水对地下水入渗补给量越大。地下水埋深随灌水量增加而显著减小(P0.05),地下水补给量与灌溉量的比值依次为L1处理L2处理L3处理L4处理L5处理L6处理L7处理L8处理L9处理。【结论】在河套灌区年均地下水埋深为1.8 m的区域,生育期单次灌水量110 mm,秋浇300 mm,可显著减少灌溉水下渗,以达到充分利用潜水蒸发,提高水资源利用效率,实现节水增产的目的。  相似文献   

18.
暗管排水是高地下水埋深地区农田排水的主要方式之一。【目的】确定农田暗管-明沟组合排水系统的布设参数。【方法】根据农田排水理论,建立了农田暗管-明沟组合排水系统布设参数计算模型及其C#语言编程。【结果】在题设条件下,考虑地下水蒸发影响时的吸水管间距比不考虑其影响可增大2.9%~17.3%;吸水管间距由15 m增大到25 m时,地下水埋深降深减小24.7%~27.5%;当吸水管埋深由1.5 m增加到2.0 m时,地下水埋深降深可增大34.8%。计算结果与相关算例的最大相对差异小于1.2%,运行速度快,在5 s内可以完成计算过程,适用于不同土壤质地、地下水埋深、地下水蒸发条件和作物种植条件。【结论】设计的软件减轻了农田水利工程基层设计人员的工作量,可以进一步推广。  相似文献   

19.
新疆石河子-昌吉地区2016―2020年地下水位动态特征分析   总被引:1,自引:0,他引:1  
【目的】探明新疆石河子-昌吉地区地下水位变化规律及其驱动因素。【方法】基于2016―2020年研究区44眼监测井的逐月地下水埋深,划分地下水动态类型,绘制了多年地下水埋深累计变幅分区图和高低水位期地下水流场对比图,综合直线趋势分析方法和灰色关联分析方法对地下水位动态特征及其影响因素进行分析。【结果】区内潜水动态类型为灌溉入渗-开采型和水文-开采型,承压水动态类型为开采型。石河子市地下水位呈快速上升趋势(埋深变幅多为-3~-2 m);玛纳斯县南部地下水位快速上升(多为-4~-3 m),北部水位快速下降(多>5 m);呼图壁县地下水位快速下降(多>5 m);昌吉市地下水位动态变化相对缓慢,以缓慢下降为主(多为2~3 m)。石河子市和玛纳斯县南部水位回升主要取决于低水位期,北部地下水漏斗区局部水位回升则相反;呼图壁县水位持续下降受高、低水位期共同影响;昌吉市水位动态稳定,与河流补给作用有一定关联。【结论】耕地面积、地下水开采量和地表水源供水量是潜水水位变化的主控因素,承压水水位变化主要受耕地面积和地下水开采量的影响。  相似文献   

20.
黄河三角洲地区植被生长旺盛期地下水埋深遥感反演   总被引:1,自引:1,他引:0  
【目的】快速准确地获得大面积的黄河三角洲地区地下水埋深。【方法】利用2004年18个站点的植被生长旺盛时期(7—9月)的地下水埋深数据,采用一元和多元线性回归建模方法,确定反演指标,比较了遥感指标反演法与地学和遥感相结合的2种反演模型。【结果】对数变换后的NDVI、指数变换后的晚上LST和指数运算后的晚上TVDI是地下水埋深反演的敏感遥感指标,观测点距黄河的距离(H1)、观测点周围水体密度(ρ)、对数变换后的观测点距海岸线的距离(H2)和DEM是地下水埋深反演的敏感地学指标;只用遥感指标建立的地下水埋深预测模型的决定系数R2为0.496,引入地学参数后模型R2平均值增加到0.791。遥感和地学指标相结合的方法可以更准确地反演植被生长旺盛期研究区的地下水埋深分布状况。【结论】将遥感指标和地学指标相结合进行模拟更合理。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号