首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
低分子量有机酸对促进可变电荷土壤中铝溶解的影响   总被引:7,自引:2,他引:7  
Low-molecular-weight (LMW) organic acids exist widely in soils and play an important role in soil processes such as mineral weathering, nutrient mobilization and A1 detoxification. In this research, a batch experiment was conducted to examine the effects of LMW organic acids on dissolution of aluminum in two variably charged soils, an Ultisol and an Oxisol. The results showed that the LMW organic acids enhanced the dissolution of A1 in the two investigated soils in the following order: citric 〉 oxalic 〉 malonic 〉 malic 〉 tartaric 〉 salicylic 〉 lactic 〉 maleic. This was generally in agreement with the magnitude of the stability constants for the Al-organic complexes. The effects of LMW organic acids on Al dissolution were greater in the Ultisol than in the Oxisol as compared to their controls. Also, the accelerating effects of citric and oxalic acids on dissolution of A1 increased with an increase in pH, while the effects of lactic and salicylic acids decreased. Additionally, when the organic acid concentration was less than 0.2 mmol L-I, the dissolution of A1 changed Iittle with increase in acid concentration. However, when the organic acid concentration was greater than 0.2 mmol L^-1,the dissolution of A1 increased with increase in acid concentration. In addition to the acid first dissociation constant and stability constant of Al-organic complexes, the promoting effects of LMW organic acids on dissolution of A1 were also related to their sorption-desorption equilibrium in the soils.  相似文献   

2.
Batch equilibrium experiments were conducted to investigate cadmium (Cd) sorption by two permanent-charge soils, a yellow-cinnamon soil and a yellow-brown soil, and two variable-charge soils, a red soil and a latosol, with addition of selected organic acids (acetate, tartrate, and citrate). Results showed that with an increase in acetate concentrations from 0 to 3.0 mmol L^-1, Cd sorption percentage by the yellow-cinnamon soil, the yellow-brown soil, and the latosol decreased. The sorption percentage of Cd by the yellow-clnnamon soil and generally the yellow-brown soil (permanent-charge soils) decreased with an increase in tartrate concentration, but increased at low tartrate concentrations for the red soil and the latosol. Curves of percentage of Cd sorption for citrate were similar to those for tartrate. For the variable-charge soils with tartrate and citrate, there were obvious peaks in Cd sorption percentage. These peaks, where organic acids had maximum influence, changed with soil type, and were at a higher organic acid concentration for the variable-charge soils than for the permanent charge soils. Addition of cadmium after tartrate adsorption resulted in higher sorption increase for the varlable-charge soils than permanent-charge soils. When tartrate and Cd solution were added together, sorption of Cd decreased with tartrate concentration for the yellow-brown soil, but increased at low tartrate concentrations and then decreased with tartrate concentration for the red soil and the latosol.  相似文献   

3.
A glasshouse experiment was conducted using a root-bag technique to study the root exudates, rhizosphere Zn fractions, and Zn concentrations and accumulations of two ryegrass cultivars (Lolium perenne L. cvs. Airs and Tede) at different soil Zn levels (0, 2, 4, 8, and 16 mmol kg-1 soil). Results indicated that plant growth of the two cultivars was not adversely affected at soil Zn level≤8 mmol kg-1. Plants accumulated more Zn as soil Zn levels increased, and Zn concentrations of shoots were about 540 /μg g-1 in Aris and 583.9μg g-1 in Tede in response to 16 mmol Zn kg-1 soil. Zn ratios of shoots to roots across the soil Zn levels were higher in Tede than in Airs, corresponding with higher rhizosphere available Zn fractions (exchangeable, bound to manganese oxides, and bound to organic matter) in Airs than in Tede. Low-molecular-weight (LMW) organic acids (oxalic, tartaric, malic, and succinic acids) and amino acids (proline, threonine, glutamic acid, and aspartic acid, etc.) were detected in root exudates, and the concentrations of LMW organic acids and amino acids increased with addition of 4 mmol Zn kg-1 soil compared with zero Zn addition. Higher rhizosphere concentrations of oxalic acid, glutamic acid, alanine, phenylalanine, leucine, and proline in Tede than in Airs likely resulted in increased Zn uptake from the soil by Tede than by Airs. The results suggested that genotypic differences in Zn accumulations were mainly because of different root exudates and rhizosphere Zn fractions.  相似文献   

4.
有机酸对高岭石, 针铁矿和水铝英石吸附镉的影响   总被引:12,自引:0,他引:12  
LIAO Min 《土壤圈》2006,16(2):185-191
Effects of organic acids (oxalic, acetic, and citric) on adsorption characteristics of Cadmium (Cd) on soil clay minerals (kaolinite, goethite, and bayerite) were studied under different concentrations and different pH values. Although the types of organic acids and minerals were different, the effects of the organic acids on the adsorption of Cd on the minerals were similar, i.e., the amount of adsorbed Cd with an initial solution pH of 5.0 and initial Cd concentration of 35 mg L^-1 increased with increasing concentration of the organic acid in solution at lower concentrations, and decreased at higher concentrations. The percentage of Cd adsorbed on the minerals in the presence of the organic acids increased considerably with increasing pH of the solution. Meanwhile, different Cd adsorption in the presence of the organic acids, due to different properties on both organic acids and clay minerals, on kaolinite, goethite, or bayerite for different pHs or organic acid concentrations was found.  相似文献   

5.
有机物质阴阳离子对调节土壤pH的作用   总被引:2,自引:0,他引:2  
The process of organic materials increasing soil pH has not yet been fully understood. This study examined the role of cations and organic anions in regulating soil pH using organic compounds. Calcareous soil, acid soil, and paddy soil were incubated with different simple organic compounds, pH was determined periodically and CO2 emission was also measured. Mixing organic acids with the soil caused an instant decrease of soil pH. The magnitude of pH decrease depended on the initial soil acidity and dissociation degree of the acids. Decomposition of organic acids could only recover the soil pH to about its original level. Mixing organic salts with soil caused an instant increase of soil pH. Decomposition of organic salts of sodium resulted in a steady increase of soil pH, with final soil pH being about 2.7-3.2 pH units over the control. Organic salts with the same anions (citrate) but different cations led to different magnitudes of pH increase, while those having the same cations but different anions led to very similar pH increases. Organic salts of sodium and sodium carbonate caused very similar pH increases of soil when they were added to the acid soil at equimolar concentrations of Na^+. The results suggested that cations played a central role in regulating soil pH. Decarboxylation might only consume a limited number of protons. Conversion of organic salts into inorganic salts (carbonate) was possibly responsible for pH increase during their decomposition, suggesting that only those plant residues containing high excess base cations could actually increase soil pH.  相似文献   

6.
oil P status, inorganic P fractions, and P sorption properties were studied using sandy fluvo-aquic horticultural soils,which are high in organic matter content for vegetable production in comparison with a soil used for grain crop productionin Zhengzhou, Henan Province, China. P fractions, Olsen-P, and OM were determined at different depths in the soilprofile and sorption isotherm experiments were performed. Most P in excess of plant requirements accumulated in thetopsoil and decreased with soil depth. Total P, inorganic P, and OM concentrations increased with continued horticulturaluse.Olsen-P concentrations in the 0-20 cm depth of horticultural soils were 9 to 25 times higher than those of the graincrop soil. A linear transformation of the Langmuir equation showed that the P adsorption maximum (491.3 mg P kg^-1)and the maximum phosphate buffering capacity (162.1 L kg^-1) for 80-100 cm were greater in the grain crop soil than thehorticultural soils. Thus, the most immediate concern with excess P were in areas where heavy P fertilizer was used forvegetable crops and where soil P sorption capacities were low due to sandy soils and high organic matter content.  相似文献   

7.
Ectomycorrhizal(EM) fungi could form symbiosis with plant roots and participate in nutrient absorption; however, many EM species commonly found in forest soils, where phosphorus(P) concentration and availability are usually very low, particularly in tropical and subtropical areas, have not yet been investigated for their efficiencies to mobilize soil P. In this study, fungal growth, P absorption,efflux of protons and organic acids, and soil P depletion by four isolates of EM fungi isolated either from acidic or calcareous soils were compared in pure liquid culture using soil as a sole P source. Boletus sp. 7(Bo 7), Lactarius deliciosus 3(Ld 3), and Pisolithus tinctorius 715(Pt 715) from acidic and P-deficient soils of southwestern China showed higher biomass and P concentration and accumulation than Cenococcum geophilum 4(Cg 4) from a calcareous soil of Inner Mongolia, northern China, after 4 weeks of liquid culture. Oxalate, malate, succinate, acetate, and citrate concentrations in the culture solutions varied significantly with fungal species,and oxalate accounted for 51.5%–91.4% of the total organic acids. Organic acids, particularly oxalate, in the culture solutions may lead to the solubilization of iron-bound P(Fe-P), aluminum-bound P(Al-P), and occluded P(O-P) from soil phosphates. Fungal species also varied greatly in proton efflux, which decreased the culture solution pH and may dissolve calcium-bound P(Ca-P) in soil.This could be the reason for the increment of both inorganic P in the culture solutions and Olsen P in the soil when EM fungi were present. Total inorganic P, the sum of Al-P, Fe-P, O-P, and Ca-P, in the culture solutions was positively correlated with the total concentration of organic acids in the culture solutions(r = 0.918*, n = 5), but negatively with both the total inorganic P in soil(r =-0.970**, n = 5) and the culture solution pH(r =-0.830*, n = 5). These suggested variable efficiencies of EM fungal species to mobilize inorganic P fractions from soil, which could make EM trees to utilize inorganic P in the same way like EM fungi and adapt to the soils with various P concentrations and availabilities.  相似文献   

8.
The effects of simulated acid rain retained in soil on the properties of acid soil and its diminishing by application of ground phosphate rock were investigated by using the sorption method.Results show as follows:(1)For yellow brown soil,the effect of simulated acid rain on the properties of soil with a pH value of 5.9 was relatively small,except a great quantity of acid rain deposited on it.(2) for red soil,the effect of simulated acid rain on the properties of soil was significant.With the increase of the amount of acid deposition,the pH value of soil was declined,but the contents of exchangeable H^ ,Al^3 and Mn^2 and the amount of SO4^1- retention were increased.(3) Many properties of acid soils could be improved by applying ground phosphate rock.For example,pH value of soils and the amounts of available P and exchangeable Ca^2 and Mg^2 were increased,and the amounts of exchangeable H^ and Al^3 and SO4^2- retained was reduced.The application of ground posphate rock could effctively diminish the pollution of acid rain to soil.  相似文献   

9.
Surface charge,secondary adsorption-desorption and form distribution of Cu^2 and Zn^2 in Ultisols and Alfisols having adsorbed phosphate were studied by potentiometric titration,adsorption equilibrium and sequential extraction method,respectively,The soil surface negative charges increased whereas the amount sequential extraction method,respectively.The soil surface ngative charges increased whereas the amount of positive charges decreased with increase of P adsorbed,The soil secondary adsorption capacity for Cu^2 and Zn^2 was positively significantly correlated with the amount of P adsorbed by the soils,which could be described by the Langmuir equation.The amounts of Cu^2 and Zn^2 desorption from soils were decreased after P adsorption by the soils and the relationship between them was linear,After the soils adsorbed P,form distribution of Cu^2 and Zn^2 in soils changed remarkably.  相似文献   

10.
磁性土壤中Cu和Zn污染的指示作用   总被引:1,自引:0,他引:1  
Concentrations of copper (Cu) and zinc (Zn) and various magnetic parameters in contaminated urban roadside soils were investigated using chemical analysis and magnetic measurements. The results revealed highly elevated Cu and Zn concentrations as well as magnetic susceptibility in the roadside soils. The mean concentrations of Cu and Zn in these roadside soils were almost twice those in average Chinese soils, with the mean magnetic susceptibility of the roadside soils reaching about 179 ×10^-8 m^3 kg^-1. This enhanced magnetic susceptibility was attributed to the presence of anthropogenic soft ferrimagnetic particles. A low frequency-dependent susceptibility (2.5%± 1.0%) observed in the roadside soils indicated the coarse multidomain (MD) ferrimagnetic grains to be the dominant contributor to magnetic susceptibility. The Cu and Zn concentration of the soils had highly significant linear correlations with magnetic susceptibility (P 〈 0.01), anhysteretic remanent magnetization (P 〈 0.01), and saturation isothermal remanent magnetization (P 〈 0.01). This suggested that heavy metals were associated with ferrimagnetic particles in soils, which were attributed to input of traffic emissions and industrial activities. Scanning electron microscopy and energy dispersive X-ray spectra of magnetic extracts of the roadside soils further suggested the llnk between the magnetic signal and concentrations of heavy metals. Thus, the magnetic parameters could provide a proxy measure for the level of heavy metal contamination and could be a potential tool for the detection and mapping of contaminated soils.  相似文献   

11.
Calcareous soils are frequently characterized by the low bioavailability of plant nutrients. Consequently, many vascular plant species are unable to successfully colonize calcareous sites and the floristic composition of calcareous and acid silicate soils has been shown to differ markedly. The root exudation of oxalate and citrate has been suggested to play a pivotal role in same nutrient acquisition mechanisms operating in calcareous soils. The aim of this study was therefore to investigate the nutrient extraction efficiency of three individual organic acids commonly identified in root exudates, i.e. citric, malic and oxalic acid. Our results clearly demonstrate the context dependent nature of nutrient release by organic acids. The degree of P extraction was highly dependent on which organic acid was added, their concentration and pH, and their contact time with the soil. P is generally more efficiently extracted by organic acids at a high pH and follows the series oxalate>citrate>malate. The opposite relationship between pH and extraction efficiency was apparent for most other cations examined (e.g. Zn, Fe), which are more efficiently extracted by organic acids at low pH. A serious constraint to the ecological importance of organic acid exudation in response to P deficiency is, however, their very low P mobilization efficiency. For every mol of soil P mobilized, 1000 mol of organic acid has to be added. It can, however, be speculated that in a calcareous soil with extremely low P concentrations it is still beneficial to the plants to exude organic acids in spite of the seemingly high costs in terms of carbon.  相似文献   

12.
The influence of organic matter and its cycling on soil pH change is still unclear. This study investigated the effect of organic compounds on carbon and nitrogen dynamics and their relationship with pH changes in two soils differing in initial soil pH (Podosol of pH 4.5 and Tenosol of pH 6.2). Seven organic compounds representing common compounds in decomposing plant residues or root exudates were added to the soils and incubated for 60 d. The largest cumulative soil respiration occurred when glucose, malic acid and citric acid were added. In addition, the Tenosol had the greater respiration compared to the Podosol. The addition of organic acids (acetic, malic, citric, ferulic and benzoic acid) instantly decreased soil pH due to the dissociation of H+ from the acids. The pH of both soils was then restored over time, which was positively correlated with decomposition % of these compounds. The pH of the Tenosol amended with all the organic acids and of the Podosol with malic acid exceeded that of the control, and net alkalization occurred, with the degree of alkalization being greater with malic and citric acid. Adding organic acids to the Tenosol generally increased NH4 concentrations but decreased NO3 concentrations. The addition of glucose decreased pH in Podosol but slightly increased it in the Tenosol. The addition of glucosamine hydrochloride decreased pH due to significant nitrification. The results suggest that the addition of organic acids stimulates microbial NO3 uptake, and ammonification and decomposition of indigenous soil organic matter, resulting in a priming effect on alkalinity release, and that the degree of the priming effect is influenced by the type of organic acid and initial soil pH.  相似文献   

13.
This paper deals with the development of a sequential extraction method to separate the Ca-bound and Fe-and Al-bound humus from soils.First,comparative analyses were carried out on dissolution of synthetic organo-mineral complexes by different extractants,i.e.0.1M Na4P2O7,0.1M NaOH 0.1M Na4P2O7 mixture,0.1M NaOH,0.5M (NaPO3)6 and 0.5M neutral Na2SO4.Among the five extractants,0.1M NaOH 0.1M Na4P2O7 mixture was the most efficient in extracting humus from various complexes.0.5M Na2SO4 had a better specificity to Ca than 0.5M (NaPO3)6,by only extracting Ca-bound humus without destorying Fe-and Al-bound organo-mineral complexes.Then sequential extractions first with 0.5M Na2SO4 and then with 0.1M NaOH 0.1M Na4P2O7 mixture were applied to a series of soil samples with different degrees of base saturation.The cations were dominated by Ca in the 0.5M Na2SO4 extract and by Al in the 0.1M NaOH 0.1M Na4P2O7 mixture.The sequential extraction method can efficiently separate or isolate Ca-bound and Fe-and Al-bound humus from each other.  相似文献   

14.
The effect of added organic acids on the calcium availability of vegetables was investigated using the dialysis profiles obtained from an in vitro simulated gastrointestinal digestion with continuous-flow dialysis method. Citric acid was the most effective enhancer followed by tartaric, malic, and ascorbic acids. For amaranth, which has a low calcium availability (5.4%), a significant increase of availability was observed with increasing concentrations of all acids studied. With the continuous-flow dialysis approach, organic acids could be observed to promote the dialyzability even at an elevated intestinal pH. An enhancement effect from added organic acids was not clearly observed for Chinese kale, which itself contains a high amount of available calcium (52.9%).  相似文献   

15.
A range of low-molecular-weight organic acids were identified in rhizosphere soil, leaf litter, and poultry manure compost. Laboratory and greenhouse experiments were carried out to examine the effects of seven low-molecular-weight organic acids on phosphate adsorption by soils, and the solubilization and plant uptake of P from soil pre-incubated with monocalcium phosphate and North Carolina phosphate rock. Acetic, formic, lactic (monocarboxylic), malic, tartaric, oxalic (dicarboxylic), and citric (tricarboxylic) acids were used in the study. The addition of organic acids decreased the adsorption of P by soils in the order tricarboxylic acid>dicarboxylic acid>monocarboxylic acid. The decreases in P adsorption with organic acid addition increased with an increase in the stability constant of the organic acid for Al (logK Al). Organic acids extracted greater amounts of P from soils meubated with both monocalcium phosphate and phosphate rock than water did. Although more phosphate was extracted by the organic acids from monocalcium phosphate — than from phosphate rock — treated soils in absolute terms, when the results were expressed as a percentage of dissolved phosphate there was little difference between the two fertilizers. The amount of P extracted by the organic acids from both fertilizers increased with an increase in logK Al values. The addition of oxalic and citric acids increased the dry matter yield of ryegrass and the uptake of P in soils treated with both fertilizers. The agronomic effectiveness of both fertilizers increased in the presence of organic acids and the increase was greater with the phosphate rock than with the monocalcium phosphate. The results indicated that organic acids increase the availability of P in soils mainly through both decreased adsorption of P and increased solubilization of P compounds.  相似文献   

16.
低分子量有机酸对土壤磷活化影响的研究   总被引:14,自引:3,他引:11  
研究两种低分子量有机酸(柠檬酸和苹果酸)对土壤磷活化影响,并用修正的Hedley法测定土壤磷活化前后磷组分的变化。结果表明,低分子量有机酸能持续活化土壤磷,活化强度随低分子量有机酸浓度的增大而增强,并且柠檬酸活化土壤磷的能力强于苹果酸。低分子量有机酸能促进作物有效态无机磷组分(H2O-P和NaHCO3-Pi)的释放;同时还促进有机磷组分(NaHCO3-Po和NaOH-Po)的矿化。在低分子量有机酸浓度达到0.5 mmol/L以上时,其对土壤磷组分的活化量的顺序为:NaOH-Pi HCl-P NaHCO3-Pi H2O-P,即铁铝结合态磷 钙结合态磷 作物有效态磷。低分子量有机酸活化土壤磷的过程中伴有大量铁、铝释放,且铁或铝的释放量与磷活化量之间显著正相关(P0.05)。说明铁、铝结合态磷是低分子量有机酸活化土壤磷的主要磷源,并且其活化机制可能与铁、铝结合态磷的螯合溶解有关。  相似文献   

17.
Can root exudate components influence the availability of pyrene in soil?   总被引:1,自引:0,他引:1  

Purpose

Little information is currently available regarding the influence of different root exudate components (RECs) on the availability of persistent organic pollutants in the soil environment. In this study, we investigated the impacts of different RECs including organic acids, amino acids, and fructose on the availability of pyrene as a representative polycyclic aromatic hydrocarbon (PAH) in soils.

Materials and methods

Citric acid, oxalic acid, malic acid, serine, alanine, and fructose were used in the experiments as representative RECs. Pyrene-spiked soils (TypicPaleudalfs) with present RECs were incubated for 30 days, and the available fraction of pyrene was determined using n-butanol extraction procedure.

Results and discussion

The amount of n-butanol-extractable pyrene in soil increased with the addition of tested RECs and increased when REC concentrations are enhanced within the range of 0–21 g kg?1. The extractability of pyrene in soil with REC treatments and the enhancement ratio (r, %) of the extractable pyrene in soil by the addition of RECs after a 30-day incubation decreased in the following order: organic acids (oxalic acid ≥ citric acid > malic acid) > amino acid (alanine > serine) > fructose. This decrease was observed irrespective of soil sterilization, although the concentrations of extractable pyrene were lower in non-sterilized soils compared to sterilized soils. The concentrations of metal cations and dissolved organic matter (DOM) in solution increased when organic acids were added.

Conclusions

The tested RECs at concentrations of 0–21 g kg?1 clearly enhanced the availability of pyrene in soils, and larger amounts of RECs resulted in higher pyrene availabilities in the tested soils. Microbial biodegradation diminished the amount of available pyrene irrespective of the presence of RECs. The mechanism of REC-influenced availability of pyrene in soil may be related to the metal dissolution and release of DOM from soil solids. The results of this study will be useful in assessing PAH-related risks to human health and the environment and will be instructive in food safety and remediation strategies at contaminated sites.  相似文献   

18.
低分子量有机酸对高岭石中铝释放的影响   总被引:22,自引:3,他引:22  
徐仁扣  季国亮  蒋新 《土壤学报》2002,39(3):334-340
选择了几种土壤中可能存在的低分子量脂肪羧酸 ,研究了它们对高岭石中铝释放的影响。结果表明 ,有机酸可以通过络合作用促进高岭石中铝的释放。几种有机酸对体系中可溶性铝影响的大小顺序为 :草酸 >柠檬酸 >丙二酸 >苹果酸 >乳酸。草酸、柠檬酸和乳酸对可溶性铝释放的促进作用随体系pH的升高而减小 ,其中草酸体系中可溶性铝随pH的变化幅度最大。在苹果酸体系中 ,可溶性铝随pH的升高而稍有增加。体系中的可溶性铝随有机酸浓度的增加而增加 ,而交换性铝随柠檬酸浓度的增加而减少 ,先随苹果酸浓度增加而增加 ,然后又逐渐减少。与对照相比 ,柠檬酸和草酸使交换性铝的量减小 ,苹果酸和乳酸在低pH下使交换性铝明显增加 ,而苹果酸在较高pH下使交换性铝减少。有机酸影响释放出的铝在固液相间的分配比 ,苹果酸在低pH下使体系中释放出的大部分铝以交换性形态存在 ,而在较高pH下 ,大部分铝以可溶形态存在。在草酸体系中 ,释放出铝的大部分都以可溶形态存在。不同有机酸的不同表现与体系中铝的溶解平衡、铝的吸附 -解吸平衡、有机酸的吸附 -解吸平衡、有机酸的离解平衡和铝与有机酸的络合 -离解平衡有关。  相似文献   

19.
20.
低分子量有机酸对不同合成磷源的释磷效应   总被引:9,自引:1,他引:9  
采用化学浸提方法,研究了5种低分子量有机酸(草酸、柠檬酸、酒石酸、苹果酸、乙酸)对不同合成磷源的释磷效应。结果表明:供试有机酸(低浓度乙酸除外)均能促进不同合成磷源(DCP、OCP、FA、Fe-P、A l-P)中磷素的释放;其释磷效果与有机酸的种类和浓度有关,强弱顺序依次为柠檬酸、草酸、酒石酸、苹果酸、乙酸,有机酸浓度越高其释磷效果越好;有机酸与氟磷灰石(FA)反应后,溶液pH值升高。低浓度条件下pH值变化较大,而高浓度条件下pH值变化较小。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号