首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We have compared the total microbial biomass and the fungal/bacterial ratio estimated using substrate-induced respiration (SIR) in combination with the selective inhibition technique and using the phospholipid fatty acid (PLFA) technique in a pH gradient (3.0-7.2) consisting of 53 mature broad-leaved forest soils. A fungal/bacterial biomass index using the PLFA technique was calculated using the PLFA 18:2ω6,9 as an indicator of fungal biomass and the sum of 13 bacterial specific PLFAs as indicator of the bacterial biomass. Good linear correlation (p<0.001) was found between the total microbial biomass estimated with SIR and total PLFAs (totPLFA), indicating that 1 mg biomass-C was equivalent to 130 nmol totPLFA. Both biomass estimates were positively correlated to soil pH. The fungal/bacterial ratio measured using the selective inhibition technique decreased significantly with increasing pH from about 9 at pH 3 to approximately 2 at pH 7, while the fungal/bacterial biomass index using PLFA measurements tended to increase slightly with increasing soil pH. Good correlation between the soil content of ergosterol and of the PLFA 18:2ω6,9 indicated that the lack of congruency between the two methods in estimating fungal/bacterial ratios was not due to PLFA 18:2ω6,9-related non-fungal structures to any significant degree. Several PLFAs were strongly correlated to soil pH (R2 values >0.8); for example the PLFAs 16:1ω5 and 16:1ω7c increased with increasing soil pH, while i16:0 and cy19:0 decreased. A principal component analysis of the total PLFA pattern gave a first component that was strongly correlated to soil pH (R2=0.85, p<0.001) indicating that the microbial community composition in these beech/beech-oak forest soils was to a large extent determined by soil pH.  相似文献   

2.
 Microbial biomass C (Cmic), C mineralization rate, phospholipid fatty acid (PLFA) profiles and community level physiological profiles (CLPPs) using Biolog were determined from the humus and mineral soil layers in adjacent stands of Scots pine (Pinus sylvestris L.), Norway spruce [Picea abies (L.) Karst.] and silver birch (Betula pendula Roth) at two forest sites of different fertility. In addition, the Fourier-transformed infrared (FTIR) spectra were run on the samples for characterization of the organic matter. Cmic and C mineralization rate tended to be lowest under spruce and highest under birch, at the fertile site in all soil layers and at the less fertile site in the humus layer. There were also differences in microbial community structure in soils under different tree species. In the humus layer the PLFAs separated all tree species and in the mineral soil spruce was distinct from pine and birch. CLPPs did not distinguish microbial communities from the different tree species. The FTIR spectra did not separate the tree species, but clearly separated the two sites. Received: 3 December 1999  相似文献   

3.
The influence of soil pH on the phospholipid fatty acid (PLFA) composition of the microbial community was investigated along the Hoosfield acid strip, Rothamsted Research, UK - a uniform pH gradient between pH 8.3 and 4.5. The influence of soil pH on the total concentration of PLFAs was not significant, while biomass estimated using substrate induced respiration decreased by about 25%. However, the PLFA composition clearly changed along the soil pH gradient. About 40% of the variation in PLFA composition along the gradient was explained by a first principal component, and the sample scores were highly correlated to pH (R2 = 0.97). Many PLFAs responded to pH similarly in the Hoosfield arable soil compared with previous assessments in forest soils, including, e.g. monounsaturated PLFAs 16:1ω5, 16:1ω7c and 18:1ω7, which increased in relative concentrations with pH, and i16:0 and cy19:0, both of which decreased with pH. Some PLFAs responded differently to pH between the soil types, e.g. br18:0. We conclude that soil pH has a profound influence on the microbial PLFA composition, which must be considered in all applications of this method to detect changes in the microbial community.  相似文献   

4.
In the mineral horizons of the soils under different southern taiga forests (oak, archangel spruce, and aspen in the Kaluzhskie Zaseki Reserve of Kaluga region and the green moss spruce and spruce-broadleaved forests of the Zvenigorod Biological Station of Moscow State University in Moscow region), the carbon content in the microbial biomass (Cmic), the rate of the basal respiration (BR), and the specific microbial respiration (qCO2= BR/Cmic) were determined. The Cmic content was measured using the method of substrate-induced respiration (SIR). In the upper humus horizons of the soils, the Cmic content amounted to 762–2545 μg/g and the BR ranged from 1.59 to 7.55 μg CO2-C/g per h. The values of these parameters essentially decreased down the soil profiles. The portion of Cmic in the organic carbon of the humus horizons of the forest soils was 4.4 to 13.2%. The qCO2values increased with the depth in the soils of the Biological Station and did not change in the soils of the Reserve. The pool of Cmic and Corg and the microbial production of CO2 (BR) within the forest soil profiles are presented.  相似文献   

5.
Our aim was to determine whether the smaller biomasses generally found in low pH compared to high pH arable soils under similar management are due principally to the decreased inputs of substrate or whether some factor(s) associated with pH are also important. This was tested in a soil incubation experiment using wheat straw as substrate and soils of different pHs (8.09, 6.61, 4.65 and 4.17). Microbial biomass ninhydrin-N, and microbial community structure evaluated by phospholipid fatty acids (PLFAs), were measured at 0 (control soil only), 5, 25 and 50 days and CO2 evolution up to 100 days. Straw addition increased biomass ninhydrin-N, CO2 evolution and total PLFA concentrations at all soil pH values. The positive effect of straw addition on biomass ninhydrin-N was less in soils of pH 4.17 and 4.65. Similarly total PLFA concentrations were smallest at the lowest pH. This indicated that there is a direct pH effect as well as effects related to different substrate availabilities on microbial biomass and community structure. In the control soils, the fatty acids 16:1ω5, 16:1ω7c, 18:1ω7c&9t and i17:0 had significant and positive linear relationships with soil pH. In contrast, the fatty acids i15:0, a15:0, i16:0 and br17:0, 16:02OH, 18:2ω6,9, 17:0, 19:0, 17:0c9,10 and 19:0c9,10 were greatest in control soils at the lowest pHs. In soils given straw, the fatty acids 16:1ω5, 16:1ω7c, 15:0 and 18:0 had significant and positive linear relationships with pH, but the concentration of the monounsaturated 18:1ω9 PLFA decreased at the highest pHs. The PLFA profiles indicative of Gram-positive bacteria were more abundant than Gram-negative ones at the lowest pH in control soils, but in soils given straw these trends were reversed. In contrast, straw addition changed the microbial community structures least at pH 6.61. The ratio: [fungal PLFA 18:2w6,9]/[total PLFAs indicative of bacteria] indicated that fungal PLFAs were more dominant in the microbial communities of the lowest pH soil. In summary, this work shows that soil pH has marked effects on microbial biomass, community structure, and response to substrate addition.  相似文献   

6.
We aimed to characterize humus macro-morphology and the associated soil microbial community within the unmodified litter (OL), the fragmented and humified layers (FH) and the organo-mineral (A) layer along a beech (Fagus sylvatica L.) forest chronosequence with four stand age-classes (15-, 65-, 95-, 130-yr-old) in Normandy, France. Humus macro-morphology was described with 36 quantitative and semi-quantitative variables. We measured microbial biomass N (Nmic), microbial N quotient (Nmic-to-Nt), fungal ergosterol, bacterial and fungal DNA using 16S and 18S rDNA real-time qPCR and evaluated the potential metabolic profile of heterotrophic bacteria within each soil layer and stand age-class. The log-transform ergosterol/fungal DNA ratio (EFR index) was used as an indicator related to active fungal biomass and the fungal/bacterial (F/B) ratio was calculated from qPCR results. There was a shift from mull (mainly dysmull) to moder humus forms along the chronosequence. While the Nmic did not change significantly, the Nmic-to-Nt decreased along the chronosequence in the OL layer. Ergosterol content increased in FH and A layers and the F/B ratio increased in the FH layer with increasing beech forest age. The EFR index was significantly higher in the OL and A layers of the oldest stands, whereas the highest EFR index in the FH layer occurred in the 15-yr-old stands. The functional diversity of heterotrophic bacteria was greater within OL and FH layers of 130-yr-old stands, but highest in the A layer of 15-yr-old stands while the Average Well Color Development remained stable for all soil layers. We found significant correlations between macro-morphology and microbial variables, especially between FH-based morphology and fungal biomass. Our main results are that beech forest maturation is accompanied by (1) an increase in fungal biomass in the FH layers and, (2) an increase in heterotrophic bacteria functional diversity in the organic layers. We have identified key macro-morphology variables that are good predictors of the structural and functional profile of the soil microbial community during beech forest development.  相似文献   

7.
Techniques developed to measure microbial biomass in mineral soils may not give reliable results in humus. We evaluated the relationships between three techniques to estimate microbial biomass in forest humus: chloroform fumigation-extraction (CFE), total extractable phospholipid fatty acids (PLFA), and extractable DNA. There was a good relationship between PLFA and CFE (R2=0.96), with a slope slightly different from that previously reported for mineral soils (1 nmol PLFA corresponded to a flush of 3.2 μg C released by fumigation in humus cf. 2.4 μg C in mineral soil). There was no relationship between DNA concentration and the other two measurements of microbial biomass. This may be due, in part, to the high fungal biomass in forest humus, as DNA concentration per unit biomass is much more variable for fungi than bacteria.  相似文献   

8.
To understand the soil microbial activities and community structures in different forests in a sand-dune ecosystem, we conducted a study of 2 topographic conditions, upland and lowland, under a Casuarina forest. As well, in the lowland site, we compared forest soil microbial properties under 3 coastal forests (Casuarina, Hibiscus and mixed stand). The soil microbial biomass did not significantly differ between the upland and lowland Casuarina forest sites. At the lowland site, the soil microbial biomass was higher in the Hibiscus than Casuarina forest soil. Cellulase, xylanase, phosphatase and urease activities did not show a consistent trend by topography or vegetation. Analysis of phospholipid fatty acids (PLFAs) of bacteria and actinomycetes revealed a significant difference in microbial community structure by both topography and vegetation. PLFA content was higher at upland than lowland sites in the Casuarina forest. At the lowland site, the level of PLFAs was higher in Hibiscus than Casuarina forest soil. In addition, we examined the ratios 16:1ω7t/16:1ω7c and, cy17:0/16:1ω7c as indicators of physiological stress; the soil in the Casuarina forest had the highest values, which suggests that the microbial community in the Casuarina forest soil is under physiological stress or starvation conditions. Comparison of soil microbial properties suggest that planting Hibiscus may help to enrich soil fertility and increase microbial activities in coastal sand-dune Casuarina forest.  相似文献   

9.
A study was conducted to examine the responses of microbial activity and nitrogen (N) transformations along an altitudinal gradient. The gradient was divided into three parts. Three areas were sampled: upper part (UP): coniferous forest, corn field, and abandoned corn field; middle part (MP): tropical cloud forest, grassland, and corn field (COL); and lower part (LP): tropical deciduous forest and sugarcane. The results showed that soil microbial biomass carbon (C) and basal respiration were significantly higher in MP and UP than in LP, whereas the microbial quotient (Cmic/Corg) was higher in LP and MP than in UP. The metabolic quotient (qCO2) was similar among gradient parts evaluated. Net N mineralization, ammonification, and nitrification rates were higher in UP than MP and LP. We found that in UP, the forest conversion to cropland resulted in no significant differences in microbial activity and N transformation rates between land uses. In MP, microbial biomass C, ammonification, and net N mineralization rates decreased significantly with conversion to cropland, but Cmic/Corg and nitrification were higher in COL. Basal respiration and qCO2 were significantly lower in COL when compared with other land uses. In LP, lower microbial biomass C, Cmic/Corg, and nitrification rates but higher ammonification and net N mineralization rates were observed in tropical deciduous forest than in sugarcane. No significant differences in basal respiration and qCO2 were found between uses of LP. Clearly, then, soil organic C is not equally accessible to the microbial community along the gradient studied. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

10.
The farming practices in vineyards vary widely, but how does this affect vineyard soils? The main objective of this study was to evaluate the effects of vineyard management practices on soil organic matter and the soil microbial community. To this end, we investigated three adjacent vineyards in the Traisen valley, Austria, of which the soils had developed on the same parent material and under identical environmental/site conditions but were managed differently (esp. tillage, fertilizer application, cover crops) for more than 10 yrs. We found that topsoil bulk density (BD) decreased with increasing tillage intensity, while subsoil BD showed the opposite trend. Soil organic carbon (SOC) stocks in 0–50 cm depth increased from 10 kg m?2 in an unfertilized and frequently tilled vineyard to 17 kg m?2 in a regularly fertilized but less intensively tilled vineyard. Topsoil microbial biomass per unit SOC, estimated by the sum of microbial phospholipid fatty acids (PLFAs), followed this trend, albeit not statistically significantly. Principal component analysis of PLFA patterns revealed that the microbial communities were compositionally distinct between different management practices. The fungal PLFA marker 18:2ω6,9 was highest in the vineyard with the lowest amount of extractable Cu (by 0.01 m CaCl2), and the bacterial‐to‐fungal biomass ratio was positively correlated with extractable Cu. Our results indicate that tillage and fertilizer application of vineyards can strongly affect vineyard soil properties such as BD and SOC stocks and that the application of Cu‐based fungicides may impair soil fungal communities.  相似文献   

11.
Microbial biomass, microbial respiration, metabolic quotient (qCO2), Cmic/Corg ratio and nutrient status of the microflora was investigated in different layers of an aspen (Populus tremuloides Michx.) and pine forest (Pinus contorta Loud.) in southwest Alberta, Canada. Changes in these parameters with soil depth were assumed to reflect successional changes in aging litter materials. The microbial nutrient status was investigated by analysing the respiratory response of glucose and nutrient (N and P) supplemented microorganisms. A strong decline in qCO2 with soil depth indicated a more efficient C use by microorganisms in later stages of decay in both forests. Cmic/Corg ratio also declined in the aspen forest with soil depth but in the pine forest it was at a maximum in the mineral soil layer. Microbial nutrient status in aspen leaf litter and pine needle litter indicated N limitation or high N demand, but changes in microbial nutrient status with soil depth differed strongly between both forests. In the aspen forest N deficiency appeared to decline in later stages of decay whereas P deficiency increased. In contrast, in the pine forest microbial growth was restricted mainly by N availability in each of the layers. Analysis of the respiratory response of CNP-supplemented microorganisms indicated that growth ability of microorganisms is related to the fungal-bacterial ratio.  相似文献   

12.
In two layers of the humus horizons in soddy-podzolic soils of different biogeocenoses (Kostroma oblast) representing a succession series, the carbon content in the microbial biomass (Cmic) was determined using the method of substrate-induced respiration and the rate of microbial CO2 production (basal respiration, BR). The Cmic content was from 110 to 755 μg/g soil, and the BR was from 0.40 to 2.52 μg CO2-C/g/h. A gradual increase in the Cmic content and BR was found in the following sequence: cropland—fallow (7-year-old)—young (20- and 45-year-old) forests—secondary and native (primary) forests (90- and 450-year-old, respectively). In the litter, the Cmic content was higher in the 45-year-old forest than in the secondary and native forests: 10423, 6459, and 4258 μg C/g of substrate, respectively. The portion of Cmic in the soil organic carbon content in the upper layer of the soils studied varied from 1.3 to 5.4%; its highest value was in the soils under the secondary and native forests. The pool of microbial biomass carbon and the microbial CO2 production in the upper 25-cm layer of the soils were calculated.  相似文献   

13.
The microbiota in the percolating water from the plow layer soil in paddy fields was studied based on the composition of phospholipid fatty acids (PLFAs) in a pot experiment. The mean concentrations of PLFAs in the percolating water were 17±5 and 11±4 µg L-1 in the planted and non-planted pots, respectively. The dominant PLFAs in the percolating water were 16: 0, 16: 1ω7c, 18: 1ω7, 18: 1ω9, il5: 0, and ail5: 0 PLFAs in both the planted and non-planted pots. The dominance percentage of 18: 3ω6c and 17: 1ω8 PLFAs increased at the late stage of rice growth in the planted pots. The percolating water from the planted pots contained in a higher percentage of straight mono-unsaturated PLFAs and a lower percentage of branched-chain PLFAs than that from the non-planted pots. Considerable differences in the PLFA composition in the percolating water were observed between the planted and non-planted treatments and with the duration of the growth period. Principal component analysis indicated that the microbiota in the percolating water was derived from the microbiota in the floodwater and in the plow layer soil. Cluster analysis showed that the similarity of the PLFA composition in the percolating water to the PLFA composition in the plow layer soil was higher than that in the floodwater. The stress factor that was estimated from the trans/cis ratio of 16: 1ω7 PLFA was 0.08±0.04 and 0.14±0.05 in the percolating water from the planted and non-planted pots, respectively, which indicated that the degree of stress on the microbiota in the percolating water from the planted pots was low in a similar way to the degree of stress on the microbiota in the floodwater, while the degree in the percolating water from the non-planted pots was similar to that in the plow layer soil, respectively.  相似文献   

14.
In the future, climate models predict an increase in global surface temperature and during winter a changing of precipitation from less snowfall to more raining. Without protective snow cover, freezing can be more intensive and can enter noticeably deeper into the soil with effects on C cycling and soil organic matter (SOM) dynamics. We removed the natural snow cover in a Norway spruce forest in the Fichtelgebirge Mts. during winter from late December 2005 until middle of February 2006 on three replicate plots. Hence, we induced soil frost to 15 cm depth (at a depth of 5 cm below surface up to –5°C) from January to April 2006, while the snow‐covered control plots never reached temperatures < 0°C. Quantity and quality of SOM was followed by total organic C and biomarker analysis. While soil frost did not influence total organic‐C and lignin concentrations, the decomposition of vanillyl monomers (Ac/Ad)V and the microbial‐sugar concentrations decreased at the end of the frost period, these results confirm reduced SOM mineralization under frost. Soil microbial biomass was not affected by the frost event or recovered more quickly than the accumulation of microbial residues such as microbial sugars directly after the experiment. However, in the subsequent autumn, soil microbial biomass was significantly higher at the snow‐removal (SR) treatments compared to the control despite lower CO2 respiration. In addition, the water‐stress indicator (PLFA [cy17:0 + cy19:0] / [16:1ω7c + 18:1ω7c]) increased. These results suggest that soil microbial respiration and therefore the activity was not closely related to soil microbial biomass but more strongly controlled by substrate availability and quality. The PLFA pattern indicates that fungi are more susceptible to soil frost than bacteria.  相似文献   

15.
This study describes an integrated approach (1) to monitor the quantity and quality of water extractable organic matter (WEOM) and size, structure and function of microbial communities in space (depth) and time, and (2) to explore the relationships among the measured properties. The study site was an arable field in Southern Germany under integrated farming management including reduced tillage. Samples of this Eutric Cambisol soil were taken in July 2001, October 2001, April 2002 and July 2002 and separated into three depths according to the soil profile (0–10 cm, 10–28 cm and 28–40 cm). For each sample, the quantity and quality (humification index, HIX) of water extractable organic matter (WEOM) were measured concomitantly with soil enzyme activities (alkaline phosphatase, β-glucosidase, protease) and microbial community size (Cmic). Furthermore, microbial community structure was characterised based on the fingerprints of nucleic acids (DNA) as well as phospholipid fatty acids (PLFA). We observed strong influences of sampling date and depth on the measured parameters, with depth accounting for more of the observed variability than date. Increasing depth resulted in decreases in all parameters, while seasonal effects differed among variants. Principal component (PC) analysis revealed that both DNA and PLFA fingerprints differentiated among microbial communities from different depths, and to a smaller extent, sampling dates. The majority of the 10 PLFAs contributing most to PC 1 were specific for anaerobes. Enzyme activities were strongly related to Cmic, which was depending on water extractable organic carbon and nitrogen (WEOC and WEON) but not to HIX. HIX and WEOM interact with the microbial community, illustrated by (1) the correlation with the number of PLFA peaks (community richness), and (2) the correlations with community PC analysis scores.  相似文献   

16.
Soil incubations are often used to investigate soil organic matter (SOM) decomposition and its response to increased temperature, but changes in the activity and community composition of the decomposers have rarely been included. As part of an integrated investigation into the responses of SOM components in laboratory incubations at elevated temperatures, fungal and bacterial phospholipid fatty acids (PLFAs) were measured in two grassland soils contrasting in SOM quality (i.e. SOM composition), and changes in the microbial biomass and community composition were monitored. Whilst easily-degradable SOM and necromass released from soil preparation may have fuelled microbial activity at the start of the incubation, the overall activity and biomass of soil microorganisms were relatively constant during the subsequent one-year soil incubation, as indicated by the abundance of soil PLFAs, microbial respiration rate (r), and metabolic quotient (qCO2). PLFAs relating to fungi and Gram-negative bacteria declined relative to Gram-positive bacteria in soils incubated at higher temperatures, presumably due to their vulnerability to disturbance and substrate constraints induced by faster exhaustion of available nutrient sources at higher temperatures. A linear correlation was found between incubation temperatures and the microbial stress ratios of cyclopropane PLFA-to-monoenoic precursor (cy17:0/16:1ω7c and cy19:0/18:1ω7c) and monoenoic-to-saturated PLFAs (mono/sat), as a combined effect of temperature and temperature-induced substrate constraints. The microbial PLFA decay patterns and ratios suggest that SOM quality intimately controls microbial responses to global warming.  相似文献   

17.
Eleven species of common fungi from compost were analysed for their content of ergosterol and phospholipid fatty acids (PLFAs) after growth on agar media. Mean content of ergosterol was 3.1 mg g−1 dw of fungal mycelium (range 1-24 mg g−1 dw). Total amount of PLFAs varied between 2.6 and 43.5 μmol g−1 dw of fungi (mean 14.9 μmol g−1 dw). The most common PLFAs were 16:0, 18:2ω6,9 and 18:1ω9, comprising between 79 and 97 mol% of the total amount of PLFAs. The PLFA 18:2ω6,9, suggested as a marker molecule for fungi, comprised between 36 and 61 mol% of the total PLFAs in the Ascomycetes, between 45 and 57 mol% in the Basidiomycetes and 12-22 mol% in the Zygomycetes. There was a good correlation between the content of the two fungal marker molecules, ergosterol and the PLFA 18:2ω6,9, with a mean content of 1 mg ergosterol being equivalent to 2.1 μmol of 18:2ω6,9. Based on results from the fungal isolates, conversion factors were calculated (5.4 mg ergosterol g−1 biomass C and 11.8 μmol 18:2ω6,9 g−1 biomass C) and applied to compost samples in which both the ergosterol and the PLFA 18:2ω6,9 content had been measured. This resulted in similar estimates of fungal biomass C using the two marker molecules, but was three to five times higher than total microbial biomass C calculated using ATP content in the compost. This could partly be explained by the fact that both of the markers used for fungal biomass are cell membrane constituents. Thus, the ergosterol and the PLFA content were related to the hyphal diameter of the fungi, where fungi with thinner hyphae had higher ergosterol concentrations than fungi with thicker hyphae. This could also partly explain the large interspecific variation in content of the two marker molecules.  相似文献   

18.
Forest floor chemistry and microbial communities can be influenced by forest land management, such as harvesting and prescribed burning. Here, we used phospholipid fatty acid (PLFA) and multiple carbon-source substrate-induced respiration (MSIR) analyses to characterize microbial communities of deciduous, mixedwood and coniferous boreal forest floors with different silvicultural treatments. The sites were stem-only harvested with 10% retention, and silvicultural treatments consisting of slash being evenly distributed on the site and then burned, or not burned. The burned sites exhibited lower microbial biomass and greater NO3 concentrations than the unburned sites. However, burning appeared to have no effect on forest floor microbial community structure or function. On the other hand, during drier months (August sampling), the composition of forest floor microbial communities appeared to be strongly influenced by topographic position rather than stand related differences. Harvested sites located at higher elevations had similar microbial communities, regardless of the overstory composition, while coniferous and mixedwood sites located at lower elevations had similarly structured microbial communities that were distinct from deciduous sites. Differences in microclimatic conditions of the forest floor between higher elevation sites and lower elevations sites may select for some microbial groups over others. Indicator analysis found a strong association of a fungal PLFA biomarker (20:1ω9c), with sites at higher elevation, while a biomarker for actinomycetes (10Me19:0) was strongly associated with deciduous sites at lower elevation. Structural differences in microbial communities observed between sites at higher and lower elevations appear to be linked to seasonal patterns in moisture, as previous studies in this region found no apparent effect of elevation during times of higher monthly precipitation.  相似文献   

19.
Tree species differ in their effect on soil development and nutrient cycling. Conversion of beech coppice to pine plantations can alter soil physical and chemical properties, which in turn may have significant impacts on soil microbial biomass C and N (Cmic, Nmic). The major objective of this study was to evaluate soil quality changes associated with the forest conversion in humid NW Turkey. Results from this study showed that levels of soil organic carbon (Corg), total nitrogen (Nt), moisture, Cmic and Nmic under beech coppice were consistently higher but levels of pH, CaCO3 and EC were lower compared to pine plantation. Differences between the forest stands in Cmic and Nmic were mainly related to the size of the Corg stores in soil and to tree species. In addition, high level of CaCO3 is likely to reduce pools of soil organic C and possibly even microbial biomass C and N in pine forests. The average Cmic:Nmic ratios were higher in soils under beech coppice than pine plantation, while Cmic:Corg and Nmic:Nt percentages were similar in both forest types. These results revealed the differences in microbial community structure associated with different tree species and the complex interrelationships between microbial biomass, soil characteristics, litter quantity and quality. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

20.
Microbial biomass, respiratory activity, and in‐situ substrate decomposition were studied in soils from humid temperate forest ecosystems in SW Germany. The sites cover a wide range of abiotic soil and climatic properties. Microbial biomass and respiration were related to both soil dry mass in individual horizons and to the soil volume in the top 25 cm. Soil microbial properties covered the following ranges: soil microbial biomass: 20 µg C g–1–8.3 mg C g–1 and 14–249 g C m–2, respectively; microbial C–to–total organic C ratio: 0.1%–3.6%; soil respiration: 109–963 mg CO2‐C m–2 h–1; metabolic quotient (qCO2): 1.4–14.7 mg C (g Cmic)–1 h–1; daily in‐situ substrate decomposition rate: 0.17%–2.3%. The main abiotic properties affecting concentrations of microbial biomass differed between forest‐floor/organic horizons and mineral horizons. Whereas microbial biomass decreased with increasing soil moisture and altitude in the forest‐floor/organic horizons, it increased with increasing Ntot content and pH value in the mineral horizons. Quantities of microbial biomass in forest soils appear to be mainly controlled by the quality of the soil organic matter (SOM), i.e., by its C : N ratio, the quantity of Ntot, the soil pH, and also showed an optimum relationship with increasing soil moisture conditions. The ratio of Cmic to Corg was a good indicator of SOM quality. The quality of the SOM (C : N ratio) and soil pH appear to be crucial for the incorporation of C into microbial tissue. The data and functional relations between microbial and abiotic variables from this study provide the basis for a valuation scheme for the function of soils to serve as a habitat for microorganisms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号