首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
In two layers of the humus horizons in soddy-podzolic soils of different biogeocenoses (Kostroma oblast) representing a succession series, the carbon content in the microbial biomass (Cmic) was determined using the method of substrate-induced respiration and the rate of microbial CO2 production (basal respiration, BR). The Cmic content was from 110 to 755 μg/g soil, and the BR was from 0.40 to 2.52 μg CO2-C/g/h. A gradual increase in the Cmic content and BR was found in the following sequence: cropland—fallow (7-year-old)—young (20- and 45-year-old) forests—secondary and native (primary) forests (90- and 450-year-old, respectively). In the litter, the Cmic content was higher in the 45-year-old forest than in the secondary and native forests: 10423, 6459, and 4258 μg C/g of substrate, respectively. The portion of Cmic in the soil organic carbon content in the upper layer of the soils studied varied from 1.3 to 5.4%; its highest value was in the soils under the secondary and native forests. The pool of microbial biomass carbon and the microbial CO2 production in the upper 25-cm layer of the soils were calculated.  相似文献   

2.
Soil samples from the upper 10-cm-thick layer of the humus horizon (without forest litter) were taken in Podol’sk and Serpukhov districts (1130 and 1080 km2, respectively) of Moscow oblast. At each sampling site, ecosystem (forest, plowland, or fallow), soil (soddy-podzolic, soddy-gley, bog-podzolic, meadow alluvial, gray forest, and anthropogenically transformed soils of lawns and industrial zones), predominant vegetation, and topography (floodplain and low, medium, and upper parts of watersheds) were determined. The carbon content of the microbial biomass (Cmic) was determined by the method of substrate-induced respiration; we also determined the rate of basal (microbial) respiration (BR) and the organic carbon content, pH, and particle-size distribution. Overall, 237 samples from Serpukhov district and 45 samples from Podol’sk district were analyzed. The BR/Cmic ratios (respiration quotient qCO2) and Cmic/Corg ratios were calculated. The Cmic content in the soils ranged from 43 to 1394 μg C/kg; the BR varied from 0.06 to 25 μg CO2-C/g per h, qCO2, from 0.34 to 6.52 μg CO2-C/mg Cmic per h; and the Cmic/Corg ratio, from 0.19 to 10.65%. It was found that the most significant factors affecting the variability of the Cmic and BR are the parameters of ecosystem (50% and 80%, respectively) and soil (30% and 9%, respectively). The most significant variability of these indices was found in forest soils; it was mainly controlled by the soil texture (33 and 23%) and the Corg content (19 and 24%). The Cmic parameter made it possible to differentiate the soils of the territory for the purposes of their evaluation, monitoring, and biological assessment more clearly than the BR value and the soil chemical characteristics.  相似文献   

3.
Urban soils (constructozems) were studied in Moscow and several cities (Dubna, Pushchino, and Serebryanye Prudy) of Moscow oblast. The soil sampling from the upper 10-cm-thick layer was performed in the industrial, residential, and recreational functional zones of these cities. The biological (the carbon of the microbial biomass carbon, Cmic and the microbial (basal) respiration, BR) and chemical (pHwater and the contents of Corg, heavy metals, and NPK) indices were determined in the samples. The ratios of BR to Cmic (the microbial respiration quotient, qCO2) and of Cmic to Corg were calculated. The Cmic varied from 120 to 738 μg C/g soil; the BR, from 0.39 to 1.94 μg CO2-C/g soil per hour; the Corg, from 2.52 to 5.67%; the qCO2, from 1.24 to 5.28 μg CO2-C/mg Cmic/g soil per h; and the Cmic/Corg, from 0.40 to 1.55%. Reliable positive correlations were found between the Cmic and BR, the Cmic and Cmic/Corg, and the Cmic and Corg values (r = 0.75, 0.95, and 0.61, respectively), as well as between the BR and Cmic/Corg values (r = 0.68). The correlation between the Cmic/Corg and qCO2 values was negative (r = −0.70). The values of Cmic, BR, Corg, and Cmic/Corg were found to correlate with the ammonium nitrogen content. No correlative relationships were revealed between the determined indices and the climatic characteristics. The principal component analysis described 86% of the variances for all the experimental data and clearly subdivided the locations of the studied soil objects. The ANOVA showed that the variances of Cmic, Corg, and BR are controlled by the site location factor by 66, 63, and 35%, respectively. The specificity of the functioning of the anthropogenic soils as compared with their natural analogues was clearly demonstrated. As shown in this study, measurable biological indices might be applied to characterize the ecological, environmental-regulating, and productive functions of soils, including urban soils.  相似文献   

4.
The humus-accumulative layer of soils (podzolic, gray, rzhavozem, burozem, and karbolitozem) of old-age forests (>60–450 years old) localized in various vegetation subzones (middle-taiga, southern taiga, subtaiga, dark coniferous forests outside the boreal region, and mountain forests) of the European part of Russia (22 sites of soil sampling of them, 13 in nature reserves and specially protected territories) was studied. The carbon content of the microbial biomass (Cmic) in the soil was determined by the substrate-induced respiration method. The fungal to bacterial ratio was determined by the selective inhibition technique with antibiotics. The basal respiration (BR) was also measured. The BR/Cmic = qCO2 ratio and the portion of Cmic in the total organic soil carbon was determined. It was shown that the Cmic and BR in the soils of a separate vegetation subzone varied significantly; however, their values increased from the middle-taiga to dark coniferous subzone and decreased in the mountain-forest zone (348 ± 44, 670 ± 66, 1000 ± 86, 1142 ± 49, 789 ± 79 μkg C/g soil and from 0.68 ± 0.23, 1.85 ± 0.10, 2.13 ± 0.15, 1.56 ± 0.14, 0.92 ± 0.07 μkg CO2-C/soil h, respectively). The fungal component in the humus-accumulative layer of soils is 53–99% of the total Cmic; however, its absolute values increase from the middle subzone to the southern one. The Cmic pool and the total BR in the profile of some soils (mineral horizons and forest litter) were calculated.  相似文献   

5.
The influence of surface fires and cutting on the quantitative and functional parameters of microbial cenoses in the soils of light coniferous forests in the Lower Angara River basin was studied. In the litters of soddy-podzolic soils under pine forests, the microbial biomass was 4080–4700 μg C/g; the basal respiration was 17.00–20.32 μg C-CO2/g/h; and the qCO2, 4.17–4.33 μg C-CO2/mg Cmic/h. In the humus-accumulative horizon, these values were 880–1160 μg C/g, 2.48–4.12 μg C-CO2/g/h, and 2.83–3.55 C-CO2/mg Cmic/h, respectively. In the litter of the one-year-old felled area, the content of microbial biomass carbon was by two times lower; in the litter of burned plots, it was by 60–70% lower than in the litter of the control area. The intensity of the microbial respiration did not change proportionally to the microbial biomass content, which resulted in an imbalance between the processes of the organic matter mineralization-immobilization towards a release of CO2 as evidenced by the increase of the qCO2 values by 2–4 times. In the five-year-old felled area, at the stage of restoring the herbaceous vegetation, a tendency towards the stabilization of the destructive microbiological processes was revealed. In the felled areas, the high number of heterotrophic microorganisms, the reduced oligotrophy of the soil organic horizons, and the more intense microbiological mineralization of the organic matter were observed. The surface fires in the felled areas and forests significantly affected the structure and the number of ecological-trophic groups of microorganisms in the litters, the humus-accumulative horizons, and in the upper mineral soil layers. The maximal structural and functional disturbance in the soil microbial complex was found in the logged areas affected by fires.  相似文献   

6.
The rationale of the study was to investigate microbial activity in different soil horizons in European forests. Hence, activities of chitinase and cellulase, microbial biomass carbon (Cmic) and basal respiration were measured in litter, fragmentation, humus and mineral soil layers collected several times from various beech and spruce forests. Sites were selected to form a gradient in N availability. Analyses were also performed on beech litter from a litterbag transplant experiment. Furthermore, microbiological parameters were measured in horizons of beech and spruce chronosequence sites with different stand age in order to investigate the influence of forest rotation, and hence changes in soil organic matter (SOM) dynamics, on microbial activity. Finally in horizons of one beech forest, the seasonal variation of selected microbiological parameters was measured more intensively. β-Glucosaminidase and cellobiohydrolase activities were measured using fluorogenic 4-methylumbelliferyl substrates to estimate chitinase and cellulase activities, respectively. On a spatial scale, chitinase and cellulase activities, Cmic determined by substrate induced respiration, and basal respiration ranged from 144 to 1924 and 6-177 nmol 4-MU g−1 org-C h−1, 8-48 mg C g−1 org-C and 11-149 μg CO2-C g−1 org-C h−1, respectively; in general values were significantly lower in layers of humus and mineral soil than of litter. Chitinase activity, Cmic and basal respiration from humus and mineral soil layers, together, correlated positively, while none correlated with cellulase activity. Similarly in the litter layer, no correlations were found between the microbiological parameters. On a seasonal scale, a time lag between a burst in basal respiration rate and activities of both enzymes were observed. In general, activities of cellulase and chitinase, Cmic and basal respiration, did not change with stand age, except in the humus layer in the spruce chronosequence, where Cmic decreased with stand age. In the litter layer, cellulase activity was significantly and positively related to the C:N ratio, while only a tendency for chitinase activity was shown, indicating that enzyme activities decreased with increasing N availability. In accordance, the enzyme activities and Cmic decreased significantly with increasing chronic N deposition in the humus layer, while basal respiration only tended to decrease with increasing N deposition. In contrast, enzyme activities in beech litter from litterbags after 2 years of incubation were generally higher at sites with higher N deposition. The results show different layer-specific responses of enzyme activities to changes in N availability, indicating different impacts of N availability on decomposition of SOM and stage of litter decomposition.  相似文献   

7.
Interactions between microbial communities and organic matter were analyzed for soils from the project regions ’︁Ecosystem Research in the Agricultural Landscape/FAM, Munich’ in southern Germany and ’︁Ecosystem Research in the Bornhöved Lake district’ from northern Germany using ratios between microbial biomass content (Cmic), microbial metabolic quotient (qCO2) and organic carbon content (Corg). In the agricultural soils in southern Germany, the qCO2/Corg ratio differed significantly with respect to agricultural management in contrast to ecophysiological Cmic/Corg ratio. In addition, Cmic/Corg ratio decreased from 39 to 21 mg Cmic g—1 Corg and qCO2/Corg ratio increased from 72 to 180 mg CO2‐C g—1 Cmic h—1 (g Corg g—1 soil)—1 with increasing soil depth. For the upper soil horizons from the landscape in northern Germany the two quotients differed significantly with reference to land use showing highest microbial colonization under grassland and lowest under beech forest. In contrast, C use efficiency was lowest in arable field under maize monoculture and highest in a wet grassland having a high organic C content.  相似文献   

8.
Microbial biomass, respiratory activity, and in‐situ substrate decomposition were studied in soils from humid temperate forest ecosystems in SW Germany. The sites cover a wide range of abiotic soil and climatic properties. Microbial biomass and respiration were related to both soil dry mass in individual horizons and to the soil volume in the top 25 cm. Soil microbial properties covered the following ranges: soil microbial biomass: 20 µg C g–1–8.3 mg C g–1 and 14–249 g C m–2, respectively; microbial C–to–total organic C ratio: 0.1%–3.6%; soil respiration: 109–963 mg CO2‐C m–2 h–1; metabolic quotient (qCO2): 1.4–14.7 mg C (g Cmic)–1 h–1; daily in‐situ substrate decomposition rate: 0.17%–2.3%. The main abiotic properties affecting concentrations of microbial biomass differed between forest‐floor/organic horizons and mineral horizons. Whereas microbial biomass decreased with increasing soil moisture and altitude in the forest‐floor/organic horizons, it increased with increasing Ntot content and pH value in the mineral horizons. Quantities of microbial biomass in forest soils appear to be mainly controlled by the quality of the soil organic matter (SOM), i.e., by its C : N ratio, the quantity of Ntot, the soil pH, and also showed an optimum relationship with increasing soil moisture conditions. The ratio of Cmic to Corg was a good indicator of SOM quality. The quality of the SOM (C : N ratio) and soil pH appear to be crucial for the incorporation of C into microbial tissue. The data and functional relations between microbial and abiotic variables from this study provide the basis for a valuation scheme for the function of soils to serve as a habitat for microorganisms.  相似文献   

9.
Carbon dioxide (CO2) emission from the soil surface in forest biogeocenoses of the Zvenigorod Biological Station of Moscow State University in summer varies on average from 120 to 350 mg C–CO2/(m2 h) and depends on the hydrothermal conditions (soil moisture and temperature) and the type of phytocenosis. The intensity of CO2 emission in the biogeocenosis does not depend on its parcel structure and varies with respect to plant microgroups: it is maximum in oxalis pine–spruce and maple–lime forests and bracken spruce–birch forests and minimum in areas of forest fall without vegetation. The upper (from 0 to 20 cm thick) soil layer provides up to 50% of the total soil CO2 emission. The role of microbial respiration in the total CO2 emission from soils is determined by weather conditions and varies from 9–33% in a dry summer to 55–75% in a summer with favorable temperature and moisture.  相似文献   

10.
 A study of the effects of different qualities (fresh and composted) and rates (equivalent to 120, 240, and 360 kg N ha–1) of mustard meal application on wheat yields on humid tropical vertisol was started in 1990 at Ginchi Research Station in Ethiopia. After continuous wheat cropping for 7 years and without any further fertilisation, soil microbial parameters (basal respiration, microbial biomass-C and N, organic-C, and ecophysiological quotients) were studied during one growth period. After 7 years of application, mustard meal still exerted a significant positive effect on microbial biomass, basal respiration, organic-C, Cmic : Nmic ratio, and metabolic quotient (qCO2). Organic-C, qCO2 and Cmic : Nmic ratios were higher for the compost-amended plots than plots amended with fresh mustard meal. Basal respiration, Cmic, and Cmic : Nmic ratio showed a clear seasonality, but only in manured plots. The data indicate shifts in microbial community structure (from bacteria to fungi and from r to K strategists) and suggest positive medium-term effects of mustard meal on humid tropical vertisol biological qualities. Received: 25 May 1999  相似文献   

11.
In the humus horizon of soddy-podzolic soils of postagrogenic cenoses and primary forests, the contributions of the fungi and bacteria were determined by the selective inhibition of the substrate-induced respiration (SIR) by antibiotics; the basal (microbial) respiration and the net-produced nitrous oxide (N2O) were also determined. The procedure of the SIR separation using antibiotics (cycloheximide and streptomycin) into the fungal and bacterial components was optimized. It was shown that the fungi: bacteria ratio was 1.58, 2.04, 1.55, 1.39, 2.09, and 1.86 for the cropland, fallow, and different-aged forests (20, 45, 90, and 450 years), respectively. The fungal and bacterial production of CO2 in the primary forest soil was higher than in the cropland by 6.3 and 11.4 times, respectively. The production of N2O in the soils of the primary and secondary (90-year-old) forests (3 and 7 ng N-N2O/g soil per hour, respectively) was 2–13 times lower than in the postagrogenic cenoses, where low values were also found for the microbial biomass carbon (Cmic), its components (the Cmic-bacteria and Cmic-fungi), and the portion of Cmic in the organic carbon of the soil. A conclusion was drawn about the misbalance of the microbial processes in the overgrown cropland accompanied by the increased production of N2O by the soil during its enrichment with an organic substrate (glucose).  相似文献   

12.
Microbial biomass, microbial respiration, metabolic quotient (qCO2), Cmic/Corg ratio and nutrient status of the microflora was investigated in different layers of an aspen (Populus tremuloides Michx.) and pine forest (Pinus contorta Loud.) in southwest Alberta, Canada. Changes in these parameters with soil depth were assumed to reflect successional changes in aging litter materials. The microbial nutrient status was investigated by analysing the respiratory response of glucose and nutrient (N and P) supplemented microorganisms. A strong decline in qCO2 with soil depth indicated a more efficient C use by microorganisms in later stages of decay in both forests. Cmic/Corg ratio also declined in the aspen forest with soil depth but in the pine forest it was at a maximum in the mineral soil layer. Microbial nutrient status in aspen leaf litter and pine needle litter indicated N limitation or high N demand, but changes in microbial nutrient status with soil depth differed strongly between both forests. In the aspen forest N deficiency appeared to decline in later stages of decay whereas P deficiency increased. In contrast, in the pine forest microbial growth was restricted mainly by N availability in each of the layers. Analysis of the respiratory response of CNP-supplemented microorganisms indicated that growth ability of microorganisms is related to the fungal-bacterial ratio.  相似文献   

13.
The processes of the organic matter (OM) mineralization in forest soils developed under temperate continental (Moscow oblast, Russia), Mediterranean (the central and western parts of Spain), and tropical monsoon (southern Vietnam) climates were studied under laboratory conditions. The potential and specific rates of the OM mineralization (PR min and PR min/Corg, respectively), the ecophysiological parameters of the microbial communities status (Cmic, qCO2, and Cmic/Corg), and the sensitivity of the rate of the OM mineralization to the rise in temperature were evaluated by the temperature coefficients (Q 10) determined in the humus horizons (0–10 cm, without forest litter). The average values of PR min for the climatic zones decreased in the following order: Mediterranean (57.1 ± 10.6 mg C/kg per day) > temperate continental (23.8 ± 7.1 mg C/kg per day) > tropical monsoon (10.4 ± 1.6 mg C/kg per day). The lowest resistance of the soil OM to mineralization as evaluated by the PR min/Corg values was found in the Albeluvisol and Phaeozem of the temperate continental climate and in the Acrisol of the Mediterranean climate. The highest Q 10 coefficients were attributed to the OM mineralization in the forest soils of the temperate continental climate. This allowed us to conclude that the observed and expected climate changes with an increase in the mean annual air temperature should lead to the maximum intensification of the OM mineralization processes in the forest soils of northern regions.  相似文献   

14.
 Microbial biomass C (Cmic), C mineralization rate, phospholipid fatty acid (PLFA) profiles and community level physiological profiles (CLPPs) using Biolog were determined from the humus and mineral soil layers in adjacent stands of Scots pine (Pinus sylvestris L.), Norway spruce [Picea abies (L.) Karst.] and silver birch (Betula pendula Roth) at two forest sites of different fertility. In addition, the Fourier-transformed infrared (FTIR) spectra were run on the samples for characterization of the organic matter. Cmic and C mineralization rate tended to be lowest under spruce and highest under birch, at the fertile site in all soil layers and at the less fertile site in the humus layer. There were also differences in microbial community structure in soils under different tree species. In the humus layer the PLFAs separated all tree species and in the mineral soil spruce was distinct from pine and birch. CLPPs did not distinguish microbial communities from the different tree species. The FTIR spectra did not separate the tree species, but clearly separated the two sites. Received: 3 December 1999  相似文献   

15.
In the forest, meadow, arable, and urban ecosystems (recreational, residential, and industrial zones) of Sergiev Posad, Shatura, Serpukhov, and Serebryanye Prudy districts of Moscow region, spatially separated sites (3–5 points per site) have been randomly selected and soil samples have been taken from the 0–10 (plant litter excluded) and 10- to 150-cm layers (a total of 201 samples have been taken). In the samples, the microbial biomass carbon (Cmic), the rate of the basal (microbial) respiration (BR), and the physical parameters (the particle size distribution (PSD), organic carbon (Corg), pH, heavy metals, and nutrients (NPK)) have been determined. High spatial variability has been revealed for Cmic and BR in all the ecosystems and the functional zones of the studied districts, and a clear tendency of a decrease in these parameters has been shown in the arable soils (by 1.4–3.2 times) and the industrial zone (by 1.7–3.3 times) compared to the natural analogues and other corresponding functional zones. It has been shown that the spatial distribution of the microbiological parameters is significantly (p ≤ 0.05) affected by the physicochemical properties of the soil (Cmic by the PSD and PSD × Corg; BR by the pH and pH × NPK; contributions of 40 and 63%, respectively), as well as by the type of ecosystem and the region of study (the contribution of the sum of these factors to the Cmic and BR was 56 and 67%, respectively). A tendency toward the deterioration of the functioning of the microbial community under the anthropogenic transformation of the soil has been shown. The contribution of the urban soils as a potential source of CO2 emission to the atmosphere has been calculated and discussed.  相似文献   

16.
A study was conducted to examine the responses of microbial activity and nitrogen (N) transformations along an altitudinal gradient. The gradient was divided into three parts. Three areas were sampled: upper part (UP): coniferous forest, corn field, and abandoned corn field; middle part (MP): tropical cloud forest, grassland, and corn field (COL); and lower part (LP): tropical deciduous forest and sugarcane. The results showed that soil microbial biomass carbon (C) and basal respiration were significantly higher in MP and UP than in LP, whereas the microbial quotient (Cmic/Corg) was higher in LP and MP than in UP. The metabolic quotient (qCO2) was similar among gradient parts evaluated. Net N mineralization, ammonification, and nitrification rates were higher in UP than MP and LP. We found that in UP, the forest conversion to cropland resulted in no significant differences in microbial activity and N transformation rates between land uses. In MP, microbial biomass C, ammonification, and net N mineralization rates decreased significantly with conversion to cropland, but Cmic/Corg and nitrification were higher in COL. Basal respiration and qCO2 were significantly lower in COL when compared with other land uses. In LP, lower microbial biomass C, Cmic/Corg, and nitrification rates but higher ammonification and net N mineralization rates were observed in tropical deciduous forest than in sugarcane. No significant differences in basal respiration and qCO2 were found between uses of LP. Clearly, then, soil organic C is not equally accessible to the microbial community along the gradient studied. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

17.
Tropical ecosystems are under increasing pressure of land‐use changes, strongly affecting the carbon cycle. Conversion from natural to agri‐cultural ecosystems is often accompanied by a decrease in the stocks of organic and microbial carbon (Corg, Cmic) as well as changes in microbial activity and litter decomposition. Eleven ecosystems along an elevation gradient on the slopes of Mt. Kilimanjaro were used to investigate impacts of land‐use changes on Corg and Cmic stocks as well as the specific metabolic respiration quotient (qsCO2) in surface soils. Six natural, two semi‐natural and three intensively used agricultural ecosystems were investigated on an elevation gradient from 950 to 3,880 m asl. To estimate the effects of precipitation, rainfall regimes of 3·6 and 20·0 mm were simulated. Corg stocks were controlled by water availability, temperature and net primary production. Agricultural management resulted in decreases of Corg and Cmic stocks by 38% and 76%, respectively. In addition, agricultural systems were characterized by low Cmic:Corg ratios, indicating a decline in available substrate. Enhanced land‐use intensity leads to increased qsCO2 (agricultural > semi‐natural > natural). The traditional homegardens stood out as a sustainable land‐use form with high substrate availability and microbial efficiency. Soil CO2 efflux and qsCO2 generally increased with precipitation level. We conclude that soils of Mt. Kilimanjaro's ecosystems are highly sensitive to land‐use changes and are vulnerable to changes in precipitation, especially at low elevations. Even though qsCO2 was measured under different water contents, it can be used as an indicator of ecosystem disturbances caused by land‐use and management practices. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

18.
An incubation experiment was carried out to investigate the interactions of two straw qualities differing in N content and two soils differently accustomed to straw additions. One soil under conventional farming management (CFM) regularly received straw, the other soil under organic farming management (OFM) only farmyard manure. The soils of the two sites were similar in texture, pH, cation‐exchange capacity, and glucosamine content. The soil from the OFM site had higher contents of organic C, total N, muramic acid, microbial biomass C and N (Cmic and Nmic), but a lower ergosterol content and lower ratios ergosterol to Cmic and fungal C to bacterial C. The straw from the CFM had threefold higher contents of total N, twofold higher contents of ergosterol and glucosamine, a 50% higher content of muramic acid, and a 30% higher fungal C–to–bacterial C ratio. The straw amendments led to significant net increases in Cmic, Nmic, and ergosterol. Microbial biomass C showed on average a 50% higher net increase in the organic than in the CFM soil. In contrast, the net increases in Nmic and ergosterol differed only slightly between the two soils after straw amendment. The CO2 evolution from the CFM soil always exceeded that from the OFM, by 50% or 200 µg (g soil)–1 in the nonamended control soil and by 55% or additional 600 µg (g soil)–1 in the two straw treatments. In both soils, 180 µg g–1 less was evolved as CO2‐C from the OFM straw. The metabolic quotient qCO2 was nearly twice as high in the control and in the straw treatments of the CFM soil compared with that of the OFM. In contrast, the difference in qCO2 was insignificant between the two straw qualities. Differences in the fungal‐community structure may explain to a large extent the difference in the microbial use of straw in the two soils under different managements.  相似文献   

19.
Microbial communities in floodplain soils are exposed to periodical flooding. A long-term submerged Eutric Gleysol (GLe), an intermediate flooded Eutric Fluvisol (FLe), and a short-time flooded Mollic Fluvisol (FLm) at the Elbe River (Germany) with similar organic carbon contents (Corg) between 8.1% and 8.9% were selected to test the quality of phospholipid fatty acids (PLFA), soil microbial carbon (Cmic), basal respiration (BR), metabolic quotient (qCO2), and Cmic/Corg ratio to characterize and discriminate these soils with microbial parameters.The three floodplain soils can be differentiated by Cmic and by total PLFA-biomass. Due to the different flooding durations and the time since the soils were last flooded Cmic and PLFA-biomass increase in the order GLe<FLe<FLm. Both parameters correlate significantly (r=0.999;p<0.05). The Cmic/Corg ratios are low in comparison to terrestrial soils and revealed the same ranking over the three soils like Cmic. Contrary, qCO2 and BR are highest in GLe and lowest in FLm according to inundation regime. The diminished Cmic, high BR, and high qCO2 values in GLe seem to be an unspecific response of aerobic soil microorganisms on the long flooding period and the resulting short time for developing after last flooding as well as the low pH value. Different plant communities and their residues may influence the microbial diversity additionally.The PLFA profiles were dominated by the group of saturated fatty acids that together constituted almost 62-72% of the total fatty acids identified in the soils. In GLe all groups of PLFA, inclusive monounsaturated fatty acids, are lowest and in FLm highest, while in FLe the PLFA fractions show an intermediary amount of the three soils. The FLm had most of the time aerobic conditions and revealed therefore the highest Cmic, PLFA-biomass, especially monounsaturated fatty acids, Cmic/Corg ratio as well as relatively low BR and qCO2 value. These indicate that microorganisms in FLm are more efficiently in using carbon sources than those in GLe and FLe.All 26 identified PLFA were found in FLe and FLm, while the polyunsaturated fungi biomarker 18:2ω6,9c could not be detected in GLe. In this long-time submerged soil the environmental conditions which microorganisms are exposed might be disadvantageous for fungi.  相似文献   

20.
Biological soil crusts (BSCs) and the soils directly below crusts (SDBCs) (0–5 mm) were collected in the Negev Desert (Israel) during the wet and dry seasons of 2007 and 2008, gently separated, and microbial basal respiration, microbial biomass carbon (Cmic), carbon (C) source utilization rates, and catabolic diversity were analyzed using MicroRespTM plates. The seasonal-change patterns of these parameters were similar to those of soil organic C (Corg) in the BSCs, i.e., increases were observed during the dry seasons relative to the wet seasons. Few seasonal variations in qCO2 and Cmic/Corg in the BSCs indicated that the increases in crustal organism basal respiration and C source utilization rates can be attributed to microbial propagation as a result of the increases in available C during the dry seasons. High frequency of rain events, with precipitation higher than 0.1 mm during spring, can enable crustal organisms to maintain photosynthetic activity and can facilitate microbial propagation and Corg accumulation in the BSCs. The seasonal dynamics of the four biotic parameters in the SDBCs were the opposite of those of the BSCs, and C source utilization rates and catabolic diversity were higher than in the BSCs during the wet seasons. Downward migration of exopolysaccharides, crustal organism cell contents, and intracellular solutes with water infiltration can increase C and nutrient availability and enhance microbial catabolic activities and propagation in the SDBCs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号