首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 243 毫秒
1.
The objective of this work was to evaluate the effect of the application of boron (B) by foliar spraying for the yield of beet (Beta vulgaris L.) and tomato (Solanum lycopersicum L.) crops. An experiment for each crop was done in a greenhouse at the São Paulo State University (UNESP), Jaboticabal campus, in Brazil. The experiments evaluated the B concentrations of 0, 0.085, 0.170, 0.255, and 0.340 g L?1; applied in the 20, 35, and 50 days after the transplant (DAT) of beet cv. ‘Tall Top Early Wonder’, and in the 20, 40, and 60 DAT for the tomato cv. ‘Raisa N’. The plants were cultivated in pots with washed sand with 5 dm3 for the beet crop and 10 dm3 for the tomato crop. The beet and tomato crops were harvested 58 and 154 DAT, respectively. The leaves and fruits numbers; the foliar area; the dry matter of leaves, bark and roots; the fresh and dry matter of the fruits and the tuberous root; the dry matter of the total plant and the B foliar content were evaluated. The total dry matter of beet and tomato the plant were influenced by the concentration of the foliar B spray. The highest yield of the tuberous root and the total plant dry matter of beet occurred with B foliar concentration of 0.065 g L?1 and it was associated with the B foliar content of 26 mg kg?1. The highest yield of fruit and total plant dry matter of tomato occurred with the B foliar spraying of 0.340 g L?1 and it was associated with the B foliar content of 72 mg kg?1.  相似文献   

2.
The morphology and length of roots and shoots of tomato (Lycopersicon esculentum Mill.) seedlings grown on a nutrient medium for fourteen days in a controlled environment chamber were apparently not affected, whereas the dry matter content of roots was significantly enhanced when 200 mg L?1 of humic acid (HA) isolated from either a non-amended soil or a sewage-sludge-amended soil was present in the nutrient medium. In contrast, the HA-like fraction isolated directly from the sewage sludge caused, under the same conditions, extensive alterations of tomato morphology and a significant reduction of the length and dry weight of both shoots and roots. The presence in the nutrient medium of the herbicides alachlor or imazethapyr at concentrations of 1 and 0.01 mg L?1, respectively, caused a marked decrease of tomato root and shoot length and dry weight. Differently, the herbicide rimsulfuron at a concentration of 0.01 mg L?1 produced a slight decrease in shoot and root length and a slight increase in their dry weight. A combination of 200 mg L?1 soil HA and each of the herbicides alachlor, rimsulfuron and imazethapyr at concentrations of 1, 0.01 and 0.01 mg L?1, respectively, in the nutrient medium attenuated the growth depression of tomato shoots and roots observed in the presence of the herbicide alone. However, the simultaneous presence of sewage sludge HA and any herbicide in the nutrient solution caused negative synergistic effects on tomato growth. The volume of nutrient solution and the amount of electrolytes taken up by tomato plants during the growth experiments correlated highly significantly with the total plant dry weight. Tomato seedlings induced a pH decrease in the nutrient medium in all treatments except in those where sludge-HA was present, either alone or in combination with any herbicide.  相似文献   

3.
In this study, interactions of nickel sulfate and urea sprays on vegetative growth, yield and leaf mineral contents in strawberry were investigated. Rooted Pajaro strawberry plants were potted in 3 liter pots filled with soil, leaf mold and sand (1:1:1, v/v/v). Established plants were foliar sprayed with nickel sulfate at 0, 150, 300 and 450 mg L?1 and urea 0 and 2 g L?1 concentrations. Results indicated that nickel (Ni; 300 mg L?1) plus urea (2 g L?1) significantly increased the yield and runner numbers. Nickel sulfate at the rate of 300 and 150 mg L?1and urea (2 g L?1) significantly increased the crown numbers. The greatest root fresh and dry weights were obtained from untreated plants. Urea at 2 g L?1 without nickel significantly increased shoot fresh and dry weights. Nickel at 450 mg L?1 without urea significantly increased Ni concentration in leaves. Overall, nickel sulfate at 150 and 300 mg L?1 along with urea at 2 g L?1 were the best treatments.  相似文献   

4.
Salinity is one of the major environmental stressors which has deleterious effects on the growth, development, and yield of crops. Because of the gradual increase in soil and water salinity in the East Azarbaijan, Iran, Tanacetum balsamita L. cultivation in this region has always been associated with many problems. To study the effect of foliar spray of iron sulfate (FeSO4) (0, 750, and 1500 mg L?1) under sodium chloride (NaCl) salinity (0, 50, and 100 mM) on some physiological characteristics of Tanacetum balsamita L. plants, an experiment was conducted as a factorial based on complete randomized block design with three replications. Total soluble solids (TSS) and essential oil contents were significantly affected by the interaction effects of FeSO4 foliar application and salinity levels. The highest TSS and essential oil content were found in the plants under NaCl0 × FeSO4 1500 mg L?1 treatment combination. Leaf length, leaf fresh and dry weights were influenced by both Fe foliar application and salinity levels. Foliar application of iron (Fe) positively affected leaf length, leaves fresh and dry weights, root fresh and dry weights and peroxidase (POD) content, especially at 1500 mg L?1. Other traits such as leaf length, leaf fresh and dry weights, malondialdehyde (MDA), POD and catalase (CAT) contents were influenced by salinity levels. For POD, MDA, and CAT contents, the highest values were recorded with NaCl 50 and 100. The highest values of leaf length, leaf fresh and dry weights were found in the control plants.  相似文献   

5.
A pot experiment was conducted to evaluate the foliar applied phosphorous with and without pre-plant dose (50 kg hac.?1) of phosphorous on growth, chlorophyll contents, gas exchange parameters and phosphorous use efficiency (PUE) of wheat. The experiment was conducted in net house at Department of Crop Physiology, University of Agriculture Faisalabad, Pakistan. Two promising wheat cultivar AARI 2011 and FSD 2008 were used as a test crop with 5 foliar phosphorus (P) rates (0, 2, 4, 6, 8 kg ha?1). The foliar applied P with pre-plant performed better than without pre-plant and control treatments. Foliar treatment of phosphorus at 6 kg ha?1 P proved to be the best among other foliar treatments followed by 8 kg ha?1 P. The foliar application of phosphorous at 6 kg hac.?1 with pre-plant soil applied P increased the shoot length, root length, shoot fresh weight, root fresh weight, shoot dry weight and root dry weight. The chlorophyll contents (Chl. a and b) were increased with the foliar application of phosphorous. The gas exchange parameters (net carbon dioxide (CO2) assimilation rate, transpiration rate, stomatal conductance and sub-stomatal CO2 rate) were significantly improved by foliar applied P. The maximum values of net CO2 assimilation rate (5.27 μ mol m?2 sec.?1), transpiration rate (3.44 μ mol m?2 sec.?1), stomatal conductance (0.81 μ mol m?2 sec.?1) and sub-stomatal CO2 (271.67 μ mol m?2 sec.?1), were recorded in the treatment where P was foliar applied at 6 kg hac.?1 with pre-plant soil applied Phosphorous. The foliar application of phosphorous with pre-plant soil applied P enhanced Phosphorous use efficiency (PUE) in both varieties. The maximum value of PUE (15.42%) was recorded in the treatment where foliar feeding of P was done at 6 kg hac.?1 with pre-plant soil applied P in both genotypes.  相似文献   

6.
Abstract

The fast pace of cropland loss in China is causing alarm over food security and China’s ability to remain self-reliant in crop production. Mudflats after organic amendment can be an important alternative cropland in China. Land application of sewage sludge has become a popular organic amendment to croplands in many countries. Nevertheless, the land application of sludge to mudflats has received little attention. Therefore, the objective of the present work was to investigate the impact of sewage sludge amendment (SSA) at 0, 30, 75, 150 and 300 t ha?1 rates on soil physicochemical properties, perennial ryegrass (Lolium perenne L.) growth and heavy metal accumulation in mudflat soil. The results showed that the application of sewage sludge increased organic matter (OM) content by 3.5-fold while reducing salinity by 76.3% at the 300 t ha?1 rate as compared to unamended soil. The SSA reduced pH, electric conductivity (EC) and bulk density in mudflat soil, increased porosity, cation exchange capacity (CEC) and contents of nitrogen (N), phosphorus (P), exchangeable potassium ions (K+), sodium ions (Na+), calcium ions (Ca2+) and magnesium ions (Mg2+) in comparison to unamended soil. There were 98.0, 146.6, 291.4 and 429.2% increases in fresh weight and 92.5, 132.4, 258.6 and 418.9% increases in dry weight of perennial ryegrass at 30, 75, 150, and 300 t ha?1, respectively, relative to unamended soil. The SSA increased metal concentrations of aboveground and root parts of perennial ryegrass (p < 0.05). The metal concentrations in perennial ryegrass were Zn > Cr > Mn > Cu > Cd > Ni, and the metal concentrations in roots were significantly higher than aboveground parts. The metal accumulation in perennial ryegrass correlated positively with sludge application rates and available metal concentrations in mudflat soil. Land application of sewage sludge was proved to be an effective soil amendment that improved soil fertility and promoted perennial ryegrass growth in mudflat soil. However, heavy metal accumulation in plants may cause food safety concern.  相似文献   

7.
Flower quality loss, especially short postharvest life, is a major problem in gerbera production. An experiment was conducted to determine how different combinations of humic substances (HS) affect gerbera. Humic acid (HA) and fulvic acid (FA) applied to nutrient solutions in six combinations including control (nutrient solution only), 80 mg L?1 HA + 20 mg L?1 FA, 60 mg L?1 HA + 40 mg L?1 FA, 40 mg L?1 HA + 60 mg L?1 FA, 100 mg L?1 FA, and 50 mg L?1 FA. The HS application enhanced root architecture, nutrient content, number of harvested flowers, and vase life. Fifty (50) mg L?1 FA extended vase life by 8 days and increased flower number (72.9%). Results suggest that HA and FA (especially 50 mg L?1 FA) can improve quality and quantity of gerbera through improving root architecture, leading to enhanced nutrient uptake and possibly affecting hormone-like activities. It seems that using low concentrations of FA may be part of a solution in improving gerbera flower quality.  相似文献   

8.
The effects of selenium (Se) cadmium (Cd) interactions on plant growth and metabolism are not fully clear. In the present study, we assessed whether Se could alleviate the toxic effects of Cd on growth and metabolism of maize. Seeds of maize variety FH-985 were sown in pots filled with sand treated with CdCl2 (0, 50 and 100 µM) and Se (0, 2 and 4 mg L?1) through Hoagland’s nutrient solution. Low Se (2 mg L?1) increased germination percentage and rate, while high Se (4 mg L?1) increased fresh and dry biomass under Cd stress. Interestingly, all Se concentrations were effective in alleviating the toxic effects of Cd on photosynthetic pigments, whereas higher Se mitigated the Cd-induced oxidative stress and increased flavonoids both in the shoots and roots while phenolics in the roots. The results demonstrated that root zone Se altered tissue-specific primary metabolism in maize. Furthermore, low Se mitigated the Cd-induced decrease in total proteins in the root. Overall, Se-mediated decrease in the oxidative stress in the shoots while increase of secondary metabolites in the roots helped the plants to grow faster at early growth stage and caused increase in the biomass under different Cd regimes.  相似文献   

9.
The objective of this study was to determine the effect of nitrogen fertilization rate on growth and quality of leafy lettuce grown during the winter season in non-circulating hydroponic system. Plants were subjected to seven nitrogen (N) concentrations, i.e. 0, 30, 60, 90, 120, 150 and 180 mg L?1 N using ammonium nitrate. Nitrogen treatments did not have a significant effect on leaf fresh and dry mass, root fresh and dry mass, number leaves and leaf area. Leaf ascorbic acid and total phenolic content, and antioxidant capacity peaked at 100 and 120 mg L?1 N, whereas leaf chlorophyll concentration linearly increased with increasing N application. The results indicate that a solution N concentration of 100 and 120 mg L?1 may be sufficient to improve growth, yield and quality parameters of leafy lettuce grown in non-circulating hydroponic system.  相似文献   

10.
ABSTRACT

Nickel (Ni) is an essential element for activation of urease in higher plants. The effects of Ni as an essential micronutrient on growth and chlorophyll content of wheat plants grew in nutrient solutions supplied either with ammonium nitrate or urea as two different nitrogen (N) sources were investigated. Plants were allowed to grow for six weeks, then leaf chlorophyll content, shoot and root fresh and dry weights, and Ni concentration in shoots and roots were determined. Shoot and root Ni concentration in both urea and ammonium nitrate-fed plants increased significantly with the increase in Ni concentration. Growth and chlorophyll content in leaves of the urea-fed plants increased when Ni concentration in the solution was as high as 0.05 mg L?1 and decreased at 0.1 mg Ni L?1. In ammonium nitrate-fed plants, these parameters increased up to 0.01 mg Ni L?1 and started to decrease with further increase in Ni concentration. Plants that grew in nutrient solutions containing urea had more shoots and roots fresh and dry weight at third and fourth Ni levels (0.05 and 0.1 mg L?1) than those that grew in media containing ammonium nitrate with similar Ni levels. Total chlorophyll content was also higher in plants supplied with urea plus Ni. The amount of Ni required for optimum wheat growth was dependent on the forms of N used. When supplied with ammonium nitrate or urea, the amount of Ni needed was 0.01 and 0.05 mgL?1 of nutrient solutions, respectively.  相似文献   

11.
《Journal of plant nutrition》2013,36(10):2315-2331
ABSTRACT

Split root solution culture experiments were conducted to study the effects of the rare earth element lanthanum (La) on rice (Oryza sativa) growth, nutrient uptake and distribution. Results showed that low concentrations of La could promote rice growth including yield (0.05 mg L?1 to 1.5 mg L?1), dry root weight (0.05 mg L?1 to 0.75 mg L?1) and grain numbers (0.05 mg L?1 to 6 mg L?1). High concentrations depressed grain formation (9 mg L?1 to 30 mg L?1) and root elongation (1.5 mg L?1 to 30 mg L?1). No significant influence on straw dry weight was found over the whole concentration range except for the 0.05 mg L?1 treatment. In the pot and field experiments, the addition of La had no significant influence on rice growth.Lanthanum had variable influence on nutrient uptake in different parts of rice. Low concentrations (0.05 mg L?1 to 0.75 mg L?1) increased the root copper (Cu), iron (Fe), and magnesium (Mg), and grain Cu, calcium (Ca), phosphorus (P), manganese (Mn), and Mg uptake. High concentrations (9 to 30 mg L?1) decreased the grain Ca, zinc (Zn), P, Mn, Fe and Mg, and straw Ca, Mn, and Mg uptake. With increasing La concentration, root Zn, P, Mn, Cu, and Ca concentrations increased, and grain Ca and Fe, and straw Mn, Mg, and Ca concentrations decreased. Possible reasons are discussed for the differences between the effects of La in nutrient solutions and in pot and field experiments.  相似文献   

12.
This study investigated the effect of different boron concentrations on growth and physiological characteristics of olive plants. The absorption of some macronutrients and distribution of boron were also examined. This research was carried out in a completely randomized design with factorial arrangements including six boron levels (0.2, 10, 20, 30, 40 and 50 mg L?1) and two cultivars (Amygdalolia and Konservolia), with four replications for each treatment. Two-year old seedlings were treated with Hoagland nutrient solution containing different boron (B) concentration for 4 months. Chlorophyll fluorescence, fresh and dry weight of leaves, stems and roots as well as absorption of macronutrients decreased in both cultivars as the boron level were increased. Diagnostic symptoms of boron toxicity appeared 45 and 75 days after planting for Amygdaloila and Konservolia at 30, 40 and 50 mg L?1; and 40 and 50 mg L?1 of boron, respectively. Our results showed that at a higher level of B, the Konservolia cultivar maintained more B concentration in its root than Amygdalolia cultivar; however, B content in young leaves of Amygdalolia was higher than Konservolia. It seems that Konservolia cultivar could accumulate B in its roots and prevents its translocation to the leaves through an internal tolerance mechanism; therefore, Konservolia shows greater tolerance to high concentrations of boron compared to Amygdalolia.  相似文献   

13.
ABSTRACT

Humic (HA) and fulvic (FA) acids improve the nutrient availability and uptake by plants but some aspects of their agronomic use still need to be clarified. The effects of HA soil application and FA foliar application on the growth, Zn and B uptake by coffee seedlings were evaluated. HA was added to an Oxisol at concentrations 0, 10, 25, 50, 75 and 100 mg kg?1 (C-HA), in both limed (pH 6.2) and overlimed (pH 7.2) conditions. FA (0, 0.2, 0.5 and 1 g L?1 C-FA) was applied to coffee leaves in three different application modes (M): with 0.3% Zn and 0.6% B supplied via foliar (M1), 0.6% B and 1.2% Zn supplied via foliar (M2) and 1.2 mg kg?1 B and 6 mg kg?1 Zn supplied via soil (M3). HA addition in soil significantly (p < 0.05) reduced leaf B and Zn accumulation and coffee growth in both pH conditions. In the M1 and M2, FA application significantly (p < 0.05) increased the shoot growth at 0.59 and 0.45 g L?1 and B accumulation at 0.96 and 0.45 g L?1 C-FA. Foliar application of C-FA, instead soil application of C-HA, is a suitable practice to improve coffee seedlings growth and nutrition on Oxisol.  相似文献   

14.
□ Effects of different arsenic (As) concentration (0–30 mg L?1) on seed germination, root tolerance index, relative shoot height, root and shoot biomass, photosynthetic pigments and arsenic accumulation in two wheat varieties were investigated. Low concentrations of arsenic (0–2.5 mg L?1) stimulated germination percentage, shoot and root elongation, plant biomass as well as chlorophyll content as compared with control, however, these factors all decreased gradually at high concentrations of arsenic (5–30 mg L?1). ‘Zarin’ variety had a significantly higher tolerance to arsenic than ‘Sardari.’ Arsenic accumulation by plants root and shoot increased with the increasing arsenic concentrations in medium, which ‘Zarin’ had a higher ability to absorb and translocate arsenic to the shoots. Root accumulated more arsenic than shoot. The similar trend of chlorophyll content and wheat growth under different arsenic concentration suggesting that arsenic toxicity affects the photosynthesis which ultimately results in the reduction of wheat growth and yield.  相似文献   

15.
Heavy metal uptake, translocation and partitioning differ greatly among plant cultivars and plant parts. A pot experiment was conducted to determine the effect of cadmium (Cd) levels (0, 45 and 90 mg kg?1 soil) on dry matter yield, and concentration, uptake and translocation of Cd, Fe, Zn, Mn and Cu in seven rice cultivars. Application of 45 mg Cd kg?1 soil decreased root and shoot dry weight. On average, shoot and root Cd concentrations and uptake increased in all cultivars, but micronutrients uptake decreased following the application of 45 mg Cd kg?1. No significant differences were observed between 45 and 90 mg kg?1 Cd levels. On average, Cd treatments resulted in a decrease in Zn, Fe and Mn concentrations in shoots and Zn, Cu and Mn concentrations in roots. Differences were observed in Cd and micronutrient concentrations and uptake among rice cultivars. Translocation factor, defined as the shoot/root concentration ratio indicated that Cu and Fe contents in roots were higher than in shoots. The Mn concentration was much higher in shoots. Zinc concentrations were almost similar in the two organs of rice at 0 and 45 mg Cd kg?1. A higher Cd level, however, led to a decrease in the Zn concentration in shoots.  相似文献   

16.
One-year-old, own-rooted pomegranate cultivars “Ermioni” and “Wonderful” plants were irrigated for 75 days with modified Hoagland nutrient solutions containing 0–10 mg L?1 boron (B). At the end of the experiment, the control plants of “Ermioni” presented better growth performance than those of “Wonderful.” However, there were no differences in the treatments with high B concentration (5.0 or 10 mg L?1). Control “Wonderful” plants had higher fresh and dry matter than control “Ermioni” plants. Moreover, the highest B concentrations in nutrient solution led to a significant increase in chlorophyll and carbohydrate content in the leaves of cultivar “Ermioni.” Furthermore, leaf proline concentration, gas exchange, chlorophyll fluorescence, and micro–macronutrients of both cultivars were not affected by any of the tested B treatments. B concentration in plant parts was linearly correlated to B supply. The highest B concentrations were observed in roots followed by stems and apical and basal leaves.  相似文献   

17.
The impact of soil (1, 2 kg ha?1) and foliar (100, 200 mg L?1) boron (B) with control (no B) was evaluated on phenology and yield formation of Camelina each applied at stem elongation and flowering stages. Foliar (200 mg L?1) or soil B (2 kg ha?1) resulted in earlier flowering and maturity, increased fruit bearing branches (19.68%), number of siliqua, seeds per siliqua (4.6%), biological yield (15%), seed yield (24%), harvest index (11.4%) and oil contents (23%) than no B. Increased fruit bearing branches, seed filled siliqua or seed numbers, harvest index and oil quality can be attributed to changes in dry matter accumulated of stem with simultaneous increase in siliqua dry weight with foliar or soil applied B. In crux, foliar (200 mg L?1) or soil applied (2 kg ha?1) B seems promising to improve seed and oil yield, harvest index of Camelina sativa under B deficient condition.  相似文献   

18.
ABSTRACT

Root exudate is derived from plant metabolites and its composition is affected by plant nutrient status. A deficiency of mineral nutrients, such as nitrogen (N) and phosphorus (P), strongly affects the type and amount of plant metabolites. We applied a metabolite profiling technique to investigate root exudates of rice plants under N and P deficiency. Oryza sativa was grown in culture solution containing two N levels (0 and 60 mg N L?1) or two P levels (0 and 8 mg P L?1). Shoot extracts, root extracts, and root exudates were obtained from the rice plants 5 and 15 days after transplanting and their metabolites were determined by capillary electrophoresis/time-of-flight mass spectrometry. Shoot N concentration and dry weight of rice plants grown at ?N level were lower than those of plants grown at +N level. Shoot P concentration and dry weight of rice plants grown at ?P level were lower than those of plants grown at +P level. One hundred and thirty-two, 127, and 98 metabolites were identified in shoot extracts, root extracts, and root exudates, respectively, at the two N levels. One hundred and thirty-two, 128, and 99 metabolites were identified in shoot extracts, root extracts, and root exudates, respectively, at the two P levels. Seventy-seven percent of the metabolites were exuded to the rhizosphere. The concentrations of betaine, gamma-aminobutyric acid, and glutarate in root exudates were higher at both ?N and ?P levels than at their respective high levels. The concentration of spermidine in root exudates was lower at both ?N and ?P levels than at their respective high levels. The concentrations of the other metabolites in root exudates were affected differently by plant N or P status. These results suggest that rice roots actively release many metabolites in response to N and P deficiency.  相似文献   

19.
Abstract

In this research the effect of foliar application of selenium (Se) at four levels (Na2OSe4; 0, 5, 10 and 20?mg L?1) was evaluated on some phytochemical characteristics of Sultana grapevine under different salinity levels (NaCl; 0 or 75?mM). The vines were fed twice a week with Hoagland nutrient solution and Se was foliar applied twice with 24 intervals. During growing period, plant height, leaf number and leaf area were recorded. Moreover, at the end of experiment, mature leaves from middle nods of canes were used for measurement of some phytochemical indices. According to results, Se application had a positive effect on plant height, leaf numbers, leaf area and photosynthetic pigments content especially at 5?mg L?1 and to some extent 10?mg L?1 Se levels. Under salinity stress, foliar application of Se at 5?mg L?1 considerably decreased vines leaves electrolyte leakage and lipid peroxidation values compared to non se-treated plants under salinity stress condition. Selenium had an additive effect on salinity stress (75?mM NaCl) induced accumulation of total phenol, total flavonoid, soluble sugars and proline content in leave of vines. Moreover, the interaction of salinity and Se at 5 and 10?mg L?1 improved leaves antioxidant enzymes activities in Sultana grapevine. Likewise, foliar application of Se improved leaf mineral content in 75?mM NaCl -treated vines. Totally, foliar application of selenium (Se at 5 or 10?mg L?1) increased salt tolerance through improvement in nutritional balance and by enzymatic and non-enzymatic antioxidant capacity in grapevine leaves.  相似文献   

20.
Terminal drought stress (drought at reproductive growth stage) has been considered a severe environmental threat under changing climatic scenarios and undoubtedly inhibits sunflower production. A field study was conducted to explore the potential role of foliar applied boron (B) (0, 15, 30, 45 mg L?1) at late growth periods of sunflower in alleviating the adversities of terminal drought stress (75, 64, 53 mm DI) grown from inflorescence emergence to maturity stages. The plant water relations such as leaf relative water content (RWC), water potential (Ψw), osmotic potential (Ψs), and turgor pressure (Ψp) were increased significantly with B foliar sprays while exposed to terminal drought stress. Foliar B application considerably improved the nitrogen and B concentrations in leaf and seed tissues, and also chlorophyll a and b pigments under terminal drought stress conditions. Drought-induced proline accumulation prevented the damages caused by drought stress, nevertheless, B foliar spray increased its contents. Compared to well-watered conditions, terminal drought stress substantially declined the growth performance in terms of reduced leaf area index (LAI), crop growth rate (CGR), net assimilation rate (NAR), and total dry matter (TDM) production; however, foliar B supply (30 mg L?1) might be helpful for improving drought tolerance in sunflower with reduced growth losses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号