首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 140 毫秒
1.
设计了一种基于ARM平台IPC2300系列的智能温室控制系统.在传统智能温室系统上加入了植物水胁迫声发射信号的获取以及处理,以实现温室的精准灌溉.该系统以ARM7嵌入式处理器为核心,将各类数字传感器收集的数据通过现代控制理论及模糊控制算法进行处理,采用自动控制、远程监控和图形化等多种方式来调整温室执行机构,以达到控制温室温湿度、CO2浓度、光照强度以及土壤含水率等参数,在搭建的温室模型中取得稳定、可靠的运行效果.该研究设计的ARM系统相比于传统温室控制系统,具有维护成本低、功耗低、方便实用等特点;相比于同类设计,该系统开发了数字传感器、图形化界面、模糊控制方法、网络摄像头监控,实现了现代温室控制所具有的智能化、网络化和可视化.  相似文献   

2.
在温室大棚控制系统中,对温室内的环境因子如温度、湿度、C02浓度及光照度等的有效控制是实现农作物优质、高产及高效的关键环节。设计了温室总体控制方案,应用S7-CPU226、EM231和HMIMOY等设备构建了PLC温室控制l系统,编写了各执行机构的控制程序和模糊算法相关程序,并应用winccflexible组态了该控制系统的监控画面。结果表明,该系统能够很好地实现对温室中温度、湿度、CO2浓度及光照度等环境因子的有效控制,实现对温室中各参数的实时监控,较好地满足温室作物对生长环境的要求。  相似文献   

3.
在传统温室自动化监控系统的基础上,针对目前温室大棚面积不断增大、温室内传感器种类及数量不断增多,且不易连栋管理的现状,设计了基于ARM CORTEX-M3核的以STM32单片机为核心的智能温室控制系统。系统采用CAN总线技术对连栋大棚的主要环境因子,如温度、湿度及光照度等进行智能控制,通过串行通信实现上位机控制,增强了温室大棚的智能化和实用性。  相似文献   

4.
温室大棚自动控制系统的设计   总被引:1,自引:0,他引:1  
阐述了一个温室大棚自动控制系统,该系统运行可靠,成本低。系统通过对温室内的温度与湿度参量的采集,并根据上述参数实现对温度和湿度的自动调节,达到了温室大棚自动控制的目的。  相似文献   

5.
在现代化的种植中温室大棚数量越来越多,且种植对象朝着多样性、多变性的方向发展,为实现对温室群的便捷管理与种植对象的差异化控制,提出一种基于物联网的集散控制系统,该系统终端采用单片机多机通信技术搭建集散控制系统,实现对温室群的集中管理与差异化控制;同时借助通用分组无线服务(GPRS)技术、服务器技术搭建物联网监控系统,实现对温室环境数据的集中显示与远程控制,借助个人计算机端或手机端浏览器即可进行远程管理。该系统在实际运行过程中能够稳定、准确地对各温室进行监控,对实现温室智能化、信息化管理具有实际应用价值。  相似文献   

6.
本文介绍了温室地源热泵空调系统,该系统以可编程逻辑控制器(PLC)为控制系统核心,并用计算机对运行状况进行观测、调节地源热泵温室空调控制系统。该控制系统利用室内外大气温度数据来确定系统所处的工况,实现对热泵机组、循环水泵等的运行控制,同时系统根据水源侧循环水的温度、压力调节水流流量,根据负荷侧空调使用情况调节运行状态,以此实现整个系统的节能和高效运行。  相似文献   

7.
温室温度系统是一个大时滞、非线性的复杂系统,传统的控制方法效果不甚理想。因此,本研究设计一种基于模糊自整定PID控制方法的温室温度控制系统,可根据温度偏差和温度偏差变化率实时整定PID控制器的参数。控制系统以STC89C52单片机为控制核心,采用DS18B20温度传感器实现对温室温度的采集,通过控制电加热炉的加热功率来调节温室的热量输入,起到控制温室温度的作用。并在Matlab 11.0/Simulink环境下,建立模糊自整定PID控制器的仿真模型,通过仿真发现该方法比常规PID控制方法具有更好的鲁棒性,能够实现良好的控制效果。  相似文献   

8.
开发了一种以计算机为平台的温室滴灌施肥控制系统,以实现对温室内不同地块间滴灌施肥量的控制.系统以计算机为核心,采用ATmega128单片机作为系统数据采集和处理的内核,以及Digmesa FM系列多液流式液体流量传感器对不同量的液体肥料进行控制,并以VC+ +6.0作为上位软件开发工具,编制了人机交互界面友好的温室滴灌...  相似文献   

9.
本文以ZigBee技术为核心,采用通用性思想和模块化设计的思路,用无线传感网络技术解决温室大棚内的农作物生长的智能自动监控系统。设计了基于ZigBee组网技术的数据采集节点,采集温室内环境因子的数据,搭建了基于ZigBee的网状网络,实现了采集数据与控制数据的无线传输。利用单片机作为控制机构,根据已经设置的环境阈值控制相应的执行机构,启动相应调控设备,若温室环境发生了变化,控制系统通过Zig Bee连接自动控制温室内的执行机构,可使温室环境一直处于最适合农作物生长的条件。同时,由于ZigBee的可扩展性,可添加新的功能执行机构,例如杀虫系统,从而实现多功能的智能温室控制系统。  相似文献   

10.
随着计算机控制系统及各类现代化设备介入温室设施,建立一个通过各项设备的有效操作来改善室内环境因子的控制系统,可为温室作物创造最佳生长环境,实现作物优质、高效生产.采用模糊专家控制系统,专家系统根据番茄各生育期温度、湿度、太阳辐射度的最优参数值,将其与预测值(微控制器采集到的环境数据代入温室小气候预测模型所得)进行对比,获得最优值同预测值的偏差及其变化率和其变化率的变化率,再利用模糊控制器(模糊化、模糊推理、反模糊化)来确定控制量.其中对模糊控制器的实现过程做了具体的介绍,该系统在模糊控制中融入专家系统,弥补了两者各自的不足之处,同时提高了系统的智能化.试验表明,该模糊专家控制系统能根据番茄各生育期的环境因子最优值,对控制设施进行调节,促使温室环境更趋于作物最佳生长环境,具有良好的控制效果.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号