首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 562 毫秒
1.
马检  樊卫国 《中国农业科学》2016,49(6):1152-1162
【目的】探究硝态氮和铵态氮及其配比条件对枇杷(Eriobotrya japonica Lindl.)实生苗的氮素吸收动力学参数和生长发育的影响,确定枇杷可吸收利用的氮素形态,为枇杷的氮肥管理提供科学依据。【方法】以枇杷实生苗为材料,采用离子耗竭法,测定枇杷实生苗根系对不同硝态氮和铵态氮的吸收动力学参数;以pH为7.35的石灰性黄壤为栽培介质,设置5个不同硝铵比的施氮处理,研究不同硝态氮和铵态氮配比对枇杷实生苗生长及根系形态特征的影响。【结果】在不同的NH4+及NO3-离子浓度及其不同配比的营养液中,枇杷实生苗根系吸收铵态氮、硝态氮及总氮的规律均符合Michaelis-Menten酶动力学方程。无论NH4+和NO3-离子浓度如何变化,枇杷实生苗根系对NH4+吸收的内在潜力及亲和力和其在根中的流速均比NO3-的大。在单纯供给硝态氮的条件下,枇杷对NO3-的吸收并没有得到促进。在供给不同硝铵配比的处理中,随铵态氮比例的增加,枇杷实生苗根系中总氮的最大吸收速率(Imax)和根系中流速(α)明显增大,而米氏常数值(Km)明显减小;随硝态氮比例的增加,根系中总氮的Imax和离子流动速率(α)明显降低,Km值明显增大。增加铵态氮的比例能够促进枇杷实生苗根系对氮素的吸收,而增大硝态氮的比例对枇杷根系吸收氮素营养有不利影响,铵态氮是枇杷优先选择吸收的氮素形态。在土培条件下,施不同配比的硝态氮肥和铵态氮肥,枇杷实生苗的植株高度、基径、干重生物量、根冠比、根系形态指标和总叶面积的差异显著。增大铵态氮的施肥比例能够显著增大植株高度、基径、干重生物量、根冠比、总叶面积,根的总长度、总表面积、总体积、平均直径,总根尖数及根系分形维数。100%的铵态氮处理的上述指标最大,100%的硝态氮处理的上述指标最小。【结论】铵态氮能够明显促进枇杷实生苗的生长发育,增强枇杷实生苗对氮素的吸收利用,而硝态氮则抑制枇杷实生苗的生长。在混合供应铵态氮和硝态氮的条件下,增加铵态氮比例能够促进枇杷实生苗的生长发育。  相似文献   

2.
樊卫国  葛会敏 《中国农业科学》2015,48(13):2666-2675
【目的】石灰性黄壤是中国西南喀斯特地区的主要土壤种类,这一地区柑橘分布广泛。研究石灰性黄壤上柑橘对不同形态氮肥的选择吸收与利用特性,旨在为中国西南喀斯特地区柑橘园施肥提供合理的氮肥选择依据。【方法】以枳砧纽荷尔脐橙嫁接苗为材料,以pH 8.1的石灰性黄壤为栽培介质,采用土培方法,测定单施硝态氮、铵态氮、尿素及混施不同比例硝态氮和铵态氮后枳砧纽荷尔脐橙幼树的总叶面积、高度、基径、鲜重及干重生物量、根冠比值、氮的吸收量和氮的利用效率;采用常规耗竭法,在春季和夏季测定枳砧纽荷尔脐橙幼树根系对NO3-和NH4+吸收的动力学参数。【结果】在石灰性黄壤上,单施硝态氮、铵态氮、尿素的枳砧纽荷尔脐橙幼树生长发育和氮的吸收利用受到明显抑制,植株的总叶面积、高度、基径、鲜重及干重生物量、根冠比值、氮的吸收量和氮的利用效率均变小,其中以单施尿素的为最小。混施硝态氮和铵态氮对枳砧纽荷尔脐橙幼树的生长发育和氮的吸收利用有明显的促进作用。其中硝态氮和铵态氮的比例为75﹕25的施氮处理,植株生长发育最好,氮的吸收量和利用效率最大,植株总叶面积为0.44 m2,高度为73.95 cm,基径为1.36 cm,鲜重及干重生物量分别为232.95 g/株和130.27 g/株,鲜重及干重根冠比值分别为1.02和1.06,整株氮的吸收量和利用效率分别达到3.80 g/株和0.0292 g·mg-1。混施硝态氮和铵态氮时,随铵态氮的比例增大,植株的生物量及氮的吸收量和利用效率随之下降。单施铵态氮或尿素,根系会产生NH3中毒现象。无论春季或夏季,单施硝态氮和混施不同比例的硝态氮和铵态氮的枳砧纽荷尔脐橙幼树根系对NO3-的最大吸收速率(Imax)均无显著差异,根系对NO3-的吸收较为稳定。春季根系对NO3-Km值都明显比夏季的小,根系与NO3-的亲和力强于夏季,夏季根系对NO3-Km值差异不显著。混施硝态氮和铵态氮时,将硝态氮的比例提高至50%-75%时能够增强春季枳砧纽荷尔脐橙幼树根系对NO3-的亲和力,增加春季和夏季根系中NO3-的流动速率(α)。在春季,随氮肥中铵态氮比例的增大,根系对NH4+的最大吸收速率和NH4+在根系中的流动速率随之增大,而根系对NH4+的亲和力随之降低。在夏季,随氮肥中铵态氮比例的增大,根系对NH4+的最大吸收速率、亲和力和NH4+在根系中的流动速率随之减小,单施铵态氮的根系与NH4+的亲和力最小,对NH4+的最大吸收速率最低,NH4+在根系中的流动速率最慢。混施硝态氮和铵态氮后,在春季和夏季枳砧脐橙幼树的根系与NO3-的亲和力都比NH4+的强,NO3-在根系中的流动速率远大于NH4+的。【结论】在石灰性黄壤上,枳砧脐橙幼树的根系对NO3-的吸收表现出较明显的偏好,混施75﹕25的硝态氮和铵态氮能够促进脐橙的生长发育和提高氮的吸收及利用效率。  相似文献   

3.
为探明设施番茄优质高效栽培精准营养液氮素配方,明确氮素形态及配比对设施番茄产量和风味品质的影响,促进设施番茄果实风味品质提升。本试验采用土壤盆栽+营养液滴灌栽培模式,探讨了CO(NH22-N(酰胺态氮)、NO3--N(硝态氮)和NH4+-N(铵态氮)3种氮素形态及不同比例对番茄光合、产量和风味品质的影响。试验发现,与对照(CK,100%CO(NH22-N)相比较,不同形态氮素配施能够增加番茄叶片SPAD值和光合所用,提高番茄产量;同种氮素替代NO3--N条件下,番茄光合作用和产量随NH4+-N和CO(NH22-N替代比例的增加而降低。试验表明,氮素配施还可增加番茄果实可溶性固形物、可溶性糖、有机酸和可溶性蛋白含量;且在同种氮素替代NO3-  相似文献   

4.
研究不同氮素形态及配比对李幼苗生长和根构型的影响,筛选出李幼苗培育的最适施氮方法,为李幼苗的科学培育提供理论依据,以盆栽李幼苗为试材,分析不同氮形态(硝态氮、铵态氮、有机氮)及配比对李幼苗生长及根系构型的影响,分别测定不同氮素施肥处理下李幼苗的株高、地径、生物量、根冠比、总根长、根表面积、根体积以及根系构型相关参数。结果表明:在不同氮素形态及配比条件下,对李幼苗生长及根系发育影响由强到弱的氮素形态及配比依次为50%NH4+-N+50%NO3--N>25%NH4+-N+75%NO3--N>75%NH4+-N+25%NO3--N>100%NO3--N>100%NH4+-N>100%尿素,其中50%NH4<...  相似文献   

5.
河岸带是控制非点源污染、改善水环境的关键一环,水位波动改变了河岸带生态系统的生物地球化学环境,影响氮素的形态及空间分布。以夏家寺河为研究对象,选取淹水期和落干期对河岸带展开研究,测定和分析土壤氮素(NH4+-N、NO2--N、NO3--N、TN)及环境因子等指标,并对其相关性进行分析。(1)淹水期河岸带土壤 NH4+-N、NO2--N、TN 含量高于落干期,NO3--N 含量低于落干期;(2)横向上,淹水期土壤 NH4+-N、NO2--N、NO3--N、TN随离岸距离的增加而减少,落干期土壤 NH4+-N、NO3-  相似文献   

6.
对不同形态氮素的吸收利用过程及其对植株生长、抗逆性、品质和安全性的影响,以及外界环境条件对其作用效果的影响进行了综述,发现硝态氮(NO3--N)可促进植株根系伸长及植株对阳离子的吸收;铵态氮(NH4+-N)可缓解盐胁迫及活性氧对植株的伤害,还能提高植株对病害的抵抗能力,但单一施NH+4-N易造成NH+4毒害,如细胞酸度增加、活性氧伤害、细胞壁木质化等。此外,对今后的研究方向进行了展望,以期为农业氮肥的合理施用提供理论依据。  相似文献   

7.
为研究人工林生态系统土壤酶活性与活性氮周转的相互关系,以太行山南麓地区15 a侧柏人工林下土壤为研究对象,对比分析不同土层土壤转化酶、脲酶活性及土壤铵态氮(NH4+-N)、硝态氮(NO3--N)含量的季节变化特征。结果表明,土壤转化酶、脲酶活性和NH4+-N含量具有明显的季节变化特征(P<0.05),且均在6月达到峰值;土壤转化酶、脲酶活性和NO3--N含量均随土层深度的增加显著降低(P<0.05),相较于0~10 cm土层,20~40 cm的年均降幅均超过25%,呈表层富集现象;线性回归分析表明土壤转化酶和脲酶活性与NH4+-N和NO3--N含量呈显著线性正相关关系(P<0.05),酶活性与土壤无机氮含量的耦合作用在6月表现最强烈(P<0.05),暗示了土壤转化酶与脲酶活性可作为催化剂间接指示有机氮向无机氮的周转能力。  相似文献   

8.
为分析再生水灌溉对棕壤水稻土土壤影响,本文选择辽宁省海城市西四镇后青台子村作为研究区域,研究再生水灌溉后土壤中铵态氮(NH4+-N)、硝态氮(NO3--N)、土壤有机质和营养元素变化,以及土壤肥力情况。结果表明,再生水灌溉对于土壤中铵态氮、硝态氮、土壤有机质影响并不显著。同一灌溉模式下,土壤样本中全氮、全磷和铵态氮含量略有增长,硝态氮略有减少。不同灌溉模式对土壤全氮、全磷和铵态氮的影响并不显著,对于硝态氮的影响较为明显。再生水灌溉能够提升土壤肥力。高水位灌溉下土壤中全氮、全磷和有机质含量最高。本文结果能够为合理利用再生水资源,减轻国家农业用水压力,实现区域生态环境可持续发展做出贡献。  相似文献   

9.
为进一步了解毛竹幼苗的不同氮响应特征,采用室内可控水培方式,研究毛竹幼苗对不同氮浓度(0.1、8 mmol·L-1)和形态(铵态氮NH4+、硝态氮NO3- )的响应。结果表明,铵态氮处理下的毛竹生物量和体内氮含量等优于等浓度的硝态氮处理,并且不同氮处理下毛竹幼苗各部分干重和氮含量由大到小趋势均为叶>根>茎和叶>茎>根。生物量和根冠比随着N处理浓度的增加而减少,但各部位N含量却随着N浓度的增加而显著增加。毛竹体内N含量与根系构型各指标的相关性分析结果表明,根长、根表面积和根体积是决定毛竹植株根系养分吸收能力的重要因素。但随着NH4+处理浓度的增加,根长、根表面积和根系体积均受到一定程度的抑制,并且低于NO3-处理幼苗根系构型各指标。因此,这些结果表明毛竹生长和N积累表现出铵氮偏好,但浓度过高时对植物生长又表现出抑制效应。  相似文献   

10.
【目的】研究适宜杉木和木荷生长的最佳铵硝态氮(N)的配比,提高其针阔混交林的生产力和N素利用效率。【方法】试验设置NH4+-N∶NO3--N的5个配比(10∶0、0∶10、7∶3、3∶7、5∶5),比较2个树种在不同N素形态与配比下的光合特性、苗木生长、生物量及其分配的差异。【结果】铵硝混合处理的5∶5、7∶3和3∶7配比较单一形态N素的10∶0和0∶10配比提高了杉木和木荷的净光合速率、蒸腾速率、气孔导度、生物量增长量以及杉木的苗高增长量。较高铵态N浓度的处理显著提高了杉木的净光合速率、苗高增长量、地径增长量和生物量增长量,而较高硝态N浓度的处理提高了木荷的净光合速率、苗高增长量、地径增长量和生物量增长量。较高铵态N浓度的处理降低了杉木的根冠比,促进杉木地上部生长,较高硝态N浓度的处理降低了木荷的根冠比,促进木荷地上部生长。【结论】不同氮素形态与配比显著影响杉木和木荷的光合作用和生长。铵硝比例相等的混合处理最有利于杉木的光合作用、苗高生长和生物量积累,较高硝态氮浓度的混合处理最有利于木荷的光合作用...  相似文献   

11.
氮肥用量对小麦开花后根际土壤特性和产量的影响   总被引:7,自引:1,他引:6  
【目的】明确小麦开花后根际土壤特性动态特征及其与产量和籽粒氮素积累量之间的关系,能够为生产上合理施肥、提高氮肥利用效率和减轻环境污染提供理论依据。【方法】2014—2015和2015—2016年在小麦季设置4个氮肥水平(0,CK;150 kg N·hm~(-2),N150;240 kg N·hm~(-2),N240和300 kg N·hm~(-2),N300)并于小麦开花期、灌浆中期和成熟期分层(0—20 cm和20—40 cm)测定小麦根际和非根际土壤铵态氮、硝态氮、蔗糖酶、脲酶,同时测定根、茎、叶和穗生物量及其氮素含量;重点分析根际土壤特性与小麦籽粒产量和氮素积累量之间的关系。【结果】(1)与CK相比,N150、N240和N300处理2年小麦籽粒产量的平均值分别增加99%、130%和107%,且处理之间差异显著。随施氮量的增加小麦根、茎、叶、穗生物量和地上部氮素积累量均呈增加趋势;氮肥回收率呈下降趋势,且处理之间差异显著。(2)从开花到成熟期,0—20 cm和20—40 cm土层小麦根际和非根际土壤铵态氮、硝态氮含量、土壤蔗糖酶和脲酶(0—20 cm除外)活性均呈下降趋势。处理CK、N150、N240和N300根际土壤铵态氮和硝态氮含量显著低于非根际土壤。4个处理2年0—20 cm根际土壤铵态氮含量平均值比非根际土壤降低29%,硝态氮含量降低22%;20—40 cm根际土壤铵态氮含量比非根际土降低34%,硝态氮含量降低14%。而根际土壤蔗糖酶和脲酶活性显著高于非根际土。4个处理2年0—20 cm根际土壤蔗糖酶活性比非根际土壤提高29%,脲酶活性提高15%;20—40 cm根际土壤蔗糖酶活性比非根际土壤提高33%,脲酶活性提高13%。(3)相关分析结果表明,小麦籽粒产量和籽粒氮素积累量均与0—20 cm和20—40 cm根际和非根际土壤无机氮(铵态氮+硝态氮)、脲酶和蔗糖酶(2016年籽粒氮素积累量除外)呈显著正相关。【结论】小麦根际土壤可利用性氮素含量小于非根际土壤,而酶活性高于非根际土;根际和非根际土壤与籽粒产量和籽粒氮素积累量呈显著正相关。根际和非根际土壤特性显著影响小麦籽粒产量。  相似文献   

12.
采用黄瓜、菠菜、大豆幼苗进行水培试验,研究其在NaCl胁迫下对氮素的吸收和累积。结果表明,NaCl胁迫下,黄瓜和菠菜幼苗的生长受到显著抑制,吸收和累积NO-3的量显著下降;而大豆几乎不受影响。以NH+4-N为氮源时,大豆对NH+4的吸收受到抑制。3种作物吸收Cl-和Na+的速率远高于吸氮速率。  相似文献   

13.
脲酶抑制剂N-丁基硫代磷酰三胺(NBPT)和硝化抑制剂双氰胺(DCD)对抑制尿素土壤氨挥发损失和提高土壤有效氮积累量有很大潜力,但2种抑制剂配合施用对灌区强碱性灌淤土尿素施用后氨挥发损失和有效氮积累量的抑制作用尚不明确。为此,选取灌区碱性灌淤土为研究对象开展室内试验,设置NBPT与不同浓度DCD组合下的6个处理,对照为单施尿素,研究NBPT及其与不同浓度DCD组合下的尿素土壤氨挥发和有效氮积累量的变化特征及作用效果。结果表明,在没有添加抑制剂的碱性灌淤土中,尿素施用后短期内(3 d左右)土壤氨挥发速率和NH+4-N积累量达最大值;在施肥后第8 d土壤氨挥发总量和NO-3-N积累量达最大值;添加抑制剂NBPT/DCD可显著降低施肥初期(5 d内)氨挥发速率,且有效减少施肥初期累积氨挥发量;单独添加相当于尿素氮量0.1%的NBPT,累积氨挥发量较CK降低了64%,施肥初期土壤NH+4-N和NO-3-N积累量显著低于CK。NBPT和DCD组合研究结果表明,在NBPT添加浓度为尿素氮量的0.1%,DCD为1%的低浓度水平下,土壤累积氨挥发量较CK降低了16.7%,同时土壤NH+4-N积累量增加趋势缓慢,但硝化抑制率在施肥的第5 d后快速下降,土壤NO-3-N积累量快速增加,氮素淋溶损失的风险加大;随着DCD添加浓度增加(2%~5%),其硝化抑制率显著增加,土壤NO-3-N积累量显著降低,但氨挥发损失量显著增大;相关性分析得出,土壤氨挥发速率与NH+4-N积累量呈正相关,与NO-3-N积累量呈负相关。综合分析得出,0.1%NBPT配施2%~3%的DCD时,土壤氨挥发损失量相对较低,土壤有效态氮积累量较高,且在土壤中滞留时间相对较长,可推荐为灌区碱性灌淤土尿素氮肥与2种抑制剂配施的最佳组合。  相似文献   

14.
【目的】以甜玉米作为填闲作物,探讨不同的根层调控措施对消减土壤剖面累积硝态氮及下茬黄瓜生长的影响。【方法】在华北平原传统棚室蔬菜的休闲季种植甜玉米,针对甜玉米设置添加土壤调理剂和秸秆还田2种根层调控措施,以甜玉米传统种植作为对照,进行田间小区试验。试验于2008年5月至2011年5月进行,共3次甜玉米-黄瓜轮作,6季作物。每年6月初至9月底种植甜玉米,10月初至次年1月底扣棚育黄瓜苗,当年2月初种植黄瓜。在甜玉米季,共3个处理,随机排列,重复3次。小区面积为4 m×2 m,小区间隔0.3 m,区组之间布设1 m的保护行。【结果】甜玉米种植季,调理剂处理的玉米籽粒产量最高,2008、2009和2010年的产量分别为6.2、7.4和7.9 t·hm-2;土壤调理剂和秸秆还田2种根层调控处理的甜玉米总吸氮量高于传统种植。秸秆还田和调理剂处理能够促进20-60 cm土层根系的生长发育,促使根系吸收更深层的土壤养分。2种根层调控措施均能降低土壤剖面NO3--N的累积,尤其对100-200 cm的作物根区NO3--N的消减能力更强,NO3--N消减趋势大致为:调理剂>秸秆还田>传统种植。3季黄瓜种植季,不同前茬处理的黄瓜产量、生物量和吸氮量差异均不显著;3季平均土壤NO3--N在0-200 cm土层的残留量为秸秆还田<调理剂<传统种植。3个轮作季后,传统种植、调理剂和秸秆还田处理在0-200 cm土层的氮素盈余量分别为1 911.6、1 966.3和1 930.2 kg·hm-2,调理剂处理显著高于传统种植。【结论】在硝态氮高累积的设施土壤上,随着种植年限的增加,加入土壤调理剂和适当的秸秆还田对100-200 cm的作物根区土壤剖面NO3--N的消减能力更强。填闲作物种植第二年对下茬黄瓜土壤NO3--N的消减作用最为明显。土壤调理剂和秸秆还田措施能够显著提高甜玉米对土壤剖面NO3--N的消减能力,减缓土壤NO3--N 的淋失,提高经济效益。  相似文献   

15.
填闲种植对棚室菜田累积氮素消减及黄瓜生长的影响   总被引:3,自引:0,他引:3  
【目的】在中国集约化蔬菜种植区,传统的高水肥投入导致土壤氮素大量累积,致使氮素淋洗到土壤深层或进入地下水,造成地下水硝酸盐污染。种植填闲作物可控制和减少土壤深层硝态氮的累积,因此,本研究探讨不同填闲作物种类对消减土壤剖面累积硝态氮及下季作物生长的影响,筛选出适宜的填闲作物种类。【方法】以华北平原传统棚室黄瓜菜田为对象,在蔬菜休闲期通过种植深根型填闲作物,利用其根系发达、生长迅速、吸氮量大的特点,促使土层中硝态氮大量消耗,以消减土壤剖面根层NO3--N累积和降低土壤剖面NO3--N淋失。以此为目标,设置甜玉米、苋菜、甜高粱及休闲田间小区试验,采集测定土壤、植株及根系样品,分析不同填闲作物的消减效果。【结果】在这3种填闲作物中,甜玉米的生物量和吸氮量最大,整体根长密度大于其它填闲种类。从对土壤剖面NO3--N的消减能力来说,甜玉米的消减能力最高。2008、2009及2010年,甜玉米对0-200 cm土层土壤NO3--N的消减量分别为153.8、605.7和56.3 kg·hm-2。3年休闲期后,第一季前茬休闲处理的黄瓜产量、生物量及吸氮量均最高,在产量、吸氮量上与其他处理差异显著;第二季、第三季,前茬休闲的产量、生物量和吸氮量与其他处理差异不显著;填闲作物的种植并没有对黄瓜产量造成影响,并且黄瓜收获后土壤NO3--N含量明显降低。氮素表观平衡中0-200 cm土层,甜玉米-黄瓜的氮素亏缺量较大,说明甜玉米能显著降低土壤NO3--N的残留。种植填闲作物能够达到经济效益和生态效益的双赢,甜玉米、苋菜与甜高粱可分别为农民带来39 467、497和16 522元/hm2的净收入。【结论】棚室菜田夏季种植填闲作物不仅可以消减土壤剖面根层NO3--N累积,而且对下茬黄瓜产量未造成显著影响,黄瓜收获后土壤NO3--N含量也会明显降低;在设施蔬菜轮作体系中引入填闲作物具有可行性,甜玉米为较佳的填闲作物。  相似文献   

16.
密云水库上游流域地下水中氮素污染特征及影响因素   总被引:2,自引:1,他引:1  
为分析密云水库上游流域地下水中氮素的污染情况,于2014年7月和2015年1月进行了地下水样品的采集,应用域法和地质统计学方法等多元统计方法识别流域地下水中不同形态氮的时空分布特征,并解析土地利用类型、地下水埋深以及地表水对地下水中氮素的影响。结果表明:区域地下水的氮素污染不容乐观,29.73%的样品中硝态氮含量超标(10 mg·L-1≤NO_3~-≤20mg·L~(-1)),27.03%的样品出现严重超标(NO_3~--N≥20 mg·L~(-1))。从空间来看,地下水氮素具有空间自相关性,其中氨氮空间变异的随机性较大,硝态氮最小,硝态氮的污染主要发生在城镇人口密集区域;从时间来看,硝态氮污染呈逐年升高趋势,硝态氮的超标样品百分比从2008年的2.30%增长为2015年的25.71%,且年内变化表现为丰水期高于枯水期。各种土地利用类型中,城镇的氮污染最严重;硝态氮、亚硝态氮的含量随地下水埋深增加呈减小趋势;地下水氮污染浓度与流向有一定的联系,从上游至下游呈升高的趋势。  相似文献   

17.
节水减氮对温室土壤硝态氮与氮素平衡的影响   总被引:9,自引:1,他引:8  
【目的】针对日光温室蔬菜生产中肥水超量施用问题,以提高氮肥利用率和实现温室菜田可持续利用为目标,研究节水减氮在温室蔬菜生产中的增效潜力,推荐适宜水氮用量。【方法】采用当地典型种植茬口冬春茬黄瓜-秋冬茬番茄,在沟灌方式下设计农民习惯灌溉(W1,>100%田间持水量)和减量灌溉(W2,75%-95%田间持水量)2个灌水水平;农民习惯施氮(N1)、较农民习惯减氮25%(N2)、减氮50%(N3)和无氮(N0)4个氮肥水平,对应黄瓜季施氮1 200、900、600和0 kg·hm-2,番茄季施氮 900、675、450和0 kg·hm-2,共W1N1、W2N2、W2N3、W1N0和W2N0 5个水氮用量组合处理,3年6季定位研究蔬菜关键生育期0-100 cm土体硝态氮动态变化,分析氮素平衡和经济效益,推荐合理水氮用量。【结果】农民习惯水氮管理W1N1处理土壤硝态氮积累明显,并向土壤深层迁移。节水减氮W2N3处理3年0-60 cm土层硝态氮供应保持在相对适宜水平,平均硝态氮含量为53.3-80.9 mg·kg-1;0-100 cm土体硝态氮未出现明显积累,平均含量较W1N1处理下降13.9%-31.1%;氮素表观损失下降56%,氮肥利用率提高2.4-3.3个百分点,并保持较高的经济效益。依据0-20 cm土层硝态氮含量与产量之间的显著回归关系,获得最佳产量土壤硝态氮含量黄瓜为37.4-72.9 mg·kg-1,番茄应低于90 mg·kg-1。根据蔬菜氮素需求量和关键生长期适宜的土壤硝态氮含量,结合根区土壤水分监测,推荐与供试条件相近的温室,沟灌冬春茬黄瓜产量160-180 t·hm-2下灌水450-550 mm配合施氮600 kg·hm-2较适宜,秋冬茬番茄产量70-80 t·hm-2时灌水170-200 mm配合施氮250 kg·hm-2较适宜。分析水氮减施增效原因为:节水20%-30%使土壤硝态氮趋近根区分布,节氮50%降低土壤剖面硝态氮积累,节水20%-30%配合减氮50%将根区硝态氮供应维持在适宜水平的同时,降低进入损失途径的氮素,从而实现增效。【结论】华北平原沟灌温室黄瓜-番茄农民生产现状节水减氮潜力较大。优化水分管理是实现氮肥减施增效的关键,在合理灌水量下,推荐适宜的施氮量是水氮减施增效的有效措施。较农民习惯管理节水20%-30%配合减氮50%,能有效降低氮素损失,提高氮肥利用率,保持较高经济效益。  相似文献   

18.
为明确尾菜高量埋压带来的土壤氮淋溶风险,本研究设计了不同尾菜埋压厚度和表层覆土厚度的组合试验,分析不同土层水分和无机氮(NH4+-N和NO3--N)时空变化特征。结果表明:埋压尾菜厚度0.2~0.6 m、表层覆土厚度0.1~0.3 m时,试验前10 d,表层土壤水分快速增加,较对照提高了40%~110%,尾菜向深层土壤补水深度最大为1.6 m;试验开始土壤无机氮以NH4+-N增加为主,下移深度仅为0.6 m,试验第83天时,NO3--N快速积累,最大下移深度为0.8 m,土壤无机氮主要集中于耕作层,尾菜层上、下0.1 m土壤无机氮含量是当地高产玉米农田的1.0~3.5倍。当尾菜埋压厚度达到3.0 m、表层覆0.4 m黄土时,尾菜向深层土壤补水深度为5.0 m,NH4+-N下移深度为1.5 m,试验第194天时NO3--N增加不...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号