首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 859 毫秒
1.
【目的】利用土著丛枝菌根真菌(arbuscular mycorrhizal fungi,AM真菌)与作物形成互惠互利的共生关系提高作物对土壤磷的利用效率是解决农业生产中磷供需矛盾的主要途径之一,本研究在大田玉米不同种植密度条件下,研究AM真菌对玉米根系的侵染及磷吸收作用,为揭示集约化玉米高效获取磷的机理提供理论依据。【方法】以大田作物玉米的两种种植密度(5104 plants/hm2和9104 plants/hm2)体系为研究对象,在田间原位埋设PVC管装置,通过测定菌丝生长室中的菌丝密度和有效磷耗竭来确定不同种植密度体系条件下AM真菌对玉米磷吸收的作用。【结果】相对于低密度种植群体,高密度群体显著降低了玉米拔节期土壤有效磷的耗竭量,同时增加了玉米地上部的磷含量,即磷吸收效率,增幅达20%; 在玉米拔节期,增加种植密度使根际的根外菌丝生物量(菌丝密度)降低了4%,而非根际土壤中的根外菌丝生物量(菌丝密度)增加了37%; 高密度玉米种植密度群体中AM真菌的根外菌丝对土壤有效磷耗竭的贡献增加了22%。【结论】集约化玉米生产中土著AM真菌依然帮助植株从土壤中吸收有效磷; 高密度体系下玉米对磷的吸收更加依赖于AM真菌。高密度种植增加AM真菌对玉米的侵染、 根外菌丝量和对土壤有效磷的吸收。  相似文献   

2.
不同施铜水平下接种AM真菌对海州香薷根际pH的影响   总被引:4,自引:0,他引:4  
研究表明,丛枝菌根(Arbuscular mycorrhiza,AM)真菌对宿主植物生长和吸收、转运重金属的作用受土壤pH的影响[1-3]。植物可以通过分泌质子或有机酸等改变根际土壤的pH,接种AM真菌可以改变宿主植物的根系分泌物[4-6],从而影响土壤pH。Li等[7]研究发现,接种AM真菌的白三叶在根-土界面、菌丝室及菌丝-土壤界面的pH均降低。Li和Christie[8]发现Zn污染土壤中接种G.mosseae降低了红三叶植物体内Zn浓度和吸收量;菌根处理土壤的pH比对照土壤高,土壤溶液中的Zn浓度低,在施Zn量大时尤为显著。AM真菌菌丝往往在利用NO3-N的同时释放出OH-,导致…  相似文献   

3.
丛枝菌根真菌(Arbuscular mycorrhizal fungi,AMF)能与多数陆生植物共生,促进植物吸收养分尤其是磷。解磷细菌(Phosphate-solubilizing bacteria,PSB)可以活化土壤中难溶性无机磷和有机磷。本研究采用苯菌灵对田间低磷土壤中土著AM真菌进行灭菌,并接种外源AM真菌(Glomusversiforme,G.v)和PSB(Pseudomonassp.),研究AM真菌和PSB接种对不同生育期玉米生长、磷养分吸收和产量的影响。结果表明,施用苯菌灵能够有效地抑制土著AM真菌对玉米根系的侵染,未施用苯菌灵处理中土著AM真菌促进了玉米前期和收获期的生长,提高了玉米吸磷量;接种Pseudomonas sp.促进了玉米六叶期根系的生长;接种外源AM真菌G.v促进了玉米六叶期和收获期地上部的生长,但降低了玉米产量。双接种Pseudomonas sp.和G.v对玉米生长、吸磷量和产量未表现出显著的协同效应。  相似文献   

4.
接种AM真菌对采煤沉陷区文冠果生长及土壤特性的影响   总被引:2,自引:2,他引:0  
煤炭井工开采往往造成地表塌陷,导致了土壤养分贫瘠和水分缺乏,土壤沙化和水土流失,从而限制了当地矿区植被生长,而丛枝菌根真菌(arbuscular mycorrhiza fungi,AM真菌)对植被生长有促进作用。以文冠果为宿主植物,采用野外原位监测和室内分析方法,研究了未接种和接种丛枝菌根真菌对采煤沉陷区复垦植物文冠果生长和土壤特性的影响。结果表明:与未接种AM真菌处理相比,接种AM真菌显著提高了文冠果根系菌根侵染率和土壤根外菌丝密度,7月接种AM真菌文冠果的株高、冠幅和地径提高了31.89%,23.07%,9.89%。同时,9月接种AM真菌处理的根际土壤全氮、碱解氮和有机碳含量分别比对照组增加0.29g/kg、13.0mg/kg和1.4g/kg,接种AM真菌显著提高了根际土壤的含水率、总球囊霉素和易提取球囊霉素,而速效磷和速效钾的含量显著降低。相关分析结果表明,菌根侵染率、土壤根外菌丝密度与根际土壤理化性质之间存在协同反馈效应。因此,接种AM真菌促进了采煤沉陷区复垦植被文冠果的生长和土壤的改良,这对矿区水土保持、维持生态系统稳定性和持续性具有重要意义。  相似文献   

5.
蚯蚓与丛枝菌根真菌的相互作用及其对植物的影响   总被引:3,自引:0,他引:3  
李欢  李晓林  张俊伶  王冲  向丹 《土壤学报》2011,48(4):847-855
蚯蚓和丛枝菌根(Arbuscular mycorrhiza,AM)真菌都是有益的土壤生物,对提高土壤养分有效性和植物吸收利用营养元素具有重要影响。本文综述了蚯蚓对AM真菌取食、传播和侵染的影响、蚯蚓与AM真菌相互作用的效应和机制方面的最新研究进展,以及AM真菌与蚯蚓互作改善植物营养和生长以及协同修复土壤重金属方面的作用,以期为今后研究发展提供依据。  相似文献   

6.
李梦瑶  蒋湘艳  金海如 《土壤学报》2020,57(6):1483-1491
研究了AM真菌共生系统中硝态氮NO3-吸收转运、铵和硝态氮吸收合成精氨酸及对寄主生长的影响。利用AM真菌(Glomus intraradices)与毛根农杆菌质粒DNA转化的胡萝卜根(Ri T-DNA transformed carrotroots)建立的双重培养系统,以及同位素示踪技术研究了AM真菌共生系统中硝态氮NO3-转运吸收途径,研究了铵和硝态氮吸收合成精氨酸和其转运动态;并用农田试验研究铵和硝态氮吸收转运对寄主生长的影响。研究发现AM真菌菌丝在NH4+和NO3-共存时,优先吸收NH4+。当AM真菌的根外菌丝在NH415NO3培养1周时,虽然根外菌丝的自由氨基酸没有被15N标记,包括精氨酸,但是菌根组织中的自由氨基酸是被15N标记的,揭示了15NO3-沿着菌丝直接扩散或转运至菌根组织而不是来自于精氨酸转运的新模式;而根外菌丝在15NH4NO3培养时菌根组织中只有精氨酸被15N标记的结果,而其它氨基酸合成的氮素主要来自从菌丝室运转来的14NO3-,所以没有标记。AM真菌根外菌丝施加13C6-葡萄糖后,培养6周后,发现菌根组织的精氨酸和蛋白质中都没有13C标记,说明了其根外菌丝不能利用葡萄糖。当在菌丝室施加13C1,2-乙酸钠时,发现菌根组织的精氨酸和蛋白质中都有13C标记,分别为8.5?2.3%和7.6?0.7%,说明了其根外菌丝能吸收利用乙酸盐中的碳素,当在菌丝室施加13C1,2-乙酸钠+15NO3时,随着氮源的增加,提高了其自由精氨酸浓度为54.2?19.3%,菌根蛋白质中精氨酸浓度变化不大;同时大大提高了菌根组织的精氨酸和蛋白质中C/N同位素标记丰度分别为57.4?4.8%和50.3?2.8%。说明了菌丝室加碳源乙酸和氮源,可以提高精氨酸的合成。大田试验中,在低磷条件下,接种AM真菌之后,添加硝酸钾可以明显地提高菌根化甜玉米茎叶重,相比对照的甜玉米提升了12.28%;硫酸铵则不如硝酸钾对AM真菌菌根化甜玉米株重的促进作用,反而是降低了其生物量8.19%,尿素则降低了13.02%,但是尿素再加有机肥则可以缓解对生物量的降低作用。AM真菌对铵和硝态氮的吸收和转运是有两种不同模式,对于铵态氮(NH4+和尿素),AM真菌通过根外菌丝内谷氨酰氨合成酶-谷氨酸合成酶(GS-GOGAT)途径被吸收利用的,而吸收的氮大都是整合入精氨酸(Arg)分子,合成的精氨酸可以被AM真菌根外菌丝完整地运转至根内菌丝,而对于NO3-,用同位素示踪技术揭示了AM真菌共生系统中硝态氮NO3-通过菌丝吸收转运至根内菌丝的途径;硝态氮对寄主甜玉米生长有促进作用,而铵则相反有抑制作用。  相似文献   

7.
【目的】蚯蚓和丛枝菌根真菌处于不同的营养级,但在促进植物生长和提高土壤肥力等方面却都发挥着积极作用。研究蚯蚓菌根互作及其对玉米吸收土壤中的氮、磷养分的影响,可为提升土壤生物肥力及促进农业的可持续发展提供理论依据。【方法】本研究采用田间盆栽方式,以玉米为供试作物,研究蚯蚓(Eisenia fetida)与丛枝菌根真菌(Glomus intraradices)互作及其对玉米养分吸收的影响。试验设置P 25和175 mg/kg两个水平。每个磷水平进行接种与不接种菌根真菌以及添加与不添加蚯蚓,共8个处理。调查了玉米生长、养分吸收以及真菌浸染和土壤养分的有效性。【结果】两个磷水平下,蚯蚓和菌根在增加玉米地上部和根系生物量方面有显著正交互作用(P0.05)。接种菌根真菌的各处理显著增加了玉米的侵染率及泡囊丰度、根内菌丝丰度等菌根指标。同时添加蚯蚓和接种菌根真菌的处理(AM+E)显著提高了菌根的侵染率、菌丝密度、丛枝丰度和根内菌丝丰度但是泡囊丰度有所下降。两种磷水平下,AM+E处理玉米地上部和地下部含氮量和含磷量均显著高于其他三个处理。在低磷条件下,地上部氮磷总量的增加分别是添加蚯蚓和接菌的作用;而地下部磷总量的增加主要是菌根真菌的作用。在高磷条件下,单加蚯蚓显著增加玉米氮磷的总量,而接种菌根真菌对玉米氮磷吸收的影响未达显著性水平。在高磷条件下,单加蚯蚓的处理显著提高玉米地上地下部生物量(P0.05),而单接菌的处理效应不显著,蚯蚓菌根互作通过提高土壤微生物量碳、氮实现对玉米生长和养分吸收的调控。在低磷条件下,单接菌显著提高了玉米的生物量(P0.05),单加蚯蚓的处理具有增加玉米生物量的趋势。菌根真菌主要促进玉米对磷的吸收,蚯蚓主要矿化秸秆和土壤中的氮磷养分增加土壤养分的有效性,蚯蚓菌根互作促进了玉米根系对土壤养分的吸收并形成氮磷互补效应。【结论】无论在高磷还是低磷水平下,蚯蚓菌根相互作用都提高了玉米地上地下部生物量、氮磷吸收量同时提高了土壤微生物量碳、氮。蚯蚓菌根相互作用对植物生长的影响取决于土壤养分条件。在高磷条件下(氮相对不足),蚯蚓菌根互作通过调控土壤微生物量碳、氮调控玉米生长和养分吸收。低磷条件下,菌根主要发挥解磷作用,蚯蚓主要矿化秸秆和土壤中的氮素,蚯蚓和菌根互补调控土壤中氮、磷,从而促进植物的生长和养分吸收。  相似文献   

8.
土壤中丛枝菌根真菌对宿主植物磷吸收作用机制综述   总被引:6,自引:1,他引:5  
由于贫瘠土壤不能供给植物足够磷素,而丛枝菌根真菌(arbuscular mycorrhizal fungi,AMF)在促进植物生长和吸收利用磷方面发挥着重要的作用。评述了国内外丛枝菌根真菌吸收土壤磷、根际环境与AMF共同作用对土壤磷的影响、AMF储磷机理、磷从菌丝到根系转移和植物吸收利用磷机制的研究进展,为今后应用AMF改善土壤肥力和深刻了解接菌土壤中磷的迁移转化规律奠定基础。  相似文献   

9.
对松嫩盐碱草地主要植物的丛枝菌根(AM)真菌共生状况进行了初步调查,在观察的9科20种植物中,所有植物均能被AM真菌侵染。在过去认为不被侵染的莎草科、藜科和蓼科植物中,发现球序苔草、碱蓬、灰绿藜、碱地肤、萹蓄蓼和碱蓼有侵染现象。丛枝菌根结构类型以Arum类型(A-型)为主,占75%,少数为Paris类型(P-型),占15%。根际土壤中AM真菌孢子密度范围为0.23~4.71个g-1。在不同质地土壤条件下,根际土壤中AM真菌孢子密度、AM真菌侵染率和侵染强度均有差异,松嫩盐碱草地的壤土比砂壤土更适宜AM真菌的生存。植物根际土壤的pH值和全盐含量对AM真菌侵染和AM真菌均有一定的影响。  相似文献   

10.
AM真菌菌丝际细菌具有固氮解磷双重功能   总被引:2,自引:0,他引:2  
为了认识和理解丛枝菌根真菌(AM真菌)根外菌丝表面定殖的细菌是否同时具有固氮和解磷能力,从田间生长的玉米菌根根外菌丝表面分离鉴定了固氮菌,评价了其固氮和解磷能力。从AM真菌根外菌丝表面分离出23株可在无氮培养基中生长的细菌,分属于变形菌门(Proteobacteria)、厚壁菌门(Firmicutes)和放线菌门(Actinobacteria)下的9个不同的属(Brevundimonas、Microbacterium、Sphingomonas、Paenibacillus、Variovorax、Xenophilus、Hydrocarboniphaga、Arthrobacter和Bacillus);11株细菌具有固氮酶活性,固氮酶活性最高值为(2.97±1.32)nmol·mg~(-1)·h~(-1);12株细菌具有活化有机磷的能力,11株细菌具有溶解难溶性无机磷的能力,其中8株细菌同时具有解有机磷和难溶性无机磷能力,并且解有机磷能力高于解难溶性无机磷能力;16株细菌具有分泌IAA(吲哚乙酸)能力,IAA分泌量最高值为(688.00±19.17)mg·mL~(-1);6株细菌同时具备固氮酶活性、解有机磷、解难溶性无机磷和分泌IAA能力。上述结果表明,AM真菌根外菌丝表面定殖有多种具备固氮、解磷和促生能力的细菌,这些具有多重功能的细菌可能极大地扩展菌根途径吸收土壤养分的能力。  相似文献   

11.
In terrestrial ecosystems, plants are frequently in symbiosis with arbuscular mycorrhizal fungi (AMF) with mineral nutrients and photosynthesis carbon exchanges in between. This research sought to identify the effects of phosphorus (P) levels on the nitrogen (N) uptake via extraradical mycelium (ERM) and the mycorrhizal growth response (MGR) of maize plants within the AMF symbiosis. Pots were separated into root compartments and hyphae compartments (HCs) with two layers of a 30‐μm mesh membrane and an air gap in between, where only hyphae could pass through, to avoid both N diffusion and root growth effects. Maize plants were inoculated with Rhizophagus irregularis with different N fertilization in HCs under two different P fertilization levels. Our results indicated that a strong increase in MGR with low‐P fertilization. The same tendency was not observed with high‐P fertilization, although both had a large increase in P concentration as a potential source of growth in shoot tissue of mycorrhizal plants. Substantial effects (10.5% more N) were observed in the case of high‐P availability for the host plants from ERM fed with N, whereas under low‐P conditions ERM may prioritize P uptake rather than N uptake. The AM fungi increase the uptake of N and P, which are most limiting in the soil with fewer forces from soil resources. In addition, there was still more P accumulated than N due to the high N for ERM with high‐P supply. Low N in HCs corresponded with a lower colonization rate in roots but with high hyphae density in HCs; this result suggest that N and P availability might change the ratio of extraradical to intraradical hyphae length.  相似文献   

12.
Biochar application to soils has potential to simultaneously improve soil fertility and store carbon to aid climate change mitigation. While many studies have shown positive effects on plant yields, much less is known about the synergies between biochar and plant growth promoting microbes, such as mycorrhizal fungi. We present the first evidence that arbuscular mycorrhizal (AM) fungi can use biochar as a physical growth matrix and nutrient source. We used monoxenic cultures of the AM fungus Rhizophagus irregularis in symbiosis with carrot roots. Using scanning electron microscopy we observed that AM fungal hyphae grow on and into two contrasting types of biochar particles, strongly attaching to inner and outer surfaces. Loading a nutrient-poor biochar surface with nutrients stimulated hyphal colonization. We labeled biochar surfaces with 33P radiotracer and found that hyphal contact to the biochar surfaces permitted uptake of 33P and its subsequent translocation to the associated host roots. Direct access of fungal hyphae to biochar surfaces resulted in six times more 33P translocation to the host roots than in systems where a mesh prevented hyphal contact with the biochar.We conclude that AM fungal hyphae access microsites within biochar, that are too small for most plant roots to enter (<10 μm), and can hence mediate plant phosphorus uptake from the biochar. Thus, combined management of biochar and AM fungi could contribute to sustainable soil and climate management by providing both a carbon-stable nutrient reservoir and a symbiont that facilitates nutrient uptake from it.  相似文献   

13.
Aspergillus niger-treated dry olive cake (DryOC) can be used as a soil organic amendment and the aim of this work was to study the effectiveness of this amendment and a Cd-adapted arbuscular mycorrhizal (AM) fungus in improving Trifolium repens growth and nutrition in Cd-contaminated soil. In a compartmentalized growth system, consisting of a root compartment (RC) and two hyphal compartments (HCs), we investigated the influence of the amendment on intraradical and extraradical AM fungi development. In addition, we studied the viability and infectivity of the detached extraradical mycelium in plants, designated as receptor plants, grown in the HC after removal of the RC. Both the amendment and the AM fungus increased shoot and root biomass and nodulation in both the non-contaminated and Cd-contaminated soils. The positive interaction between the microbiologically treated DryOC and the AM fungus resulted in the highest plant yield, which can be explained by enhanced nutrient acquisition and arbuscular richness as well as by the immobilisation of Cd in amended soils. However, A. niger-treated DryOC had no effect on the extraradical mycorrhizal mycelium development. Although Cd decreased AM hyphal length density, symbiotic infectivity was similar in receptor plants grown in non-contaminated and contaminated soil, thus confirming the AM fungal inoculum potential.The combination of the AM fungus and A. niger-treated DryOC increased plant tolerance to Cd in terms of plant growth and nutrition and can be regarded as an important strategy for reclaiming Cd-contaminated soils.  相似文献   

14.
【目的】 探究酸性土壤玉米丛枝菌根侵染对植物磷素吸收的促进作用,以加深理解根外菌丝对局部磷养分的获取如何受丛枝真菌侵染和环境磷养分的影响。 【方法】 以玉米为宿主植物,进行盆栽试验。在低磷酸性土壤上设置供P 0、50、500 mg/kg 3个水平 (P0、P50、P500),供试磷肥为磷酸二氢钾。每个处理再设置局部养分处理,即在每个重复中埋置两个各装有120 g灭菌土 (提前加 P 50 mg/kg) 的塑料小管,分别用孔径为0.45 μm(根系、菌丝均不能进入,以“–H”表示处理) 和50 μm(根系不能进入,菌丝可以进入,以“+H”表示处理) 的尼龙膜封住管口。测定了玉米的生长与磷吸收、土著丛枝菌根真菌的侵染和根外菌丝密度以及菌丝对局部磷养分的获取。 【结果】 1) 玉米株高、叶片SPAD值、全株干重、磷浓度及吸收量都随供磷水平升高而增加,以P50处理的根系干重最高,根冠比随供磷水平上升而降低。3个供磷水平下玉米根系均有不同程度的丛枝菌根真菌侵染。以P50处理的丛枝菌根侵染率、丛枝和孢囊结构发育最好;P0处理的丛枝菌根侵染率、丛枝丰度与P50处理没有显著差异,但孢囊丰度明显下降;P500处理虽然87.2%的根系具有侵染点,但整个根系形成的真菌结构、丛枝和孢囊比例远低于P0和P50处理,丛枝菌根的发育受到严重抑制。2) 土体土 (除塑料管之外的土) 菌丝密度随供磷水平升高而降低,但P0和P50处理差异不显著。–H处理塑料管中的菌丝密度在3个供磷水平下基本不变,保持在极低水平,而+H处理塑料管中的菌丝密度随供磷水平升高而下降。在相同供磷水平下,土体土的菌丝密度最高,其次是+H处理,–H处理的菌丝密度最低。根外菌丝从+H处理塑料管中获取的磷随环境供磷水平的升高而减少。 【结论】 酸性土壤条件下,适当地供磷可以促进玉米根系生长和丛枝菌根真菌的侵染。根外菌丝对局部磷养分的获取受环境磷养分的调控,在环境磷养分较低而局部磷养分高于环境磷养分时,较多的菌丝会进入局部区域获取磷。   相似文献   

15.
 The interaction of plant nutrients, root-soluble carbohydrate availability and arbuscular mycorrhizal (AM) fungi was examined in field grown cowpea [Vigna unguiculata (L.) Walp.]. Plant nutrients were altered through application of farmyard (cow dung, sheep manure) and green (sunnhemp, pongamia) manures. Organic amendments increased plant growth, AM fungal colonization, soluble carbohydrate concentration in roots, and spore numbers. Percent total colonization, root length with vesicles and spore numbers in soil were negatively correlated with the concentration of soluble carbohydrates within roots, which in turn were related to tissue nutrient levels. However, a positive correlation existed between soluble carbohydrate concentrations within root and root length with arbuscules. But the mycorrhizal parameters were related more to plant nutrient level and their ratios, indicating that tissue nutrients have another level of control in addition to their effect on soluble carbohydrate concentration in roots. Increased AM colonization due to organic amendment significantly reduced nutrient imbalances. The strong relationship between colonization and root-soluble carbohydrate concentration levels validates the basic assumption that mycorrhizal fungi act as a 'strong sink' for photosynthates. This study indicates that the host influences AM colonization by regulating the formation of AM fungal structures and spore formation via availability of root carbohydrates. Received: 15 January 1999  相似文献   

16.
烟草与丛枝菌根真菌的共生效应研究进展   总被引:1,自引:0,他引:1       下载免费PDF全文
丛枝菌根(Arbuscular mycorrhiza,AM)真菌是陆地生态系统中广泛存在的一类专性共生土壤微生物,是根系土壤区域中重要的功能菌群之一。AM真菌可侵染植物根系形成丛枝菌根共生体,改变植物根系形态和改善营养状况,从而提高宿主植物的生长发育、产量、质量和抗逆性。目前从烟草根系土壤分离报道的AM真菌已达13属54种,显示出烟草(Nicotiana tobacum L.)栽培的潜在AM真菌资源较为丰富。围绕烟草与AM真菌的共生效应,总结了影响AM真菌侵染和定殖烟草根系的主要因素,阐述了AM真菌对烟草生长、抗性生理及品质的影响,并对PGPR与AM真菌的协同作用进行了简要回顾,最后讨论了该领域存在的不足及今后展望;旨在为菌根技术运用于烟草栽培提供参考。  相似文献   

17.
As common soil fungi that form symbioses with most terrestrial plants,arbuscular mycorrhizal(AM) fungi play an important role in plant adaptation to chromium(Cr) contamination.However,little information is available on the underlying mechanisms of AM symbiosis on plant Cr resistance.In this study,dandelion(Taraxacum platypecidum Diels.) was grown with and without inoculation of the AM fungus Rhizophagus irregularis and Cr uptake by extraradical mycelium(ERM) was investigated by a compartmented cultivation system using a Cr stable isotope tracer.The results indicated that AM symbiosis increased plant dry weights and P concentrations but decreased shoot Cr concentrations.Using the Cr stable isotope tracer technology,the work provided possible evidences of Cr uptake and transport by ERM,and confirmed the enhancement of root Cr stabilization by AM symbiosis.This study also indicated an enrichment of lighter Cr isotopes in shoots during Cr translocation from roots to shoots in mycorrhizal plants.  相似文献   

18.
Soil chemistry and biota heavily influence crop plant growth and mineral nutrition. The stress-severity and optimal resource allocation hypotheses predict mutualistic symbiotic benefits to increase with the degree of metabolic imbalance and environmental stress. Using two cross-factorial pot experiments with the same biologically active calcareous soil, one time highly saline and nutrient-deficient, and the other time partially desalinated and amended with mineral soil fertilizer, we explored whether these general predictions hold true for zinc (Zn) nutrition of bread wheat in mycorrhizal symbiosis. Increased arbuscular mycorrhizal (AM) fungal root colonization positively correlated with plant Zn nutrition, but only when plants were impaired in growth due to salinity and nutrient-deficiency; this was particularly so in a cultivar-responsive to application of mineral Zn fertilizer. Evidence for direct involvement of AM fungi were positive correlations between Zn uptake from soil and frequency of fungal symbiotic nutrient exchange organelles, as well as the quantitative abundance of AM fungi of the genera Funneliformis and Rhizophagus, but not Claroideoglomus. Combined partial soil desalination and fertilization swapped the dominance ranking from Claroideoglomus spp. to Funneliformis spp. Positive growth, nitrogen, and Zn uptake responses to mycorrhization were contingent on moderate soil fertilization with ZnSO4. In agreement with the predictions of the stress-severity and optimal resource allocation hypotheses, plants limited in growth due to chemically adverse soil conditions invested relatively more into AM fungi, as evident from heavier root colonization, and took up relatively more Zn and nitrogen in response to mycorrhization, than better growing and less mycorrhized plants. It thus appears that crop plant cultivar-dependent mycorrhization and Zn fertilizer-responsiveness may reinforce each other, provided that there is bioavailable Zn in soil and plant growth is impaired by suboptimal chemical soil conditions.  相似文献   

19.
In acidified forest soils, the coarse‐soil fraction is a potential nutrient source. Plant nutrient uptake from the coarse‐soil fraction is aided by ectomycorrhiza. Similarly, (recalcitrant) organic matter (OM) is an important nutrient source largely made plant‐available through (symbiotic) microorganisms, especially in the topsoil. We hypothesized that in a podzol profile, fungal hyphae would concentrate in nutrient hotspots, either OM or the coarse‐soil fraction. Absolute hyphal length, base saturation, and organic‐C content of a Podzol profile were determined in the fine‐earth and coarse‐soil fractions. In the fine‐earth fraction, hyphae were attracted by the organic‐C content and relative high base saturation. In the coarse‐soil fraction of the BhBs horizon, the absolute hyphal length exceeded the hyphal length in the fine earth by factor 3, yet C content and base saturation were lowest. We could not determine to what fungi the hyphae belonged. Most likely ectomycorrhiza, ericoid mycorrhiza and saprotrophic fungi dominate the upper soil layers of this profile and all utilize OM for nutrition. In the deeper mineral horizons and especially in the coarse‐soil fraction, ectomycorrhiza are better adapted than other fungi to harvest nutrients from inorganic sources. Additionally, favorable physical properties may explain the high amount of fungal hyphae in the coarse‐soil fraction of the BhBs horizon. Both the coarse‐soil fraction and deeper mineral soil horizons may play a more active role in microbial nutrient cycling than previously assumed.  相似文献   

20.
Arbuscular mycorrhizal (AM) fungi are root symbionts that enhance plant growth and improve soil fertility and soil structure in drylands. Even though AM fungi are obligate biotrophs, organic matter (OM) can stimulate their growth, but the mechanisms behind this are still unknown. Here, we compared the effect of nutrient patches of different OM sources to intrinsic components of OM such as inorganic nutrient supply and an improved soil water-holding capacity (WHC; via application of hydrophilic polymers), on AM fungal growth. Fatty acids extracted from in-growth mesh bags incubated in the field were used as biomarkers for AM fungi and other soil microbes. We found an enhancement of AM fungal growth in certain nutrient patches. Two out of three OM types stimulated AM fungal growth strongly, and also the addition of inorganic nutrients enhanced AM fungi, though to a lesser extent than OM. Enhanced soil WHC, on the other hand, did not influence AM fungal growth. AMF were more strongly enhanced by the mineral nutrients relative to other soil organisms. Intrinsic nutrients might be an important factor for AMF growth stimulation in OM additions, but there was no evidence that nutrients alone can explain this phenomenon.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号