首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Seed dormancy and persistence in the soil seedbank play a key role in timing of germination and seedling emergence of weeds; thus, knowledge of these traits is required for effective weed management. We investigated seed dormancy and seed persistence on/in soil of Chenopodium hybridum, an annual invasive weed in north‐western China. Fresh seeds are physiologically dormant. Sulphuric acid scarification, mechanical scarification and cold stratification significantly increased germination percentages, whereas dry storage and treatments with plant growth regulators or nitrate had no effect. Dormancy was alleviated by piercing the seed coat but not the pericarp. Pre‐treatment of seeds collected in 2012 and 2013 with sulphuric acid for 30 min increased germination from 0% to 66% and 62% respectively. Effect of cold stratification on seed germination varied with soil moisture content (MC) and duration of treatment; seeds stratified in soil with 12% MC for 2 months germinated to 39%. Burial duration, burial depth and their interaction had significant effects on seed dormancy and seed viability. Dormancy in fresh seeds was released from October to February, and seeds re‐entered dormancy in April. Seed viability decreased with time for seeds on the soil surface and for those buried at a depth of 5 cm, and 39% and 10%, respectively, were viable after 22 months. Thus, C. hybridum can form at least a short‐lived persistent soil seedbank.  相似文献   

2.
The timing of seed germination may determine the success of a weed species in an agroecosystem, and its expression is modulated by environmental conditions, but also by seed physiology and anatomy. The aims of this study were to investigate the roles of light, pericarp, dry storage and cold stratification on seed dormancy and germination in feral radish, a troublesome agricultural weed in temperate zones of the Americas that reduces crop yields. To this end, we used isolated intact pods and extracted seeds to test germination over time under contrasting temperature, light and storage conditions. Here, we showed that fresh seeds were non‐dormant, but that light and the presence of the pericarp reduced germination, especially under low temperatures. The pericarp reduced the final water content absorbed by seeds inside pods and decreased absorption/dehydration rates. The pericarp showed several small lignified cell layers in the endocarp, and x‐ray images displayed the lack of space between the partially embedded seed and the endocarp. Dry storage and cold stratification were ineffective in breaking the dormancy imposed by the pericarp. The apparent requirement for darkness and the mechanical restriction of the pericarp may have the potential to induce dormancy, spreading the timing of seed germination over a more extended period and hindering the control of feral radish.  相似文献   

3.
Diversified cropping systems can have high soil microbial biomass and thus strong potential to reduce the weed seedbank through seed decay. This study, conducted in Iowa, USA, evaluated the hypothesis that weed seed decay is higher in a diversified 4‐year maize–soyabean–oat/lucerne–lucerne cropping system than in a conventional 2‐year maize–soyabean rotation. Mesh bags filled with either Setaria faberi or Abutilon theophrasti seeds and soil were buried at two depths in the maize phase of the two cropping systems and sampled over a 3‐year period. Setaria faberi seed decay was consistently greater at 2 cm than at 20 cm burial depth and was higher in the more diverse rotation than in the conventional rotation in 1 year. Abutilon theophrasti seeds decayed very little in comparison with seeds of S. faberi. Separate laboratory and field experiments confirmed differences in germination and seed decay among the seed lots evaluated each year. Fusarium, Pythium, Alternaria, Cladosporium and Trichoderma were the most abundant genera colonising seeds of both species. A glasshouse experiment determined a relationship between Pythium ultimum and S. faberi seed decay. Possible differences in seed susceptibility to decay indicate the need to evaluate weed seedbank dynamics in different cropping systems when evaluating overall population dynamics and formulating weed management strategies.  相似文献   

4.
Over‐winter mortality, that is, winterkill, reduces cereal crop competitive ability and yield. While management and environmental variables are known to affect winterkill, the extent to which weeds contribute to increased winterkill is largely unknown. Winter annual weeds may increase winterkill through resource competition and by increasing incidence of and damage from plant pathogens that cause winterkill. We evaluated the impact of summer annual (Avena fatua) and winter annual (Bromus tectorum) weeds on the over‐winter survival rate of winter wheat over three winters, during which plots were covered with snow. Pink snow mould (Microdochium nivale), a winterkill pathogen known to infect B. tectorum and winter wheat, was common in wheat stands. In weed‐free treatments, mortality rates were initially near zero, but increased by nearly 45% in each subsequent winter, presumably due to an increase in snow mould disease in continuously cropped winter wheat. Whereas A. fatua infestation had no impact on crop survival rates, winter wheat survival in B. tectorum‐infested plots was 50% less than the weed‐free control in the second and third years of this study. Among B. tectorum‐infested plots, winter wheat over‐winter survival declined with increasing weed seed produced in the previous summer. Overall, this study demonstrated that winter annual weed infestations can reduce crop stand densities below replanting thresholds by reducing fall‐sown cereal winter survival. The effects of winter annual weeds on winter wheat may be meditated by increased proliferation of snow mould disease.  相似文献   

5.
Urochloa panicoides is an annual weed of summer crops. In Argentina, in subhumid areas with monsoon rainfall, it germinates and establishes in a single flush. To (i) identify the environmental factors that modify its seed dormancy level and germination and (ii) quantify the parameters describing the thermal behaviour of the germination and emergence dynamics of this weed under non‐limiting water conditions, we established a set of germination experiments performed (i) under controlled conditions using seeds after ripened for 3 or 6 months in different thermal and hydric conditions and (ii) under field conditions, where the soil temperature was modified by applying different shading levels. Seed dormancy level remained high with 3 months after ripening in all treatments. After 6 months, seeds stored at 4°C in dry conditions did not germinate at any temperature, while seeds stored at 25°C in dry conditions and in situ germinated c. 20% and 60% respectively. Germination percentage was higher in seeds harvested before their natural dispersal. The base, optimum and maximum temperatures for seed germination were 6, 35 and 45°C respectively. Shading reduced the number of emerged seedlings, possibly by reducing the soil thermal amplitude. The results explained the dormancy‐breaking mechanism of U. panicoides that allows a high germination rate in the field when rainfall occurs.  相似文献   

6.
Although the effects of cold stratification on the release of physiological dormancy in seeds have been studied extensively, knowledge of the role of soil moisture content on seed dormancy release during cold stratification is limited. Our study determined seed dormancy characteristics and the effect of soil moisture content on seed dormancy breakage during cold stratification in the five common weed species Amaranthus retroflexus, Chenopodium album, Chenopodium hybridum, Plantago lanceolata and Setaria glauca. Seeds of all five species were dormant at the time of harvest and their germination response to light and temperature varied. Soil moisture content had a significant effect on seed dormancy release of all species except P. lanceolata. Germination percentage of A. retroflexus, C. album, C. hybridum increased and then decreased as soil moisture content increased, regardless of germination test temperature. The optimal soil moisture content and seed moisture content for dormancy breakage of A. retroflexus, C. album, C. hybridum were 8%, 12%, 8% and 22.0%, 37.7%, 25.7% respectively. Dry storage (after‐ripening) significantly increased germination of S. glauca. Moreover, increasing soil moisture content first slowed and then increased dormancy breakage in S. glauca. These results suggest that data on soil moisture content should be incorporated into models that predict weed seed dormancy breakage and timing of seedling emergence as well as those for weed management.  相似文献   

7.
Multiple herbicide‐resistant (MHR ) weed populations pose significant agronomic and economic threats and demand the development and implementation of ecologically based tactics for sustainable management. We investigated the influence of nitrogen fertiliser rate (56, 112, 168, or 224 kg N ha?1) and spring wheat seeding density (67.3 kg ha?1 or 101 kg ha?1) on the demography of one herbicide susceptible and two MHR Avena fatua populations under two cropping systems (continuous cropping and crop‐fallow rotation). To represent a wide range of environmental conditions, data were obtained in field conditions over 3 years (2013–2015). A stochastic density‐dependent population dynamics model was constructed using the demographic data to project A. fatua populations. Elasticity analysis was used to identify demographic processes with negative impacts on population growth. In both cropping systems, MHR seedbank densities were negatively impacted by increasing nitrogen fertilisation rate and wheat density. Overall, MHR seedbank densities were larger in the wheatfallow compared with the continuous wheat cropping system and seedbank densities stabilised near zero in the high nitrogen and high spring wheat seeding rate treatment. In both cropping systems, density‐dependent seed production was the most influential parameter impacting population growth rate. This study demonstrated that while the short‐term impact of weed management tactics can be investigated by field experiments, evaluation of long‐term consequences requires the use of population dynamics models. Demographic models, such as the one constructed here, will aid in selecting ecologically based weed management tactics, such as appropriate resource availability and modification to crop competitive ability to reduce the impact of MHR .  相似文献   

8.
Portulaca oleracea, an r‐strategist, is one of the world's most troublesome weeds. During hot seasons, P. oleracea frequently becomes monodominant in choy sum (Brassica parachinensis) fields in Guangzhou city, southern China. Here, we studied the seasonal dynamics of P. oleracea's germinable soil seedbank, population density and above‐ground biomass in choy sum fields that had been cultivated continuously for several years. Using P. oleracea seeds collected from these fields, we tested seed dormancy, survival and germination, seedling growth and generation time. Portulaca oleracea occurred at high levels during the hot season, but its occurrence was low, and the germinable soil seedbank was much greater during the cold season. The weed's opportunistic characteristics allowed it to avoid freezing and to proliferate during optimal conditions. Portulaca oleracea's generation time was very flexible, as short as 31 days during the hot season, but longer than 100 days during the colder season. Seed dormancy tended to be shorter when the seeds were stored at a higher temperature. At a temperature of 35°C, both seed germination and seedling growth showed advantages over those of choy sum. Storage for one year at a temperature of ?20°C or burial in a paddy field did not significantly reduce P. oleracea seed germination. Nevertheless, seed storage at a temperature of 15°C and soil coverage of 0.5 cm on top of the seeds significantly constrained seed germination. ‘Stale seedbed’ and/or coverage of the surface with soil are recommended during the hot season. However, rotation of rice and upland crops is not an efficient method for managing Portulaca oleracea infestation.  相似文献   

9.
Ryegrass (Lolium multiflorum Lam.) is one of the most difficult annual weeds to control in cultivation systems worldwide, especially in temperate regions. The widespread use of herbicides in the past two decades has selected resistant biotypes of ryegrass in crops in Southern Brazil. Ryegrass seeds are dormant when disseminated and germination can be staggered over time (crop‐growing season). Knowledge of the germination behavior of seeds from herbicide‐resistant plants has been little studied, but it would be very useful in integrated weed management. Thus, this study aimed to characterize the dynamics of the soil seed bank of two biotypes of L. multiflorum, one glyphosate‐resistant and the other glyphosate‐susceptible, under a no‐tillage system. The treatments were arranged in a bifactorial scheme, using seeds from biotypes (glyphosate‐resistant and glyphosate‐susceptible) with monthly periods of removal from field (one to 12 months). Seeds of each biotype were placed on the soil surface and covered with soil and straw to simulate no‐till conditions. The percentage of germinated, dormant, and dead seeds was evaluated every 30 days. The ryegrass seed bank of glyphosate‐susceptible and glyphosate‐resistant biotypes was reduced to 11 and 15% of dormant seeds, respectively, at the end of 12 months. However, there was no variation in germination, dormancy, and seed mortality between susceptible and glyphosate‐resistant ryegrass. Seeds of glyphosate‐resistant biotype and susceptible showed germination behavior with similar dynamics in the soil over a period of 12 months.  相似文献   

10.
This study describes the seedbank persistence of glyphosate‐resistant (GR) Kochia scoparia at two sites in western Canada and examines if GRK. scoparia from western Canada and mid‐western United States (USA) differ from their susceptible counterparts in seed germination and early growth characteristics at low‐temperature regimes. Site or depth of seed burial (surface, 2.5 cm, 10 cm) did not affect seed viability over time and time to 50% and 90% loss of viability averaged 210 and 232 days respectively. Glyphosate‐resistant K. scoparia generally germinated later and had lower cumulative germination than glyphosate‐susceptible (GS) K. scoparia from Saskatchewan, Canada; and Kansas, USA; but not Colorado, USA. Similarly, time to 10% first leaf of GSK. scoparia from Saskatchewan and Kansas tended to be sooner than that of GRK. scoparia, with a greater percentage of GS vs. GR seedlings of populations from all regions having attained first leaf by the end of the experiment. The short seedbank longevity and delayed and reduced germination and time to first leaf of GRK. scoparia may potentially be exploited to maximise management efficacy through delayed preseeding weed control or alternatively by early seeding date to enhance crop competitiveness.  相似文献   

11.
A joint assessment of two separate approaches investigated the occurrence of volunteer oilseed rape (Brassica napus L.; OSR ) as affected by cultivar, field history and environment. Approach I comprised surveys for volunteers on >100 farmers’ fields in Germany in the years 2009 and 2010. Volunteers were assigned to the cultivars grown in previous years by inter‐simple sequence repeat‐PCR and cluster analysis. High‐dormancy cultivars resulted in 0–7 and low‐dormancy cultivars in 0–1.3 volunteers m?2. Highest numbers originated from the most recent harvests 2007 and 2006. Approach II was a meta‐analysis based on 116 data sets from field trials and farmers’ fields in Germany to evaluate and to rank the impact of management factors on the soil seedbank and volunteers in following crops. Varietal disposition to seed dormancy turned out to be the significantly most relevant factor. The contribution of varietal dormancy to variation in the soil seedbank and of volunteers in the 1st and 2nd following crop was 1.2–2.3 times as great as the contribution of post‐harvest tillage. Up to 45% of the variation in the observations originated from factors that can be controlled by human actions on a given location in a given year. The overall analysis confirmed the results from independent short‐term trials and showed that both agronomists and breeders need to contribute to reducing OSR volunteers.  相似文献   

12.
We developed 20 microsatellite markers to genotype over 100 populations of the parasitic weed Phelipanche ramosa, which covers a wide host crop and geographic range. A representative core collection of 15 populations was also used in cross‐infestation assays to study host preference during germination, attachment and shoot formation. We observed low genetic differentiation within most of the populations, but high genetic differentiation between populations partitioned into 3 genetic groups with different host preferences and geographic distributions. Genetic group 1 is detected exclusively in western France and on various host crops, notably winter oilseed rape (WOSR) and not hemp. Cross‐infection assays confirmed its incompatibility with hemp and showed its preference for WOSR and tobacco in terms of germination and attachment success. The group 2 populations share a large geographic distribution in France and Europe, low germination success with WOSR and high germination success, attachment success and shoot formation with hemp, tobacco or tomato. The subclades 2a and 2b include most of the French populations in hemp crops in eastern France and in tobacco fields in several European countries respectively. The genetic analyses revealed the potential of the three groups to increase their geographic range in the future. Intermediate genetic groups showed higher intrapopulation diversity and represent potential stocks for new host race emergence. Those findings argue in favour of the existence of host races in P. ramosa and should be considered for appropriate management strategies, notably in breeding programmes for resistance against this parasitic weed.  相似文献   

13.
Pyrenophora semeniperda, an important pathogen in Bromus tectorum seed banks in semi‐arid western North America, exhibits >4‐fold variation in mycelial growth rate. Host seeds exhibit seasonal changes in dormancy that affect the risk of pathogen‐caused mortality. The hypothesis tested is that contrasting seed dormancy phenotypes select for contrasting strategies for increasing pathogen fitness, and that increased fitness on nondormant seeds involves a resource trade‐off between toxin production and growth. The strategy for successfully attacking rapidly germinating nondormant seeds at high inoculum loads in autumn involves increased post‐infection aggressiveness to prevent seed escape through germination. An earlier study demonstrated that slow‐growing strains caused higher mortality than faster‐growing strains on nondormant host seeds at high inoculum loads. In this study, production of the toxin cytochalasin B was significantly higher in slower‐growing strains, and was induced only in seeds or in seed‐constituent‐containing media. Its production was reduced in vivo by Bromus tectorum seeds, suggesting direct involvement in pathogenesis on seeds. Fast‐growing strains caused significantly higher mortality than slow‐growing strains at low inoculum loads on dormant seeds, which apparently have resistance that is overcome at high loads or through rapid mycelial proliferation. In a co‐inoculation study, the fast‐growing isolate produced 3 × more stromata than the slow‐growing isolate on dormant seeds, whereas the slow‐growing isolate was twice as successful on nondormant seeds. These results provide evidence that mycelial growth rate variation and associated variation in cytochalasin B production represent a trade‐off maintained through temporally varying selection resulting from seasonal variation in host seed dormancy status.  相似文献   

14.
Seedbank density is an important aspect that determines the amount of damage that the parasitic weed, purple witchweed (Striga hermonthica; hereafter, called “Striga”), causes on its crop hosts. The seedbank depletion of Striga was measured in Mali and Niger during the 2004 rainy season under the host crops, pearl millet and sorghum, the non‐host crops, cowpea and sesame, the intercrops of pearl millet or sorghum with cowpea or sesame, and fallow with or without weeding. Two methods were used and compared; namely, a seed bag method and a soil‐sampling method. The fate of the seeds was assessed by a seed press test. Seed germination, as determined by the presence of empty seed coats, contributed most to the seedbank depletion of Striga under a variety of crop covers and fallow. The highest seedbank depletion was found under the monocultures of the host crops. The intercrops of the host and non‐host crops caused less seedbank depletion, followed by the monocultures of the non‐host crops, fallow, and bare soil. The seed bag method and the soil‐sampling method yielded similar percentages of seedbank depletion, while the former allowed for distinguishing between the germinated and diseased seeds. The results suggest that, although all the tested crop species can cause the seed germination and seedbank depletion of Striga, management by using host cereal crops causes the highest amount of germination and has the highest potential to deplete the soil seed bank, provided that seed production is prevented.  相似文献   

15.
The development of acetolactate synthase (ALS) tolerant sugar beet provides new opportunities for weed control in sugar beet cultivation. The system consists of an ALS?inhibiting herbicide (foramsulfuron + thiencarbazone‐methyl) and a herbicide‐tolerant sugar beet variety. Previously, the use of ALS‐inhibitors in sugar beet was limited due to the susceptibility of the crop to active ingredients from this mode of action. The postulated benefits of cultivation of the ALS‐tolerant sugar beet are associated with potential risks. Up to now, with no relevant proportion of herbicide‐tolerant crops in Germany, ALS‐inhibitors are used in many different crops. An additional use in sugar beet cultivation could increase the selection pressure for ALS‐resistant weeds. To evaluate the impact of varying intensity of ALS‐inhibitor use on two weed species (Alopecurus myosuroides and Tripleurospermum perforatum) in a crop rotation, field trials were conducted in Germany in two locations from 2014 to 2017. Weed densities, genetic resistance background and crop yields were annually assessed. The results indicate that it is possible to control ALS‐resistant weeds with an adapted herbicide strategy in a crop rotation including herbicide‐tolerant sugar beet. According to the weed density and species, the herbicide strategy must be extended to graminicide treatment in sugar beet, and a residual herbicide must be used in winter wheat. The spread of resistant biotypes in our experiments could not be attributed to the integration of herbicide‐tolerant cultivars, although the application of ALS‐inhibitors promoted the development of resistant weed populations. Annual use of ALS‐inhibitors resulted in significant high weed densities and caused seriously yield losses. Genetic analysis of surviving weed plants confirmed the selection of ALS‐resistant biotypes.  相似文献   

16.
Weed seeds in and on the soil are the primary cause of weed infestations in arable fields. Previous studies have documented reductions in weed seedbanks due to cropping system diversification through extended rotation sequences, but the impacts of different rotation systems on additions to and losses from weed seedbanks remain poorly understood. We conducted an experiment in Iowa, USA, to determine the fates of Setaria faberi and Abutilon theophrasti seeds in 2‐, 3‐ and 4‐year crop rotation systems when seed additions to the soil seedbank were restricted to a single pulse at the initiation of the study. Over the course of the experiment, seedlings were removed as they emerged and prevented from producing new seeds. After 41 months, seed population densities dropped >85% for S. faberi and >65% for A. theophrasti, but differences between rotation systems in the magnitude of seedbank reductions were not detected. Most of the reductions in seedbank densities took place from autumn through early spring in the first 5 months following seed deposition, before seedling emergence occurred, suggesting that seed predation and/or seed decay was important. For S. faberi, total cumulative seedling emergence and total seed mortality did not differ between rotation systems. In contrast, for A. theophrasti, seedling emergence was 71% lower and seed mortality was 83% greater in the 3‐ and 4‐year rotation systems than in the 2‐year system. Results of this study indicate that for certain weed species, such as A. theophrasti, crop rotation systems can strongly affect life‐history processes associated with soil seedbanks.  相似文献   

17.
T Hyvönen  S Ramula 《Weed Research》2014,54(3):245-255
Climate change is predicted to affect range expansion of harmful C4 weeds into the boreal region, given that they are able to successfully colonise both C3 and C4 crops. We studied the impact of a 3°C elevation in temperature on the establishment and maintenance of populations of two annual C4 weeds (Amaranthus retroflexus and Echinochloa crus‐galli) with and without a competing C3 (barley) or C4 (maize) crop. Data obtained from field and glasshouse experiments were modelled using a periodic matrix population model. Competition of a weed with a crop appeared to be a more important factor for limiting the maintenance of weed populations than elevation in temperature, as neither of the weed species was able to maintain populations in competition with crops. Even an increase in the frequency of warm years did not result in viable weed populations establishing. However, A. retroflexus was able to form persistent populations in competition with maize when released from competition every fifth year. Simulations parameterised from glasshouse data predicted that both weed species would persist without competition in the current climate, whereas simulations parameterised from field data suggested only A. retroflexus to be able to persist. These results demonstrate that competition affects the range expansion of arable weed species more than elevation in temperature, necessitating the inclusion of crop–weed interactions in models of range shifts as a consequence of climate change.  相似文献   

18.

BACKGROUND

The efficacy of pre‐emergence herbicides within fields is spatially variable as a consequence of soil heterogeneity. We quantified the effect of soil organic matter on the efficacy of two pre‐emergence herbicides, flufenacet and pendimethalin, against Alopecurus myosuroides and investigated the implications of variation in organic matter for weed management using a crop–weed competition model.

RESULTS

Soil organic matter played a critical role in determining the level of control achieved. The high organic matter soil had more surviving weeds with higher biomass than the low organic matter soil. In the absence of competition, surviving plants recovered to produce the same amount of seed as if no herbicide had been applied. The competition model predicted that weeds surviving pre‐emergence herbicides could compensate for sublethal effects even when competing with the crop. The ED50 (median effective dose) was higher for weed seed production than seedling mortality or biomass. This difference was greatest on high organic matter soil.

CONCLUSION

These results show that the application rate of herbicides should be adjusted to account for within‐field variation in soil organic matter. The results from the modelling emphasised the importance of crop competition in limiting the capacity of weeds surviving pre‐emergence herbicides to compensate and replenish the seedbank. © 2017 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.  相似文献   

19.
Digitaria sanguinalis is a troublesome annual weed that causes important yield losses in different crops. Despite this, there is scarce information about different aspects of its biology under field conditions. New knowledge about the establishment process of this species will be of paramount importance in order to maximise the effectiveness of weed management. The aims of this paper were to evaluate the effect of stubble found on the surface on seed dormancy levels through the season, the effects of stubble and soyabean crop canopy on seedling emergence and to determine the field emergence pattern as a consequence of seed dormancy level at dispersal time. Seeds on the soil surface, which showed a high dormancy level at the beginning of autumn, were released from dormancy by low winter temperatures and germinated during spring as temperatures rose, showing a transient surface seedbank. Seeds covered by stubbles had delayed the emergence in the field due to lower alternating temperatures perceived by the surface seedbank. On the other hand, the presence of a soyabean crop and stubble together reduced the number of seedlings. Seeds with a high dormancy level at dispersal time showed a delayed emergence in the next season when compared with seeds with a lower dormancy level. However, the final number of seedlings was similar. Both stubble on surface and crop canopy are useful factors to lessen and delay the seedling emergence allowing the design of weed management strategies in order to diminish the population levels of this species.  相似文献   

20.
Volunteer summer‐annual oilseed rape (sOSR; Brassica napus) is an ongoing concern in Canadian crop production. Large harvest seed losses and secondary dormancy in this species generate a persistent volunteer seedbank. Yield loss in subsequent crops, potential sOSR oil profile contamination and herbicide‐resistance trait introgression create a need for effective sOSR seedbank management. This field study evaluated the effects of timing and type of implement of post‐harvest soil disturbance and seeding a winter cereal on volunteer sOSR population persistence and demographic life‐stage transition rates at five locations in Manitoba, Canada. Following sOSR harvest and supplemental seed rain, seedbank densities ranged from 6770 to 15360 and 50 to 2610 seeds m?2 among sites in autumn and spring respectively. In contrast to European research on winter‐annual oilseed rape, early autumn soil disturbance, shortly after sOSR harvest, was the best strategy to decrease volunteer sOSR persistence (3% population persistence from autumn to spring, compared with 6% in zero tillage). Substantial autumn seedling recruitment (38% of the autumn seedbank) and subsequent winterkill contributed to lower population persistence. Soil disturbance in spring stimulated spring seedling recruitment compared with other disturbance timings (11% and 3% of the spring seedbank, respectively). The implement used for soil disturbance and seeding winter wheat (Triticum aestivum) had minimal effect on population persistence. This research showed that timing of post‐harvest soil disturbance should be utilised as an effective tactic to decrease population persistence of volunteer sOSR via stimulation of autumn seedling recruitment and concomitant winterkill.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号