首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
A 5 × 3 factorial growth trial was conducted to evaluate optimal dietary protein and lipid levels (dietary protein level, DP; dietary lipid level, DL) for juvenile Sillago sihama (S. sihama) (2.0 ± 0.02 g, initial weight). Fish were fed 15 diets containing 5 DPs (350, 400, 450, 500 and 550 g/kg) and 3 DLs (60, 90 and 120 g/kg) for 8 weeks. The interaction between proteins and lipids significantly influenced the feed conversion ratio, condition factor, body composition, antioxidant indices and lipase activity (p < .05). DP 450 g/kg showed the highest average final body weight. DPs 500 and 550 g/kg significantly decreased the protein efficiency ratio (p < .05). DL 120 g/kg showed the highest percentage weight gain. The low feed conversion ratio was found in diets P45L12, P55L9 and P55L12. Diet P45L12 showed high superoxide dismutase activities. DP 450 g/kg showed the lowest average malondialdehyde content. Lipase activity was increased by increasing DP (p < .05) with a fall at DP 550 g/kg. Under the present experimental conditions, the optimal DP for S. sihama was 450 g/kg under the DL 120 g/kg.  相似文献   

3.
An eight‐week feeding trial was conducted to evaluate the contribution of biofloc on dietary lipid requirement in whiteleg shrimp Litopenaeus vannamei. Five diets with graded levels of dietary lipid (45, 60, 90, 120 and 150 g/kg) were fed to juvenile shrimp. Final weight, weight gain and specific growth rate of shrimp fed diets with 60, 90 and 120 g/kg lipid levels were significantly higher than those of shrimp fed diets with lipid levels 45 and 150 g/kg (p < .05). Feed efficiency and protein efficiency ratio of shrimp fed 60, 90 and 120 g/kg were higher than those fed 150 g/kg diet. Plasma total cholesterol and triglyceride levels were lower in shrimp fed 45 g/kg compared with those fed the 90 g/kg (p < .05). Also, lysozyme activity for 90 g/kg group was higher than the 15 g/kg group. Hepatopancreas lipase and amylase activities of shrimp fed 90 and 120 g/kg diets were significantly higher than those of shrimp fed 45 and 150 g/kg diets. Broken‐line regression analysis for weight gain indicated that the dietary lipid requirement of whiteleg shrimp juveniles reared in a biofloc system was estimated to be higher than 56 g/kg but <60 g/kg.  相似文献   

4.
A 25‐day experiment was conducted to evaluate the optimal lipid level for postlarval Litopenaeus vannamei. Shrimp (1.7 mg) were fed five isonitrogenous diets containing grade levels of lipid (96.6, 114.3, 128.5, 136.5 and 154.5 g/kg diet, respectively). Each diet was assigned to four tanks (500 shrimp), and shrimp were fed six times a day. Weight gain was increased with the increasing dietary lipid levels, and the highest weight gain was observed in shrimp fed diet with 154.5 g/kg lipid (p < 0.05). On the contrary, the survival was lowest in shrimp fed the L15.45 and highest in shrimp fed the L11.43. Triglyceride in hepatopancreas was increased, and cholesterol was decreased with the increasing dietary lipid. Pyruvate kinase and AMPK mRNA expression were highest in shrimp fed the L12.85. Malondialdehyde in whole body was positively correlated with the dietary lipid levels. The mRNA expression of SOD and Caspase 3 was highest in shrimp fed the L12.85. After hypoxia stress, shrimp fed the L12.85 showed highest survival. The mRNA expression of superoxide dismutase and Akirin was highest in shrimp fed the L11.43 and L15.45, respectively. Based on the survival after 25‐day feeding trail and after the hypoxia stress, the optimal dietary lipid for postlarval L. vannamei should be 118–124 g/kg.  相似文献   

5.
Six isoproteic diets were designated to evaluate the effects of dietary lipid levels (from 70 to 270 g/kg) on the growth performance, feed utilization, digestive tract enzyme activity and lipid deposition of juvenile Brachymystax lenok (average initial weight 0.54 ± 0.04 g). Each diet was fed to triplicate tanks (30 fish per tank) in an indoor closed recirculating system for 9 weeks. Final body weight and weight gain were highest in fish fed 190 g/kg diet and lowest in fish fed the 70 g/kg diet. Specific growth rate of fish fed with 190 g/kg diet was significantly higher than those fed with 70 and 270 g/kg diets (< .05). Protein efficiency ratio of fish fed with 70 g/kg diet was significantly lower than the 110–230 g/kg treatments and was not significantly different from the 270 g/kg treatment. Fish fed with 270 g/kg diet had significantly higher hepatosomatic index and viscerosomatic index than those fed with 70–190 g/kg diets (< .05). Intraperitoneal fat ratio and the whole‐body lipid content had a trend to increase with increase in dietary lipid level. Muscle crude lipid content increased up to 190 g/kg with increase in dietary lipid level. Lipid retention decreased with increase in dietary lipid level, while no significant differences in protein intake and retention levels were observed in fish among all treatments. Lipase activity of the mixture of pyloric caeca and foregut in fish fed 190 and 230 g/kg diets was significantly higher than those fed 70 and 110 g/kg diets. Midgut and hindgut lipase activities of fish were significantly higher than those fed the 190 and 230 g/kg diets. In conclusion, based on the second‐order polynomial model of WG and FCR, this study suggested that 173.8–195.0 g/kg dietary lipid levels were appropriated for B. lenok.  相似文献   

6.
An 8‐week feeding trial was conducted to determine the dietary leucine requirement for juvenile swimming crabs reared in cement pools. Six isonitrogenous and isolipidic practical diets (430 g/kg crude protein and 70 g/kg crude lipid) were formulated to contain graded leucine levels which ranged from 16.7 to 26.7 g/kg (dry weight). Each diet was randomly assigned to triplicate groups of 60 juvenile swimming crabs (initial average weight 3.75 ± 0.12 g) that were stocked in rectangle plastic baskets. The results of the present study indicated that dietary leucine levels significantly influenced weight gain (WG) and specific growth ratio (SGR) (< .05), crab fed the diet containing 22.7 g/kg leucine had significantly higher WG and SGR than those fed the other diets. Feed efficiency and protein efficiency ratio were not significantly affected by the dietary leucine levels (> .05). Total protein, cholesterol, triglyceride and glucose in serum were significantly affected by the dietary leucine levels. Aspartate aminotransferase (AST) and alanine aminotransferase activities in hemolymph, AST and superoxide dismutase activities in hepatopancreas were significantly affected by dietary leucine levels; moreover, crab fed the 16.7 g/kg leucine diet had higher malondialdehyde in hemolymph and hepatopancreas than those fed the other diets. Crab fed the diet containing 24.9 g/kg leucine had higher phenoloxidase activity in hemolymph than those fed the other diets. Based on two‐slope broken‐line model of SGR against dietary leucine levels, the optimal dietary leucine requirement for growth was estimated to be 22.1 g/kg of the dry diet (corresponding to 51.4 g/kg of dietary protein on a dry weight basis). In summary, findings of this study indicated that dietary leucine could improve growth performance and antioxidant status.  相似文献   

7.
Five dietary lipid sources (fish oil, soybean oil, palm oil, rapeseed oil and linseed oil) were evaluated in juvenile red claw crayfish, Cherax quadricarinatus, based on the response of growth, antioxidant capacity, intestine histology, whole‐body composition, fatty acid nutrition and lipid metabolism. Crayfish were fed in quadruplicate net cages for 8 weeks. Crayfish fed diets with fish oil, soybean oil and linseed oil obtained significantly higher weight gain and specific growth rate than those fed the other two diets. Survival, condition factor and hepatosomatic index were not significantly affected by lipid sources. Lipid sources also do not affect the whole‐body composition of crayfish. Serum SOD, T‐AOC and GSH‐PX activities of crayfish fed the palm oil and rapeseed oil diets had a significantly lower value than those fed other diets. The minimum concentrations of MDA have been observed in crayfish fed the soybean oil diet. The activity of ACC in the hepatopancreas of crayfish fed the linseed oil diet showed the highest value, and the CPT‐1 activity was not significantly affected by different lipid sources. Crayfish fed the soybean oil diet showed significantly higher TC and TG contents in hepatopancreas than those fed other diets. Crayfish fed linseed oil diet had a significantly higher percentage of EPA, C18:3n?3 and Σn?3 PUFA in muscle than those fed other treatments. Most of the fatty acid compositions in the hepatopancreas had a close correlation to fatty acid compositions in diets. All findings in this study indicate that soybean oil is the advantageous lipid source for juvenile C. quadricarinatus which can reflect in satisfactory growth performance, antioxidant capacity and fatty acid nutrition of edible tissues.  相似文献   

8.
This study investigated the effects of coconut oil as a dietary supplement on the growth, lipid metabolism and related gene expressions of juvenile orange‐spotted grouper Epinephelus coioides. Coconut oil at concentrations of 0, 10, 30 and 50 g/kg was used to replace dietary lipids in a basal diet containing 150 g/kg lipids. The four experimental diets were, respectively, fed to triplicate groups of juvenile groupers (initial weight: 8.53 ± 0.13 g) in a recirculating system for 8 weeks. Fish fed the diet containing 50 g/kg coconut oil exhibited lower (p < .05) weight gain than did fish fed the diet containing 30 g/kg coconut oil; however, no significant differences in weight gain were observed between fish fed diets containing 0 and 10 g/kg coconut oil. Hepatic carnitine palmitoyltransferase‐1, fatty acid synthase, fatty acid elongase, fatty acid desaturase and peroxisome proliferator‐activated receptor gamma gene expressions were all the highest in fish fed the diet containing 10 g/kg coconut oil. Fish fed the coconut oil‐free basal diet demonstrated upregulated gene expression of neuropeptide Y. The results suggest that dietary supplementation with 10 g/kg coconut oil exerted beneficial effects on lipid metabolism by E. coioides.  相似文献   

9.
Five isonitrogenous and isoenergetic diets with soybean oil (SO), linseed oil (LO), algae oil from Schizochytrium sp. (AO), mixed oil (MO, SO:LO:AO = 1:1:1) and fish oil (FO; control group) were selected to feed juvenile Onychostoma macrolepis (initial weight 1.86 ± 0.07 g) for eight weeks. The results showed that in the LO and FO groups fish grew best. There was no significant difference in specific growth rate (SGR) and feed efficiency (FE) between the MO and FO groups (p > .05). The highest contents of 18:2n‐6, 18:3n‐3 and 22:6n‐3 in liver and muscle were found with the SO, LO and AO groups, respectively (p < .05). There appeared the highest malondialdehyde (MDA) content and the lowest superoxide dismutase (SOD) activity in the fish liver of the AO group. There appeared the highest concentrations of serum glucose (GLU), cholesterol (CHOL) and triglycerides (TG) in the SO group. The expressions of lipid anabolism genes were significantly up‐regulated by dietary SO and LO (p < .05). The expressions of lipid catabolism genes were significantly higher with the AO, MO and FO groups (p < .05). This study recommended that LO or MO as a better vegetable oil source for juvenile O. macrolepis.  相似文献   

10.
An 8‐week feeding trial was conducted to evaluate the effects of dietary lipid sources on growth performance, antioxidant enzyme activities and biochemical composition of juvenile swimming crab Portunus trituberculatus of initial weight 2.34 ± 0.08 g. Four different diets were formulated to contain fish oil (FO), soybean oil (SO), linseed oil (LO) or palm oil (PO). The highest final body weight, weight gain, specific growth rate and molting frequency were observed in crabs fed the FO diet. Crabs fed the SO diet showed higher glutathione peroxidase, superoxide dismutase (SOD) and catalase (CAT) activities in both serum and hepatopancreas than those fed the FO diet. The lowest malondialdehyde concentration in hepatopancreas and serum were occurred at crabs fed the SO diet. Crabs fed the LO diet had significantly higher SOD and CAT activities in hepatopancreas compared with those fed the FO diet. Crabs fed the PO diet had the highest activities of fatty acid synthase and carnitine palmitoyltransferase 1 activities in hepatopancreas among all treatments. Fatty acid compositions both in hepatopancreas and muscle reflected those of diets. Overall, these findings demonstrated that physiological–biochemical characteristics and lipid metabolism were significantly regulated by different dietary lipid sources. Moreover, dietary SO and LO supplementation could improve antioxidant ability.  相似文献   

11.
A 6‐week study was conducted to determine the effects of different lipid sources in pelleted diets on juvenile mud crab Scylla paramamosain. Five isonitrogenous and isolipidic diets containing 8% level of fish oil (FO), lard (LD), safflower oil (SO), perilla seed oil (PO) or mixture oil (MO; VFO:VSO:VPO = 1:1:1), and a live food of marine bivalve Potamocorbula rubromuscula as the control diet (CF), were fed to groups of 25 juvenile crabs (average initial weight 7.4 g, carapace width 3.5 cm) in triplicate. The results showed that crabs fed MO had the highest survival (< 0.05). The moisture content was significantly higher in crabs fed LD, SO and PO (< 0.05). Crabs fed SO exhibited the lowest crude protein and lipid (< 0.05). Ash contents were obviously lower in LD group (< 0.05). Highest total lipid in the hepatopancreas and muscle was in LD and FO group respectively. Glucose, total cholesterol and low‐density lipoprotein were higher while high‐density lipoprotein was lower (< 0.05) in LD group. Tissue fatty acid compositions were consistent with those in diets. FO and MO diets had the same depression effect like CF on fatty acid synthase activity and mRNA expression in the hepatopancreas. The results of this study indicated that FO and mixed oil are suitable for preparation of pelleted diets with better effects for juvenile S. paramamosain compared with live food, and the ratio of n‐6/n‐3 fatty acids in pelleted diets must be <1.  相似文献   

12.
An 8‐week feeding trial was conducted to investigate the effects of dietary lipid levels on growth performance, fatty acid profile and fecundity in the oriental river prawn Macrobrachium nipponense. Five isonitrogenous experimental diets were formulated with graded lipid levels [A (5.02%), B (5.98%), C (6.91%), D (7.91%) and E (8.89%) respectively]. The results indicated that the values of body weight gain, specific growth rate, protein efficiency ratio and protein retention presented a similar trend of increasing first and then decreased with increasing dietary lipid levels. Furthermore, prawns fed diets containing 6.91% lipid showed the best values on these parameters among all the treatments. EPA, DHA and n‐3/n‐6PUFA contents showed associated increasing with the increase in lipid deposition of prawn muscle. The activities of hepatopancreatic amylase, protease and lipase were also significantly (p < .05) improved by dietary 6.91% lipid. Increasing dietary lipid levels could not suppress early maturation with no differences detected in berried females throughout the feeding trial. Significant lower relative fecundity may contribute to describing the dietary moderate lipid level (6.91%) could promote the growth of spawners and decrease spawning quantity. The recommendation dietary lipid requirement, estimated by the broken‐line model based on specific growth rate against dietary lipid levels, was 7.19% of the dry matter for M. nipponense.  相似文献   

13.
14.
An 8‐week feeding trial was conducted to investigate the effects of dietary carbohydrate to lipid ratio (CHO: L) on growth, feed utilization, body composition and digestive enzyme activities of golden pompano, Trachinotus ovatus. Five iso‐nitrogenous (450 g/kg protein) and iso‐energetic (19 MJ/kg gross energy) diets with varying CHO: L ratios of 0.68, 1.02, 1.62, 2.61 and 4.35, respectively, were fed to triplicate groups of 30 fish (average 13.8 ± 0.1 g). Results showed that dietary CHO: L ratios did not show any significant influence on survival of golden pompano (> .05) but significantly affected its growth performance and feed utilization (< .05). Fish fed diets with CHO: L ratios at 1.62 and 2.61 exhibited the highest final body weight, weight gain ratio, specific growth rate, feed efficiency ratio and protein efficiency ratio. Fish body lipid and liver glycogen contents were also significantly influenced by CHO: L ratio (< .05). Hepatic amylase activity increased firstly and then decreased as the dietary CHO: L ratio increased, while lipases activity decreased with increasing dietary CHO:L level. The regression model analysis showed that the most suitable dietary CHO: L ratio (protein 450 g/kg) to reach the highest weight gain ratio is 2.38.  相似文献   

15.
Vitamin E supplement is important in protecting lipid oxidation and enhancing immunity of aquatic animals. A 10‐week feeding trial was conducted to evaluate the effect of dietary lipid and vitamin E on juvenile Chinese mitten crab Eriocheir sinensis. The experimental diets included three levels of vitamin E (0, 100 and 300 mg kg?1) and two levels of lipid (6% and 9%). The 9% lipid diet significantly enhanced the body lipid of crabs compared with the 6% lipid diet. The vitamin E concentration of hepatopancreas increased with the increase in vitamin E in the diets regardless of dietary lipid levels. The hepatopancreas fatty acids, especially polyunsaturated fatty acid and highly unsaturated fatty acid, were significantly enhanced by vitamin E supplement or 9% dietary lipid. Vitamin E supplement significantly increased the total antioxidant capacity, superoxide dismutase, lysozyme and phenoloxidase activities of crabs compared with those fed the diets without vitamin E supplement. The hepatopancreas malondialdehyde of crabs fed 100 mg vitamin E kg?1 was significantly lower than those fed 0 or 300 mg vitamin E kg?1. The phenoloxidase activity of crabs fed the 9% lipid diet was significantly higher than those fed 6% lipid, irrespective of vitamin E levels. Vitamin E supplementation increased the bacterial resistance of juvenile crab. This study indicates that dietary lipid and vitamin E supplement do not affect crab growth and survival, but vitatmin E supplement at 100 mg kg?1 can enhance immunity and antioxidant capacity of crab fed 6% or 9% dietary lipids.  相似文献   

16.
This study was conducted to investigate the effects of dietary protease on growth performance, feed utilization, whole‐body proximate composition, nutrient digestibility, intestinal and hepatopancreas structure of juvenile Gibel carp, Carassius auratus gibelio (mean weight 8.08 ± 0.18 g). Six diets were prepared, including a positive control diet (dietary protein 350 g/kg, PC), one negative control diet (dietary protein 33 g/kg, NC) and four protease supplementations diets, which were 75, 150, 300 and 600 mg/kg protease NC diet. After 12 weeks of diet feeding in indoor recycle aquarium tanks, no significant difference (> .05) was found on growth performance between fish fed diet with 75–600 mg/kg protease and the PC group. Compared with the fish fed the NC diet, the specific growth rate of fish fed 300 mg/kg protease increased significantly (< .05), as well as protein efficiency ratios (< .05), while feed conversion was the opposite (< .05). The nutrient digestibility of crude protein and lipid was higher (< .05) in fish fed 150 mg/kg protease diet than the PC diet. Whole‐body proximate composition of fish was not affected (> .05) by the dietary treatment. Serum alkaline phosphatase and albumin were significantly affected by dietary protease (< .05), while the content of total protein, glucose, triglyceride, total cholesterol, aspartate aminotransferase and alanine aminotransferase activities in serum was not affected (> .05). Foregut muscular thickness was thinner (< .05), when the fish fed diets supplementation of protease in 150 or 600 mg/kg diet than the NC diet. Protease activities in hepatopancreas and foregut were higher (< .05), in the fish fed 150 or 300 mg/kg protease diet than the fish fed the PC diet, but those in the mid‐ and hindgut were not significantly affected (> .05) by the dietary treatments. Based on the regression analysis of weight gain rate, the optimal dietary inclusion level of protease was 400 mg/kg in the diet for juvenile Carassius auratus gibelio.  相似文献   

17.
The aim of this study was to evaluate the effects of dietary lipids on protein‐sparing and lipoprotein lipase (LPL) mRNA expression in culture using 360 juvenile soft‐shelled turtles (Pelodiscussinensis) (initial weight 4.26 ± 0.14 g). The turtles were allotted to six diets with three duplicates for 60 days. A control diet with 46% protein and 55% fishmeal (CD) and five isonitrogenous diets with 41.3% protein and 45% fishmeal (F, S, L1, L2 and L3) were used, containing the following three lipid types: fish oil, soybean oil and mixed oils (soybean oil: fish oil = 1:1). The results showed that the survival rate was not affected by dietary lipids (P > 0.05). The highest weight gain and lowest feed coefficient ratio were seen in the L3 diets (P < 0.05). Turtles fed with L2 and L3 diets had lower superoxide dismutase activities, higher alanine aminotransferase activities and higher cholesterol concentrations than those exposed to other diets (P < 0.05). Hepatic LPL activity and LPL mRNA expression were higher in the L3 diets than in the other diets (P < 0.05). Overall, there were obvious protein‐sparing effects of dietary lipids and LPL mRNA expression was stimulated by high dietary lipids in soft‐shelled turtles in this study.  相似文献   

18.
A 56‐d growth trial was conducted to evaluate the growth performance, lipid deposition, and antioxidative capacity of juvenile scaleless carp, Gymnocypris przewalskii, on Qinghai‐Tibetan Plateau. One‐year‐old juveniles (initial weight: 15.99 ± 0.02 g) were fed practical diets with different lipid levels of 4, 5.5, 7, 8.5, and 10%, respectively. Results showed that the best specific growth rate (SGR), feed conversion rate, and total antioxidative capacity (T‐AOC) in hepatopancreas were observed in fish fed the diet with 7% lipid level. Fish fed with high lipid diets (8.5 and 10%) had significantly higher condition factor and viscerosomatic index as well as lipid in muscle, intestine, mesenteric fat tissue, and whole body. Highest level of hepatopancreas lipase and lipoprotein lipases activities as well as malondialdehyde content and the lowest level of feed intake and T‐AOC content in hepatopancreas and intestine were also observed in fish fed with high lipid diets (8.5 and 10%) (P < 0.05). In conclusion, based on SGR and hepatopancreas T‐AOC content, dietary lipid requirement of juvenile G. przewalskii was estimated to be 7.35 and 7.39%, respectively.  相似文献   

19.
To determine the effects of linolenic acid (LNA, 18:3n‐3) in oriental river prawn (Macrobrachium nipponense), an 8‐week feeding experiment was conducted using six isonitrogenous and isoenergetic semi‐purified diets containing 0.07 g/kg (control), 7.3 g/kg, 16.6 g/kg, 20.2 g/kg, 27.3 g/kg and 36.3 g/kg LNA. The hepatopancreas lipid content decreased significantly when dietary LNA content was >20.2 g/kg. Fatty acid analysis revealed that the percentage of 18:3n‐3 in the hepatopancreas significantly increased with increasing dietary LNA levels, while 20:5n‐3, 22:5n‐3 and 22:6n‐3 levels in the hepatopancreas decreased in a curvilinear manner as dietary LNA increased. Additionally, qRT‐PCR results revealed that hepatopancreas mRNA expression of acetyl‐CoA carboxylase (ACC) decreased with increasing dietary LNA, while the greatest carnitine palmitoyl transferase‐1(CPT1) mRNA expression was observed in the 2.73 g/kg and 36.3 g/kg groups. Furthermore, hepatopancreas mRNA expression of acyl‐CoA delta‐9 desaturase (SCD) and fatty acyl elongase 6(elovl6) was downregulated when prawns fed the diets containing >20.2 g/kg LNA. These results indicate that dietary 18:3n‐3 could decrease lipid deposition through increased fatty acid β‐oxidation and modulated fatty acid synthesis, and alter fatty acid composition by regulating fatty acyl elongase and fatty acyl desaturase mRNA expression in the M. nipponense.  相似文献   

20.
This study aimed to investigate the optimum dietary carbohydrate/lipid (CHO/L) ratio for bullfrog Rana (Lithobates) catesbeiana. Six isonitrogenous and isoenergetic diets were formulated, containing various CHO/L from 1.20 to 12.11. Bullfrogs were fed six diets for 8 weeks and each diet was tested by three replicates. After the 8 weeks feeding, weight gain and specific growth rate increased significantly as dietary CHO/L ratios decreased, but showed little difference (> 0.05) as dietary CHO/L ratios ranged from 1.20 to 2.76. Nitrogen retention was significantly affected by CHO/L ratios, and bullfrog fed with CHO/L 6.10 and 1.82 diets showed the lowest and highest nitrogen retentions respectively. Energy retention increased significantly as dietary CHO/L ratios decreased and bullfrog fed the CHO/L at 1.82 and 1.20 diets showed the highest value. Whole‐body lipid and energy levels both increased significantly (< 0.05) as dietary CHO/L ratios decreased. Moreover, liver lipid content of bullfrog fed CHO/L 1.82 and 1.20 diets were significantly higher than that of other groups. Plasma insulin level significantly increased as the elevation of dietary CHO/L. Malondialdehyde level increased as the CHO/L decreased, and the bullfrog fed the CHO/L 1.20 diet had the highest level. In conclusion, the present results clearly showed the effects of dietary CHO/L ratios on growth; the optimum CHO/L is 2.07 (approximately 22.49% carbohydrate and 10.83% lipid) based on the second‐order polynomial regression analysis of weight gain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号