首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 390 毫秒
1.
生物质快速热裂解反应温度对生物油产率及特性的影响   总被引:15,自引:3,他引:15  
以木屑为原料,在自制的小型流化床上,研究了生物质快速热裂解反应温度对生物油的产率、含水率、密度、黏度及成分的影响。结果表明,在475℃,500℃和550℃三种热裂解温度中,以500℃的平均生物油产率最高,为58.74%(w/w)。三种热裂解温度下,生物油的含水率分别为42.5%、46.0%和40.7%,生物油的密度分别为1140、1148和1151 kg/m3,运动黏度分为4.51 cSt、3.87 cSt和4.73 cSt。热裂解温度增高时,生物油的密度略有增加,含水率和运动黏度未见有规律变化,并且,运动黏度随含水率的增加而减小。热裂解温度对生物油的主要化合物成分相对含量有一定影响,但影响不明显,生物油中化合物几乎都是含氧的不饱和烃类衍生物,碳原子数在2~10之间,温度升高有利于糠醛、大多数苯酚类化合物生成,不利于乙酸的生成。该研究为生物油的生产与应用提供了参考。  相似文献   

2.
不同贮存温度对木屑热裂解生物油理化性质稳定性的影响   总被引:1,自引:1,他引:0  
为了明确不同贮存温度下生物油理化性质稳定性的差异,以鼓泡流化床松木木屑快速热裂解制取的生物油为样品,考察了不同贮存温度(4℃,27℃,40℃)条件下,两组(1号,2号)生物油特性随贮存时间的变化规律,同时,对贮存前后生物油进行了傅里叶变换红外光谱及气相色谱质谱联用分析。结果表明,低温(4℃)贮存使生物油含水率下降,而室温(27℃)和高温(40℃)贮存则使其含水率有所上升。在没有水分剧烈变化的影响下,生物油运动黏度上升的幅度与贮存的温度相关,温度越高,上升幅度越大。各种温度下,生物油pH值没有明显的变化规律,且变化幅度也较小。通过对红外光谱典型吸收峰的频率位移和透光强度分析表明,生物油中各种官能团上电子剧烈运动,从而加强了分子间的作用力。气相色谱质谱联用分析的结果表明,35 d的高温贮存催化了一些化学反应的进行,使得生物油的组分更加复杂化。因此,低温贮存对控制生物油的不稳定性效果较佳。  相似文献   

3.
生物质在熔盐中的热裂解特性   总被引:1,自引:0,他引:1  
为了研究生物质在熔盐中的热裂解特性,在自行设计的生物质热裂解反应器中,以熔盐热裂解生物质,考察了裂解温度、FeCl2含量和原料种类对生物质热裂解特性的影响,测定了生物油的物性参数,并用气相色谱-质谱(GC-MS)分析了生物油的主要组成。结果表明:在物质的量比为7︰6的ZnCl2和KCl混合熔盐中添加物质的量分数为5% FeCl2裂解生物质,温度对热裂解的影响显著,生物油得率随温度先升高后降低,存在最大值,以水稻秸秆为原料相对应的温度为525℃,最高生物油得率约为18%;添加FeCl2能提高生物油得率;以纤维素为原料裂解制得的生物油含水率小于以水稻秸秆为原料的生物油含水率;生物油含水率较高,其密度与水相近,黏度比水略大,灰分少,pH值为2.5~3.0;生物油成分复杂,含甲氧基类有机物较多,需改性后使用。该研究为熔盐热裂解生物质制取生物油提供了参考依据。  相似文献   

4.
刘宇  李颖 《农业工程学报》2008,24(8):206-209
化石能源的储量减少与污染使人们必须寻找其他替代能源,其中生物质能是一个很好的替代品.该文以榆木木屑、红松木屑和秸秆为原料,在自制的小型流化床上开展了生物质热裂解生物油的实验研究.结果表明红松木屑的产油率最高,热裂解的温度对产油率的影响很大,500℃时生物油的产量最高,热裂解温度越高,裂解气体产量越高,气体热值也越高,而碳的产量越低.而且随着反应时间的变化,裂解气体成分也发生变化,在裂解10 min左右,裂解气体中可燃气体成分最高.  相似文献   

5.
以榆木木屑为原料,在自制的流化床反应器上,采用正交实验设计,进行了快速热裂解主要工艺参数优化试验,并对产生的生物油成分进行了GC-MS分析.结果表明,榆木木屑快速热裂解最优工艺参数组合为热裂解温度500℃、气相滞留期0.8s、物料粒径O.180mm,生物油最大产率为46.3%(质量分数).热裂解温度、气相滞留期对生物油产率影响显著,而热裂解温度和气相滞留期的交互作用、物料粒径对生物油产率影响不显著.生物油是一种成分极其复杂的有机化合物的混合物,含氧量较高.该项研究为生物质快速热裂解技术的发展提供了科学的依据.  相似文献   

6.
落叶松木材生物油组分分析和表征   总被引:2,自引:1,他引:1  
为了更加合理、高效的利用落叶松木材快速热解生物油与酚醛树脂制备新型胶黏剂,必须对快速热解生物油的主要组分进行全面、透彻的分析。本文采用气质联用仪(GC-MS)对生物油组分进行定性分析;采用气相色谱(GC)重点对生物油中的酚类物质进行定量分析;采用傅立叶变换红外光谱(FT-IR)对生物油旋转蒸发后得到的物质(重质油)进行结构表征。通过分析得到生物油组分主要包括羧酸类、醚类、酚类、醇类、醛类、烷烃类等有机化合物。结果表明,不同工况条件下生物质油中酚类物质质量分数为4%~15%,最大值为14.15%。  相似文献   

7.
为研究生物炭作催化剂消减焦油提高热解气品质的效果,以玉米秸秆为原料,以焦油转化率、热解气产率和热解气热值为评价指标,研究重整温度、停留时间和生物炭特性对热解气提质的影响,并分析生物炭作为催化剂重整前后比表面积的变化。研究结果表明,与石英砂(高温裂解)相比,生物炭具有较好的催化特性,且稻壳炭、木屑炭和玉米秸秆炭对焦油的转化率分别为79.8%、78.6%、72.6%,热解气产率分别为39.7%、38.6%、37.9%。随着重整温度和停留时间的增加,热解气产率和焦油转化率增加,而热解气热值仅随着温度升高而增加,当温度为800℃时,热解气热值为17.6 MJ/m~3。800℃催化重整后生物炭比表面积为79.81 m~2/g,高于550℃热解生物炭比表面积37.96 m~2/g,生物炭作催化剂时不但可以提高热解气品质,而且生物炭比表面积也有所增加。  相似文献   

8.
生物质快速热裂解主要参数对产物产率及其分布的影响   总被引:14,自引:2,他引:14  
在生物质喂入率为0.8~2.0 kg·h-1的流化床上以木屑为原料进行了快速热裂解试验,系统研究了木屑热裂解过程中的流化床反应器温度、生物质粒径和气相滞留期三个主要参数对热裂解产物产率的影响。结果表明,当反应器温度在450~600℃之间变化时,在500℃条件下,生物油产率最高,其值为53.33%,而木炭及不可冷凝气体产率分别为8.97%和37.70%。当温度为500℃,木屑粒径在0.90 mm以下时,粒径在0.45~0.60 mm范围内的生物油产率最大,达到58.23%,这时木炭产率为8.23%。对粒径小于0.20 mm的木屑在温度500℃,气相滞留期0.80, 1.20, 1.50 s三个量级上的热裂解表明,气相滞留期为0.80 s时,生物油产率达到最大值为62.60%。但是,当气相滞留期较长时(1.50 s),生物油产率稍有下降。生物油是极性有机物与水的可溶混合物。因此,木屑快速热裂解生产液体燃料具有较大的潜力。  相似文献   

9.
为了研究生物原油所含不同组分对其储存稳定性的影响,该研究提出利用溶剂分步萃取法分离生物原油。采用螺旋藻为原料进行水热液化,利用极性不同的四氢呋喃、乙酸乙酯、丙酮和正己烷为萃取溶剂分离生物原油,以黏度和热值作为稳定性评价指标,利用热重分析仪、气相色谱质谱联用仪和傅立叶红外光谱仪分析生物原油的老化机理。结果表明:乙酸乙酯萃取得到的生物原油的黏度最低(316 mPa·s),流动性最好,且在储存过程中黏度变化率最小(78.6%),稳定性最好;利用溶剂可以分离生物原油中的重、轻组分和极性、非极性组分,生物原油的老化与极性大分子之间发生的酯化反应、聚合反应密切相关,而小分子非极性化合物的存在可显著降低生物原油的黏度,提高其流动性和稳定性;经储存后生物原油的热值降低了0.4%~6.2%,生物原油的极性组分、重组分和氮元素含量越多,黏度和热值的变化率越大。该研究可为生物质水热液化产物的定向调控及生物原油储存稳定性的提高提供参考。  相似文献   

10.
为掌握榆木木屑的热裂解特性,该文利用热分析/质谱联用技术研究了榆木木屑在20℃/min升温速率下的慢速热裂解过程。主要探讨了水蒸汽、甲烷、氢气、一氧化碳、二氧化碳等7种小分子气体在慢速热裂解过程中的逸出规律。气体逸出和失重主要发生在升温阶段,恒温温度越高,气体越容易逸出。在榆木木屑加热至380℃和480℃并恒温1.5 h的过程中,所有逸出气体峰值对应的温度约为350℃。通过计算质谱图中逸出气体的峰面积,比较了7种逸出气体的相对体积含量,结果表明,水蒸汽、一氧化碳和二氧化碳的含量较高,水蒸汽相对含量超过50%,而氢气、甲烷、乙烷和丙烯在逸出气体中含量较低。  相似文献   

11.
生物质热解液化生物质油的试验研究   总被引:7,自引:0,他引:7  
该研究利用闪速热解液化技术将木屑转化为易储存、易运输、易处理、能量密度高的液体产品生物质油,对旋转锥式闪速热解液化系统进行了生物质热解液化生物质油的试验研究,并将生产的生物质油进行了常压精馏和减压精馏试验,用色谱质谱分析仪、核磁共振仪对其部分精馏组分进行了成分分析。  相似文献   

12.
  【目的】  我国烤烟上部烟叶仍存在因烟碱含量较高而影响其品质的问题。向土壤中添加有效碳源可刺激微生物同化作用,进而能够调控土壤中有效氮含量。因此,本研究尝试利用外源碳降低烤烟上部叶全氮和烟碱含量。  【方法】  设置盆栽试验,烤烟品种为NC55,供试外源碳为葡萄糖 (G) 和木屑 (S)。试验设9个处理:在烤烟移栽后第90天,分别向植烟土壤中添加葡萄糖C 2000 mg/kg (G2)、5000 mg/kg (G5);在移栽后第90和120天依次添加葡萄糖C 2000 mg/kg和10000 mg/kg (G2+G10),和依次添加葡萄糖C 5000 mg/kg和10000 mg/kg (G5+G10);在移栽后第90天分别添加木屑C 2000 mg/kg (S2) 和5000 mg/kg (S5);在移栽后第90和120天依次添加木屑C 2000 mg/kg和葡萄糖C 10000 mg/kg (S2+G10),和依次添加木屑C 5000 mg/kg和葡萄糖C 10000 mg/kg处理 (S5+G10);对照 (CK)为常规施肥处理,在移栽后不添加外源碳。比较不同处理土壤氮素水平、烟叶全氮和烟碱含量。  【结果】  烤烟生长后期添加外源碳可明显降低植烟土壤氮素供应,降低幅度随外源碳添加量的增加而增大,添加二次比添加一次效果更明显,葡萄糖和木屑配合添加较单纯添加葡萄糖更有效。添加二次可降低上部叶的烟碱和全氮含量分别达0.62~1.40个百分点和0.71~1.22个百分点,比添加一次效果更为明显。  【结论】  烤烟生长后期在土壤中分别添加一定量的葡萄糖和木屑,能有效调节土壤碳氮比,抑制烤烟吸收过量的氮素,进而降低烤烟上部叶烟碱和全氮含量,提高烟叶品质。  相似文献   

13.
生物油酯化-加氢提质制备醇酯类燃料   总被引:1,自引:1,他引:0  
作为清洁可再生的化石燃料取代燃料,生物油的酸性及不稳定性是阻碍其规模化应用的主要障碍之一。该文基于生物油高酮、醛及酸类含量,研究了生物油轻质组分分步酯化加氢(SHE,separated esterification and hydrogenation)、一步酯化加氢(OEH,one step esterification-hydrogenation)及一步酯化加氢后二次加氢(OEH plus,one step esterification-hydrogenation plus second hydrogenation process)的提质过程,考察了钼改性雷尼镍催化剂(Mo-RN,Mo-Raney Ni)及Ru/C催化剂催化生物油制备醇类燃料的重复使用性能,并研究了酯化-加氢反应过程及反应路径。结果表明,生物油经不同酯化-加氢方法处理后,饱和醇酯含量均显著提高,生物油品质得到改善。其中以OEH plus提质处理后的生物油产物中,饱和醇、酯含量最高,分别达74.21%和9.96%。此外,提质后的生物油p H值及酸量下降最为显著,生物油的p H值由反应前的3.67提高到5.88,酸量由111.52 mg/g降至11.75 mg/g。Mo-RN及Ru/C催化剂在酯化-加氢路径下的重复使用性能良好,催化活性均无明显降低。试验证明利用酯化-加氢提质生物油为生物油精制制备含氧燃料提供有效途径。  相似文献   

14.
玉米秸秆在等离子体加热流化床上的快速热解液化研究   总被引:20,自引:5,他引:15  
为了进一步研究生物质热解液化技术,寻找较为理想的生物油产率所对应的试验条件,设计制作了以等离子体为主热源的流化床热解液化装置,反应器的内径为52 mm,高1150 mm。以玉米秸秆粉为原料在不同温度、不同喂料速率下进行一系列的热解液化试验。试验结果表明:喂料速率在0.6~0.7 kg/h时,生物油产率较高;反应温度升高,生物油产率增高,但是当反应温度超过750 K时,产率反而随温度的上升而下降。使用色质联用仪(GC-MS)对生物油进行了成分分析,4种试验条件下制取生物油的主要成分均为乙酸、羟基丙酮、水、乙醛、呋喃等,试验条件不同各主要成分的相对含量有所不同。高含水量和含氧量降低了生物油的热值和稳定性,容易发生聚合反应,必须经过改性后才能应用。所采用的试验装置及试验方法亦可用于以其它原料获取生物油的研究。  相似文献   

15.
覆盖材料和厚度对堆存牛粪氨气和温室气体排放的影响   总被引:5,自引:0,他引:5  
为了研究锯末和稻草2种材料覆盖以及不同厚度的锯末覆盖对牛粪堆存过程中氨气(NH3)和温室气体(N2O、CH4和CO2)排放量的影响,采用静态箱的方法测试了不同覆盖厚度(1、3和5 cm)和2种材料(锯末和稻草)覆盖下牛粪NH3、N2O、CH4和CO2排放量。结果表明,在不同厚度锯末覆盖的试验中,与不覆盖处理组相比,覆盖降低了牛粪NH3和CO2累积排放量,但覆盖显著增加了牛粪N2O和CH4累积排放量(P0.05);3个覆盖处理组内,NH3、N2O和CO2排放量随着覆盖厚度的增加而下降,然而,CH4排放量随着覆盖厚度的增加而升高;1、3和5 cm厚锯末覆盖的牛粪总温室气体排放量分别为108.61、103.57和101.36 g/kg,与1 cm锯末覆盖相比,3和5 cm厚锯末覆盖的牛粪总温室气体排放量显著降低(P0.05)。在相同质量的锯末(2 cm厚)和稻草(6 cm厚)2种材料覆盖的比较试验中,2种材料覆盖都显著降低了牛粪NH3和CO2的累积排放量(P0.05),但同时也显著增加了CH4的累积排放量(P0.05);锯末覆盖增加了牛粪N2O累积排放量(P0.05),而稻草覆盖则降低了牛粪N2O累积排放量(P0.05)。与锯末覆盖相比,稻草覆盖显著增加了CH4的累积排放量(P0.05),但同时显著降低了牛粪CO2的累积排放量(P0.05);锯末覆盖和稻草覆盖牛粪总温室气体排放量分别为101.51和109.46 g/kg,与锯末覆盖相比,稻草覆盖显著增加了牛粪总的温室气体排放量。试验结果表明,较厚的锯末(3和5 cm)覆盖对牛粪NH3和温室气体的减排效果更好。  相似文献   

16.
ZSM-5催化生物质三组分和松木热解生物油组分分析   总被引:1,自引:1,他引:0  
为了更清晰地研究三大组分(纤维素、木聚糖、木质素)在介孔ZSM-5参与下的催化热解过程,该研究首先对生物质的三大基本组分和云南松木粉进行热解,然后在介孔ZSM-5催化剂存在的条件下对微晶纤维素、木聚糖、碱性木质素三大组分和云南松进行催化热解。采用气质联用仪对生物油的化学组分进行分析。通过对比ZSM-5参与前后的生物油的主要化学组分的变化,对催化剂的催化机理进行探究。研究结果表明,催化热解过程中,介孔ZSM-5将纤维素直接热解得到的β-D阿洛糖、糠醛、3-丙基戊二酸和2,4-戊二烯酸转化为1-甲基萘、2,6-二甲基萘,纤维素催化热解得到的生物油中的芳烃含量为63.89%。半纤维素催化热解过程中,催化剂将生物油中的糠醛从67.78%降低为2.66%,有效提高芳烃化合物,包括萘、2-甲基萘的含量,催化热解后得到的生物油中总芳烃含量达到36.81%。木质素催化热解过程中,介孔ZSM-5有效降低生物油中2,6-二叔丁基对甲酚的量(从82.33%降至77.97%),并大幅地提高1,8-二甲基萘和1,7-二甲基萘的量,生物油中总芳烃相对含量达到14.14%。云南松催化热解过程中,催化剂有效降低云南松直接热解得到生物油中2-甲氧基-4-甲基苯酚和(Z)-异丁子香酚的含量,并将芳烃化合物总量提高到53.99%(主要是1-甲基萘、1-亚甲基-1氢-茚和2,6-二甲基萘)。随着催化剂使用次数的增加,生物油中含氧化合物相对含量增加,烃类化合物的相对含量明显降低,从53.99%降至43.32%,元素分析结果表明生物油中的碳含量逐渐减少,氧含量逐渐增加。但是,催化剂经过焙烧再生后,催化活性基本完全恢复。  相似文献   

17.
开展了土壤柴油污染的单因素盆栽实验和柴油污染盐渍化土壤中添加锯末-硝酸铵-磷酸二氢钾的三因素正交盆栽实验,对黑麦草幼苗抗氧化酶活性和叶绿素含量进行了分析,探究了柴油污染土壤中黑麦草幼苗的生理变化与调节。结果表明,土壤柴油污染显著减小了黑麦草幼苗生物量,与对照相比,叶SOD活性在柴油浓度0.3%和0.9%时显著降低,POD和CAT活性在0.6%和0.9%柴油浓度下显著降低;根SOD活性在0.9%柴油浓度下显著增大,POD活性在0.6%和0.9%柴油浓度下显著下降。受柴油污染的盐渍化土壤,施加锯末体积分数为10%时,黑麦草幼苗叶POD和CAT活性显著增强,叶绿素a和叶绿素b含量显著增加;施氮量为0.3 g·kg~(-1)土时,黑麦草幼苗叶绿素a和叶绿素b含量显著增加。可见,土壤受柴油污染时,添加锯末和硝酸铵可有效调节黑麦草幼苗的生理代谢。  相似文献   

18.
为了进一步探明流化床系统参数对生物质热裂解产物生物油产率的影响规律而进行了热裂解液化试验。该研究以玉米秸秆为原料,采用山东理工大学研制的以氩气等离子体作为主热源的生物质快速热裂解液化流化床试验装置,以输入功率、氩气流量、压差和进料率为试验因子,生物油产率为试验指标,采用二次正交旋转组合的方法进行试验。并对试验结果利用Rada软件分析得出热裂解生物油产率的二次回归方程及该试验条件下生物油得最大产率的参数组合,即当输入功率为38.5 kW,氩气流量为2.0 m3/h,压差为200 mm,进料率为0.87kg/h时,最高生物油产率为58.45%。在试验条件下,可得压差和进料率是影响生物油产率的主要因素,而输入功率和氩气流量对其产率的影响相对较弱。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号