首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
以鞣花酸(EA)为发色团,将其掺杂在海藻酸钠(SA)中,经过与Zn2+、Ca2+等二价金属离子交联凝胶化,凝胶经过冷冻干燥得到绿色余辉气凝胶(EA@SA)。对EA@SA气凝胶进行光物理性能分析,结果显示,使用不同的二价金属阳离子交联的气凝胶均有良好的磷光发射,EA@SA-Zn、EA@SA-Ca、EA@SA-Sr、EA@SA-Ba气凝胶磷光寿命分别为275.71,157.59,123.92和144.56 ms,其中EA@SA-Zn气凝胶的磷光寿命最长。测试的荧光光谱及荧光寿命表明,EA@SA-Zn气凝胶的荧光发射以430 nm为发射中心,荧光寿命达到5.87 ns。SEM测试结果表明,制备的EA@SA-Zn气凝胶内部呈现网状多孔结构并且结构较为疏松,丰富的孔隙结构为EA分子提供良好的基质环境。同时,EA@SA-Zn气凝胶的元素映射图显示其表面均匀分布C、O、Zn、Cl 4种元素,这说明Zn2+与海藻酸钠交联充分,从而成功制备EA@SA-Zn气凝胶。将制备的EA@SA-Zn气凝胶放置在不同湿度环境下,随着相对湿度的增加,磷光...  相似文献   

2.
【目的】制备基于1,2,3,4-丁烷四羧酸(BTCA)的化学交联型纳米纤维素(CNF)气凝胶,研究交联程度对CNF气凝胶化学结构、微观形貌和物理力学性能的影响规律,为下一步功能型CNF气凝胶的开发奠定基础。【方法】配制不同质量比的CNF与BTCA混合水悬浮液,采用常规冷冻干燥和后交联方法制备出具有不同交联结构的CNF气凝胶,利用傅里叶变换红外光谱仪(FTIR)、X射线光电子能谱仪(XPS)、扫描电子显微镜(SEM)和全自动比表面积孔径分析仪对气凝胶的化学结构、微观形貌、比表面积和孔径分布进行表征分析,并测试其力学性能。【结果】1)与纯CNF气凝胶相比,BTCA交联型CNF气凝胶的FTIR和XPS谱图形态均发生明显变化,FTIR谱图中羟基(—OH)吸收峰减弱而羰基(C=O)吸收峰增强,XPS谱图中C1s的C1、C2、C3能谱均有较大幅度变化,并且拟合出C4(O—C=O)能谱。2)CNF气凝胶经BTCA交联后,其孔结构由原来的缝形孔变为相对规整的柱状孔。随着BTCA含量增加,其比表面积和总孔容逐渐减小,当m(CNF)/m(BTCA)为10/1时,CNF气凝胶的比表面积和总孔容分别从原来的62.8 m~2·g~(-1)、0.21 cm~3·g~(-1)减小到35.5 m~2·g~(-1)、0.098 m~2·g~(-1),降低了将近一半;当m(CNF)/m(BTCA)达到10/4时,CNF气凝胶的整体结构变疏松、易掉渣,出现明显酯化现象。3)纯CNF气凝胶的密度仅5.76 mg·cm~(-3),在100 g载荷下的压缩率高达62.4%,压缩回弹率仅30%。随着BTCA含量增加,其密度和压缩回弹率逐渐增大,压缩率则逐渐减小,当m(CNF)/m(BTCA)为10/1时,CNF气凝胶仍表现出较低的密度(7.67 mg·cm~(-3)),压缩率略微下降(56.8%),但压缩回弹率显著增加(80.8%);当m(CNF)/m(BTCA)达到10/4时,CNF气凝胶的密度增加到9.54 mg·cm~(-3),其压缩率(下降到34%)和回弹率(增加到95%)均发生了显著变化。【结论】BTCA使CNF气凝胶形成化学键结合的交联结构,对其孔隙结构和物理力学性能产生明显影响。BTCA与CNF的质量比越大,CNF气凝胶的密度越大,孔隙结构越致密,只有当BTCA与CNF的质量比在一定范围内时,才能在明显改善CNF气凝胶抗变形性和形变恢复能力的同时使其保持良好的柔韧性,提高其应用价值。  相似文献   

3.
通过混合不同类型的纳米纤维素制备混合气凝胶,分析其性能特征。将桉木纸浆经化学预处理,结合机械研磨法制备得到纤维素纳米纤丝(cellulose nanofibril,CNF),桉木微晶纤维素(MCC)经硫酸水解法制备得到纤维素纳米晶体(cellulose nanocrystal,CNC),通过透射电镜与X射线衍射仪观测发现二者具有不同的长径比和结晶度。利用悬浮滴定、叔丁醇置换、冷冻干燥等方法制备球形CNF气凝胶和CNF/CNC混合气凝胶,采用扫描电镜、傅里叶红外光谱仪、比表面积分析仪、万能力学试验机对气凝胶的微观形貌、化学官能团、比表面积、平均孔径及压缩性能进行表征,结果表明:CNF气凝胶内部呈现三维网络结构,片状与纤丝状交织,比表面积为91.07m~2/g,平均孔径为14.81 nm,受压缩到80%应变时,压缩强度为0.125 MPa;添加不同比例的CNC制备CNF/CNC混合气凝胶,当CNC添加量为25%时,气凝胶内部纤丝结构取代片状结构,孔隙更加均匀,比表面积升至143.09m~2/g,压缩强度增至0.2 MPa,化学官能团和晶型结构未发生明显变化。当CNC添加量过大(50%)时,则会造成各项性能的减弱。  相似文献   

4.
纤维素气凝胶被誉为继有机气凝胶和无机气凝胶之后的新一代气凝胶,是新生的第三代材料,在吸附材料等领域具有广阔的应用前景。笔者先以微晶纤维素(MCC)为原料经硫酸水解法制得纳米纤维素(NCC),再通过无机盐溶液物理凝胶成型法、叔丁醇置换和液氮冷冻干燥制备球形纤维素气凝胶。利用场发射扫描电子显微镜(SEM)、万能力学试验机、热重分析仪、全自动比表面积及孔隙分析仪对所制备的纳米纤维素气凝胶的力学性能、微观形貌、比表面积、孔径分布及热稳定性进行表征分析。结果表明,液氮冷冻干燥法制备的球形纳米纤维素气凝胶主要为疏松多孔的三维层状结构同时存在少量三维网络结构,其比表面积在104.07~164.97 cm~2/g之间,孔径主要分布在10~25 nm内;纳米纤维素气凝胶的力学性能、压缩强度、密度随着纳米纤维素质量分数的增加而变大;纳米纤维素气凝胶的热稳定性与微晶纤维素和纳米纤维素相似。  相似文献   

5.
以纳米纤维素为原料,采用"CaCl_2溶液促进物理凝胶法"制备水凝胶,选用叔丁醇溶液为置换溶剂并采用"多步法"完成溶剂置换,最后通过冷冻干燥法制备纳米纤维素气凝胶。通过扫描电子显微镜(SEM)、全自动比表面积与孔隙度分析仪和热重分析仪(TG)对所制备的纳米纤维素气凝胶进行微观形貌、比表面积、孔径分布及热稳定性进行表征分析。结果表明:叔丁醇冷冻干燥法制备的纳米纤维素气凝胶是具有层状的以中孔和大孔为主的多孔材料,其比表面积可达174.3 m2/g,收缩率仅为7.86%,平均孔径约为18.4 nm。随着纤维素质量分数的增加,纳米纤维素气凝胶的吸附量和比表面积增大,孔隙度增加,收缩率逐渐减小;纳米纤维素气凝胶具有与微晶纤维素和纳米纤维素相似的热稳定特性。CaCl_2溶液通过改变原始溶胶体系的电荷分布而使粒子更易相互靠近聚集形成凝胶,落入其中的纳米纤维素颗粒会保持其落入瞬间的完整状态。  相似文献   

6.
以硝酸铈、柠檬酸和偏钒酸铵为原料,采用溶胶-凝胶法制备了V5 离子掺杂的纳米CeO2粉体.利用X射线粉晶衍射(XRD)和扫描电子显微镜(SEM)等方法研究了成胶温度、焙烧温度、V5 掺入量等对合成物的微观结构、物相组成的影响.XRD分析结果表明合成的CeO2粉晶为具有空间群Fm3m的立方晶系晶体结构.焙烧温度和V5 离子的掺入量对所制备纳米CeO2的结晶度、晶粒尺寸,结晶速度等均有影响.  相似文献   

7.
碳点(CDs)和石墨烯量子点(GQDs)由于结构稳定、环境友好、水分散性和生物相容性良好、易于功能化改性和可光致发光等优点已成为备受关注的零维碳纳米材料,有望广泛应用于生化指示、生物医学、储能、显示器件和催化等前沿领域。近年来,相比于传统的化石燃料基化合物,来自可再生生物质的木质素及其衍生物不仅价廉易得、活性基团丰富,而且具有天然芳香结构,已成为CDs和GQDs的重要前驱体。但是,已有报道对木质素的解聚机制认识不足,这也逐渐成为制约木质素基CDs和GQDs性能提升的瓶颈之一。因此,必须阐明木质素在相关工艺过程中发生解聚的化学本质,并明确杂原子掺杂与木质素基CDs和GQDs的激发依赖发光行为的内在联系。笔者首先介绍了木质素基CDs和GQDs的制备方法发展历程和潜在应用,同时对其结构和性质等进行评述,重点讨论并总结了制备具有出色激发依赖发光行为的木质素基CDs和GQDs的技术难点,认为开发一类适用于普遍性木质素原料的高效环保解聚策略,以及揭示木质素基CDs和GQDs的杂原子掺杂与其激发依赖发光行为的关联机理将成为该领域今后的重点研究方向。  相似文献   

8.
为了探讨再生纤维素气凝胶对碘蒸气的吸附去除能力,用天然竹纤维制备再生纤维素球形气凝胶(RCSA),然后通过银氨络离子在纤维素表面的吸附和反应,得到Ag2O/再生纤维素球形复合气凝胶(Ag2O/RCSA),以127I作为放射性131I的同位素研究了复合气凝胶对碘的吸附。采用扫描电子显微镜(SEM)、透射电子显微镜(TEM)、X射线衍射(XRD)和BET比表面积等检测手段对制备的Ag2O/RCSA样品的形貌、晶型、孔隙结构和碘吸附性能进行了表征。研究结果表明:纳米Ag2O粒子的引入使RCSA颜色由白色变为棕色,RCSA原始的三维网结构没有发生变化;纳米Ag2O粒子均匀分布在纤维素骨架中,并与纤维素紧密结合;Ag2O/RCSA与RCSA一样都表现为Ⅳ型吸附/脱附等温线,BET比表面积、BJH孔体积比RCSA明显减小,平均孔径大小变化不大;Ag2O/RCSA对碘蒸气的吸附是气凝胶孔隙的物理吸附和Ag2O转变为Ag I的化学吸附共同作用,总吸附量为87.8 mg/g。  相似文献   

9.
纳米纤维素晶体的制备及表征   总被引:2,自引:0,他引:2  
采用超声波辅助硫酸水解、高速离心取其上清层水溶胶的方法由微晶纤维素(MCC)制备纳米纤维素晶体(NCC),并采用场发射透射电子显微镜(FETEM)、场发射环境扫描电子显微镜(FEGE-SEM)、X射线衍射仪(XRD)和傅里叶变换红外光谱仪(FTIR)对所制备NCC的尺寸与形态、结构、组成和光谱性质进行分析。结果表明:FETEM和FEGE-SEM观察所制备纳米纤维素晶体形态相同,呈棒状,直径和长度主要分布在2~24nm和50~450nm;XRD图谱表明NCC仍属于纤维素Ⅰ型,结晶度为77.29%,晶粒尺寸为3~6nm;FTIR分析表明所制备的纳米纤维素晶体仍然具有纤维素的基本化学结构。  相似文献   

10.
以竹粉为原料制备纳米纤维素基体材料,以聚乙烯醇(PVA)为增强相,在酸性环境下采用冷冻干燥法制得PVA/CNFs(纳米纤维素)复合气凝胶;采用三甲基氯硅烷(TMCS)对其进行疏水改性处理,随后将其浸渍到还原氧化石墨烯(r GO)悬浮液中,最终制得疏水型r GO/PVA/CNFs复合气凝胶;通过扫描电子显微镜(SEM)、傅里叶变换红外光谱(FT-IR)、拉曼光谱(Raman)、接触角(CA)和吸油性能测试,对所制气凝胶的微观形貌、化学结构、疏水性能及吸油性能进行表征。结果表明:制得的复合气凝胶密度为6.78 mg/cm3,具有均匀的三维网状多孔结构,且孔洞结构表面均被石墨烯片层覆盖;经过TMCS疏水处理后,在气凝胶表面形成疏水层结构。FT-IR和Raman分析表明,TMCS疏水改性处理并未改变PVA/CNFs复合气凝胶的化学结构。经疏水处理后气凝胶与水的接触角为138°左右,吸油倍率为78 g/g左右,且吸附过程迅速,饱油后也能悬浮于溶液表面,便于回收再利用。  相似文献   

11.
酸掺杂纳米聚苯胺催化合成松油醇的研究   总被引:2,自引:0,他引:2  
采用快速混合法制备了酸(盐酸、硫酸、氯乙酸等)掺杂的纳米聚苯胺纤维,扫描电子显微镜分析结果表明获得的聚苯胺纤维的直径在50~200nm之间。以松节油水合为目标反应,考察了催化剂制备条件对其催化性能的影响规律。结果表明催化剂较佳制备条件为:掺杂酸为硫酸,浓度为2.0mol/L,苯胺浓度为0.30mol/L,过硫酸铵与苯胺的浓度比为1∶1。在相同水合条件下,α-蒎烯转化率、α-松油醇的收率均达到最高值,分别为93.80%和60.60%。  相似文献   

12.
以微晶纤维素为原料,卵清蛋白(OVA)为N源,采用水热炭化法制备N掺杂炭气凝胶(NCA)。利用SEM、氮气的吸附脱附、XRD、FT-IR和XPS对NCA表面形貌、孔径结构、晶相结构和表面化学组成进行表征,并以Pb~(2+)和Cr~(6+)为模型物评价NCA对重金属离子的吸附性能。结果表明:所制备的NCA是由无定形炭组成的三维网状立体结构,BET比表面积为134.48 m2/g,平均孔径为12.28 nm,总孔容为0.413 0 m3/g;NCA由C、N、O组成,XPS表明其表面存在CO,—COOH以及C—N等官能团,其中N元素以亚硝酰、氨基、吡啶N和季铵N的形式存在。NCA对Pb~(2+)和Cr~(6+)的吸附过程更符合Langmuir等温模型和准二级动力学模型,25℃时NCA对Pb~(2+)和Cr~(6+)的最大吸附量分别为223.98 mg/g和35.12 mg/g,而CA对Pb~(2+)和Cr~(6+)的最大吸附量分别为65.78 mg/g和16.65 mg/g。NCA对重金属离子的吸附效果明显优于未掺杂N的炭气凝胶(CA)。  相似文献   

13.
TLC法测定虎杖中白藜芦醇的含量   总被引:5,自引:0,他引:5  
本文建立了虎杖白藜芦醇含量测定的薄层扫描分析方法:以硅胶G为薄层吸附荆,氯仿:丙酮:乙酸:水(4:4:0.5:0.2)为展开剂,在紫外灯(365nm)下观察荧光斑点,在365n/n处并进行扫描测定,线性方程为:Y=(13.826S’10^-6)-0.8698(Y为白藜芦醇浓度ug/ml,S为峰面积)。并对虎杖茎、根、叶进行了含量测定。结果表明:用TIC法测定虎杖中白藜芦醇含量方法简便、快捷、准确度高、重复性好。虎杖鲜根茎中含量达0.548%。  相似文献   

14.
以溶剂热法合成Fe_3O_4磁性微球,并以正硅酸四乙酯(TEOS)为硅源,通过溶胶-凝胶法在Fe_3O_4磁性微球表面包裹SiO_2壳层,利用3-(异丁烯酰氧)三甲氧基硅烷(APTES)对SiO_2壳层进行修饰后,通过交联沉淀聚合法在SiO_2壳层外部合成聚丙烯酸(PAA)层,形成Fe_3O_4@SiO_2@PAA多层核-壳结构复合微球。利用透射电子显微镜(TEM)、红外光谱(FT-IR)和热重分析仪(TGA)对合成材料的形貌和结构进行表征,并就多层结构复合微球对染料的吸附性能进行研究。结果显示:制备的Fe_3O_4磁性微球具有良好的水分散性,其表面可分步包裹SiO_2和PAA壳层,形成Fe_3O_4@SiO_2@PAA多层核-壳结构复合微球,该复合微球对罗丹明6G和亚甲基蓝的吸附量分别达到1.04和1.14 mg/g(吸附质量浓度为2.4 mg/L,吸附时间为10 min),表现出良好的染料吸附性能。  相似文献   

15.
以钛酸四丁酯、硝酸银为原料,采用溶胶-凝胶(sol-gel)法制备了掺杂不同含量银的TiO2纳米粉体,并将其应用于活性染料-活性红195、活性黄145及活性蓝19的印染废水的光催化降解。结果表明:适量的银掺杂可有效提高TiO2对活性染料光催化降解活性;当pH值为6~8、银掺杂量为0.6%(Ag/TiO2摩尔比)、活化温度为500℃、催化剂用量为0.1g/L时,光催化降解效率最高,分别为92.5%(活性红195)、90.8%(活性黄145)、83.6%(活性蓝19)。  相似文献   

16.
中国绿刺蛾质型多角体病毒RNA(Ps CPV RNA)用热酚法从提纯的病毒多角体中提取。紫外吸收光谱测定最高和最低吸收值分别在260 nm和230 nm处,经测定其T_m值为805℃.在3%聚丙烯酰胺凝胶中,经电泳CPV RNA可分离得到10条基因片段,各片段大小为0.34×10~6~2.57×10~6,总分子量为14.88×10~6.  相似文献   

17.
以木材液化物为前驱体原料,经凝胶、碳化、活化法制备的碳气凝胶(CA)为基材,通过两步水热法在其骨架表面原位负载NiCo2S4得到NiCo2S4/木材液化物碳气凝胶(NiCo2S4-CA)复合电极材料。利用扫描电子显微镜(SEM)、氮气吸附-脱附实验、傅里叶红外光谱(FT-IR)、X射线衍射(XRD)、X射线光电子能谱(XPS)等手段来表征NiCo2S4-CA材料的物相结构和表面形貌,通过循环伏安法、恒电流充放电及电化学交流阻抗等测试方法研究其电化学性能,探究其电荷储存机理。结果表明:NiCo2S4纳米颗粒锚定在具有珊瑚网络结构的CA骨架表面,形成丰富的多级孔隙结构。CA的引入有利于NiCo2S4的良好分散,缓解其团聚问题,且不会改变NiCo2S4的晶体结构。NiCo2  相似文献   

18.
以碱木质素(AL)作为原料,KOH为活化剂,壳聚糖(CS)为氮源制备氮掺杂木质素基活性炭(N-LAC),采用SEM、XPS和N2吸附-脱附等温线等方法对活性炭的结构进行表征,并考察了N-LAC对甲基橙(MO)和亚甲基蓝(MB)的吸附性能。研究结果表明:N-LAC主要由微孔构成,掺氮增大了木质素基活性炭(LAC)的表面孔隙,在制备条件为KOH与AL质量比2∶1、CS添加量(以碱木质素质量计)30%、活化温度800℃、活化时间2 h时,N-LAC的比表面积为1 457.79 m2/g,总孔容为0.789 cm3/g,微孔孔容为0.612 cm3/g,平均孔径为2.165 nm。N-LAC中氮元素主要以吡咯型氮(N-5)和吡啶型氮(N-6)形式存在,氮的掺杂会降低活性炭的石墨化程度。N-LAC吸附MO和MB的吸附动力学结果表明:N-LAC吸附MO符合粒内扩散模型,以表面吸附为主;N-LAC吸附MB符合准二级动力学模型。  相似文献   

19.
为提高光催化材料的效率,实现材料的绿色化,以木质纤维素为原料,以TiO2为催化材料,通过掺杂Ni-NiO/Fe3O4-GR制备了磁性光催化材料。结果表明:不同添加量的Fe3O4-GR(G1F1)对亚甲基蓝的光催化效率明显不同,在光催化材料复合物中,当G1F1添加量占木质纤维素质量的8.3%时,其光催化效率可达91.92%,显示出优异的光催化性能。  相似文献   

20.
通过硫酸水解脱脂棉制备了纳米纤维素晶须(NCW)悬浮液,在NCW悬浮液中加入一定量阴离子型高分子电解质羧甲基纤维素钠(CMC-Na)后,喷雾干燥悬浮液制备出了粉状NCW固体。将NCW固体重新分散于去离子水中得到再分散纳米纤维素晶须(re-NCW)悬浮液,探究了再分散过程中CMC-Na用量、超声波作用时间、NCW悬浮液的pH值、喷雾干燥入口温度对re-NCW再分散性能的影响,并用傅里叶红外光谱(FT-IR)、扫描电子显微镜(SEM)、透射电镜(TEM)、热失重分析(TGA)等方法对re-NCW进行了表征。结果表明,当CMC-Na添加量为6%、超声波作用时间为5 min,NCW悬浮液的pH值为7,喷雾干燥入口温度为160℃时,制备的re-NCW平均粒径约为170 nm,Zeta电位值约为65 mV,具有良好的可再分散性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号