首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
以竹热解气化产生的炭副产物为原料,高分子化改性焦油等为黏结剂,经液压成型、热解交联、水蒸气活化制备竹质成型活性炭,分析了不同黏结剂的成型机制,考察了黏结剂类型、改性焦油添加量、活化温度、活化时间对活性炭性能的影响,结果发现:焦油经芳香化交联改性后,相对分子质量和热稳定性提高了,对竹炭孔道的堵塞作用减轻了,炭颗粒间的黏结和热解交联作用增强了,可制备高性能的竹质成型活性炭;以40 g竹炭粉为原料,在改性焦油添加量12 g、炭化温度550℃、炭化时间90 min、水蒸气活化温度850℃、水蒸气活化时间80 min的条件下制得成型活性炭,其碘吸附值1 232 mg/g,亚甲基蓝(MB)吸附值240 mg/g,强度91%,得率48.5%,比表面积和总孔容分别为1 157 m2/g和0.478 1 cm3/g,对甲苯和四氯化碳的吸附率分别为385 mg/g和75.2%,且成型活性炭的微孔孔容与甲苯和四氯化碳吸附率呈正比关系。  相似文献   

2.
竹节制备高比表面积活性炭的研究   总被引:12,自引:4,他引:12  
以竹节为原料,采用KOH化学活化法制备高比表面积活性炭。研究了炭化温度、活化温度和KOH与生节炭的质量比对活性炭的收率和吸附性能的影响,并对所得活性炭的比表面积和微孔结构进行了初步探讨。结果表明:在炭化温度为700℃、碱/炭质量比为4、活化温度为900℃、活化时间为1h时可制表面积为2610m^2/g的高比表面积活性炭,其碘吸附值为2300mg/g、亚甲基基蓝值为570mg/g,均为普通活性炭的2-3倍。  相似文献   

3.
KOH活化制备高比表面积竹活性炭研究   总被引:9,自引:0,他引:9  
研究了KOH浸渍量、活化温度、活化时间等因素对活性炭收率、微孔结构和吸附性能的影响,结果表明:当碱,竹比为0.7,炭化温度为500℃,炭化时间为1h,活化温度为800℃,活化时间为20min时,所制得的活性炭的微孔比表面积达2492m^2/g、碘吸附值2382mg/g、亚甲基蓝吸附值558mg/g。  相似文献   

4.
以硬杂木龙凤檀的加工剩余物为原料,研究了磷酸活化法的活化温度、磷酸质量分数和浸渍比对龙凤檀活性炭吸附性能的影响,通过N2吸附-脱附等温线对活性炭的结构进行分析,并根据吸附理论和DFT孔径分布图,拟合计算出活性炭有效孔道所占的孔容积与液相吸附性能(碘吸附值、亚甲基蓝吸附值和焦糖脱色率)的构效关系。研究结果表明:在磷酸质量分数60%、磷酸溶液与龙凤檀浸渍比3∶1(mL∶g)、活化温度500℃、活化时间120 min的条件下,磷酸活化法制备的龙凤檀活性炭具有最佳的吸附性能和优异的孔隙结构,碘吸附值为841 mg/g,亚甲基蓝吸附值为270 mg/g,焦糖脱色率为120%,比表面积为1 516 m2/g,总孔容为1.145 cm3/g,均优于软杂木杉木制备得到的活性炭。应用密度泛函理论(DFT),计算出龙凤檀活性炭不同孔径区间对应的孔容积,经过理论分析和拟合计算,发现碘吸附值与孔径在1.0~2.7 nm之间的孔容积、亚甲基蓝吸附值与孔径在1.7~5.0 nm之间的孔容积、焦糖脱色率与孔径在2.7~6.3 nm之间的孔容积有着很好...  相似文献   

5.
以棉花秸秆为原料,采用KOH活化法制备活性炭样品,探讨了炭化、活化及后处理过程中各实验条件对活性炭样品性能的影响。综合考虑活性炭样品的性能及得率,得出较优的实验条件为:炭化温度450~500℃、碱炭比值1.0、活化温度800℃、活化时间120 min;在较优条件下制得活性炭的比表面积2 312 m2/g,碘吸附值1 936 mg/g,亚甲基蓝吸附值392 mg/g;孔径分布以微孔为主;表面含有羟基(—OH)、活泼氢(—H)等基团。  相似文献   

6.
选择了水蒸气活化椰壳活性炭(AC-11、AC-12、AC-13),磷酸活化粉末状活性炭(AC-21、AC-22),以及KOH活化石油焦高比表面积活性炭(AC-31、AC-32)7种以常见方法制备的,比表面积在800~3 500 m2/g范围的活性炭,研究了2种I2/KI质量比对活性炭碘吸附值测定结果的影响,并分析了活性炭比表面积和孔隙结构对碘吸附值的影响。研究结果显示:活性炭的比表面积越大、中孔越发达、中孔分布越宽,I2/KI质量比对活性炭碘吸附值的影响就越大,m(I2)∶m(KI)为1∶1.5下测试样品AC-31的碘吸附值与其在m(I2)∶m(KI)为1∶2条件下的差值能达到140 mg/g;对于碘吸附值在800 mg/g左右的微孔型活性炭AC-13,2种比例测试得到的差值几乎可以忽略不计,也就是说旧版和新版的木质和煤质活性炭标准得到的活性炭碘吸附值差别很小。在活性炭碘吸附值测试条件下,吸附碘有效孔隙主要集中在0.8~1.5 nm之间。对于椰壳活性炭等微孔型活性炭,其比表面积...  相似文献   

7.
以棉花秸秆为原料,采用KOH活化法制备活性炭样品,探讨了炭化、活化及后处理过程中各实验条件对活性炭样品性能的影响.综合考虑活性炭样品的性能及得率,得出较优的实验条件为:炭化温度450~500℃、碱炭比值1.0、活化温度800℃、活化时间120 min;在较优条件下制得活性碳的比表面积2 312m2/g,碘吸附值1 936 mg/g,亚甲基蓝吸附值392 mg,/g;孔径分布以微孔为主;表面含有羟基(-OH)、活泼氢(-H)等基团.  相似文献   

8.
以椰壳为原料,采用热解活化法制备微孔发达活性炭.研究了活化温度、活化时间对活性炭孔结构和吸附性能的影响.实验结果表明:活化温度为900℃,活化时间为4h,可制得比表面积为994.42 m2/g的微孔发达活性炭,其碘吸附值为1 295 mg/g,亚甲基蓝吸附值为135 mg/g.N2吸附结果表明活性炭的平均孔径在2nm左右,总孔容积为0.503 9 cm3/g,其中微孔容积为0.430 3 cm3/g,微孔率达85.39%.对该活性炭进行CO2动态吸附实验,CO2饱和吸附容量为56.61 mg/g,在热解活化法制备椰壳过程中,随着活化温度的升高和活化时间的延长,活性炭的得率有不同程度的降低.  相似文献   

9.
热解活化法制备微孔发达椰壳活性炭及其吸附性能研究   总被引:1,自引:0,他引:1  
以椰壳为原料,采用热解活化法制备微孔发达活性炭。研究了活化温度、活化时间对活性炭孔结构和吸附性能的影响。实验结果表明:活化温度为900℃,活化时间为4 h,可制得比表面积为994.42 m2/g的微孔发达活性炭,其碘吸附值为1 295 mg/g,亚甲基蓝吸附值为135 mg/g。N2吸附结果表明活性炭的平均孔径在2 nm左右,总孔容积为0.503 9 cm3/g,其中微孔容积为0.430 3 cm3/g,微孔率达85.39%。对该活性炭进行CO2动态吸附实验,CO2饱和吸附容量为56.61 mg/g,在热解活化法制备椰壳过程中,随着活化温度的升高和活化时间的延长,活性炭的得率有不同程度的降低。  相似文献   

10.
油茶果壳基活性炭的制备及其中孔结构调控研究   总被引:2,自引:0,他引:2  
研究了油茶果壳经水蒸气活化后,浸渍磷酸再活化对活性炭中孔结构调控的影响,制备出中孔丰富的活性炭。实验结果显示:820℃下制备的水蒸气法油茶果壳活性炭以微孔为主,BET比表面积1 076 m2/g,总孔容积0.81 cm3/g,微孔率63%,中孔率33%,亚甲基蓝吸附值180 mg/g,碘吸附值1 012 mg/g;水蒸气法油茶果壳活性炭经800℃下磷酸再活化后,可明显增加BET比表面积(1 608 m2/g)和总孔容积(1.17 cm3/g),尤其对中孔率(61%)的发展更有效,同时保留一定比例的微孔(37%),显示出更高的亚甲基蓝吸附值(330 mg/g)和碘吸附值(1 326 mg/g)。  相似文献   

11.
竹材是重要的林业可再生资源,以竹材代替木材制备活性炭可节省大量木材。以竹粉为原料,经磷酸活化成型后进行水蒸气二次活化,在不同工艺条件下制备了高吸附性能活性炭。通过碘吸附值、亚甲基蓝吸附值、N_2吸附-脱附等温线、二硫化碳动态吸附量等对所制活性炭的性能进行表征。结果表明:在磷酸浸渍比1.2∶1、活化时间20 min、活化温度450℃,水蒸气活化温度875℃、活化时间1 h、流量3.0 m L/min条件下,制得的活性炭BET比表面积为1 264.60 m~2/g、总孔容积为1.227 cm~3/g、平均孔径为3.88 nm、碘吸附值为1 452.96 mg/g、亚甲基蓝吸附值为307.5 mg/g、强度为91.76%、得率为30.42%;在动态干燥和30%相对湿度条件下,对二硫化碳的单位质量吸附量分别为0.416和0.390 g/g。活性炭对CS2的吸附能力主要与活性炭的孔结构有关,微孔发达、平均孔径小、碘吸附值高的活性炭更有利于CS2的吸附。由于竹材表观密度相对较低,且受到竹材自身组分的限制,所制活性炭的强度低于椰壳活性炭。  相似文献   

12.
碱木质素三步法制备微米尺寸球形活性炭研究   总被引:2,自引:0,他引:2  
以碱木质素为原料采用球形木质素前驱体,炭化,活化三步法制备微米尺寸的球形活性炭。研究了球形木质素前驱体的制备条件及活化条件对球形活性炭的粒径大小、结构形貌、孔结构的影响;采用扫描电子显微镜(SEM)、低温N2吸附-脱附以及傅里叶红外光谱(FT-IR)对产物的形貌结构、吸附性能和表面官能团进行了表征。结果表明,当反应温度为90℃,反应时间10 h,搅拌速度200 r/min,p H值为3.0的条件下,制备出粒径为5μm左右、球形形貌完整的球形木质素前躯体。通过对球形木质素前躯体在300℃炭化以及850℃下CO2活化,制备出比表面积为776.96 m2/g,总孔容为0.487 1 cm3/g,平均孔径为2.51 nm的球形活性炭。  相似文献   

13.
以毛竹为炭前驱体,KOH作活化剂,制备具有高比表面积的活性炭(HSAAC)材料,考察了KOH与竹炭的质量比(碱炭比)对活性炭孔结构、吸附性能和电容性能的影响。结果表明:随着碱炭比值的增加,活性炭的比表面积、中孔容积和总孔容增大,微孔孔容先增大后减小;碘吸附值、亚甲基蓝吸附值均呈现先增大后减小的趋势,碱炭比值为4时达到最大,分别为2 168和569 mg/g。当碱炭比值为4时,可制得比表面积为2 610 m2/g、总孔容为1.24 cm3/g(其中微孔孔容0.81 cm3/g,中孔孔容0.382 cm3/g)的活性炭材料。以其为电极材料组装的电容器在30%H2SO4电解液中的比电容为206 F/g。  相似文献   

14.
以椰壳炭化料为原料,通过KOH活化法制备高比表面积活性炭,并探索温度、时间和活化比对活性炭吸附性能的影响.通过单因素试验发现,活化温度800℃,活化时间60 min,活化比值为5的条件下活性炭的吸附性能最优.制备出的活性炭比表面积为3 360 m2/g,总孔孔容为1.798 cm3/g,平均孔径为2.140 nm,对碘的吸附性能为2809 mg/g,对亚甲基蓝溶液的吸附性能为675mg/g.  相似文献   

15.
我国竹材资源丰富,以竹废料为原料,制备可用于超级电容器电极材料的竹活性炭,有助于推动竹产业发展,助力国家“双碳”目标实现。在本研究中,分别采用KOH共热和水热处理对竹粉进行活化,并对制备的竹活性炭进行电化学性能、比表面积、表面微观形貌等测试。实验结果表明,KOH共热活化法的最佳条件为炭化温度350℃,活化温度900℃,升温速率2℃/min,碱炭质量比4∶1;制备的活性炭比表面积为3 299 m2/g, 0.5 A/g电流密度下的比电容为287.8 F/g, 5 000次充放电测试后,电容保持率为95%~105%。水热活化法的最佳条件为KOH质量分数20%,反应温度150℃,反应时间12 h,制备的活性炭比表面积为192.91 m2/g, 0.5 A/g电流密度下的比电容为170.4 F/g,电容保持率为88.89%。2种方法制备的活性炭孔径结构都是以微孔为主,中孔混合分布,含有少量大孔;2种活性炭均含有双层或多层石墨烯结构,但水热活化法制备的活性炭石墨化程度更高,制备条件更温和。研究结果既可为超级电容器用活性炭的研究提供了理论思路,也有效地扩...  相似文献   

16.
磷酸活化法制备纤维素基颗粒活性炭   总被引:1,自引:0,他引:1  
以微晶纤维素为原料,在不添加黏结剂的条件下,采用磷酸活化法制备纤维素基颗粒活性炭。分析了捏合过程和炭活化工艺对活性炭耐磨强度、吸附性能和孔隙结构的影响。研究结果表明,炭活化温度的升高及保温时间的延长有利于颗粒活性炭强度的提高;随着浸渍比值的升高,颗粒活性炭的碘吸附值、亚甲基蓝吸附值、比表面积、总孔容积、微孔容积和中孔容积均呈不断上升的趋势;浸渍比值较小,较细微孔结构发达,浸渍比值较大,较大微孔结构发达。在较佳的工艺条件下:捏合温度150℃,浸渍比值1.25,捏合时间55 min,炭活化温度450℃和保温时间1.0 h,制得颗粒活性炭的碘吸附值、亚甲基蓝吸附值、强度、比表面积、总孔容积、微孔容积、中孔容积和平均孔径分别为896.6 mg/g、131.3 mg/g、94.69%、1 377.3 m2/g、1.083 cm3/g、0.514 cm3/g、0.569 cm3/g和3.14 nm。  相似文献   

17.
KOH微波活化法处理竹炭的研究   总被引:3,自引:0,他引:3  
研究了以自制的快速裂解产物竹炭为原料,采用KOH-微波辐射活化法制备竹质活性炭.利用正交试验探讨了不同因素对竹质活性炭性质的影响.最佳工艺条件为KOH质量分数 25 %,浸渍时间 24 h,微波功率 800 W,活化时间 7 min,所制备的活性炭产品的碘吸附值为 1 239.08 mg/g,亚甲基蓝吸附值为 274.95 mg/g,比表面积为 1 394.16 m2/g,亚甲基蓝吸附值为国家一级品标准(GB/T 13803.2-1999)的2.04倍,同时测定了活化前后竹炭的红外光谱.结果表明,活化后竹炭表面结构有了较大的修饰,增加了较多的表面化学官能团,从而提高了竹炭的比表面积和吸附性能.  相似文献   

18.
利用农业固体废物玉米芯作原料制备了活性炭,通过吸附热力学和吸附动力学过程,探讨了改性玉米芯活性炭对Cd2+模拟废水的吸附性能研究,以及考察了溶液pH值、活性炭投加量和温度对活性炭吸附Cd2+的影响。研究结果表明:磷酸改性600℃下裂解的活性炭吸附能力最好;改性玉米芯活性炭对Cd2+的吸附等温线更符合Freundlich模型;改性玉米芯活性炭对Cd2+的吸附动力学过程用准二级动力学模型能更好地拟合;经过单因素影响试验的研究表明,溶液初始pH值为6、活性炭投加量为0.01g、吸附温度为40℃时,活性炭的吸附效果最好。  相似文献   

19.
在椰壳活性炭表面浸渍CuCl2,经二次炭化、活化工艺制得改性活性炭,当CuCl2质量分数为0.3%、 0.4%、 0.5%和0.7%时,制得的改性活性炭分别标记为AC3、AC4、AC5和AC7。通过扫描电镜(SEM)、N2吸附-脱附、X射线衍射(XRD)和X射线光电子能谱(XPS)对改性活性炭进行表征,在常温动态吸附装置中考察改性活性炭对气相苯的吸附-脱附性能。研究结果表明:改性后活性炭表面酸性含氧官能团减少,且铜在活性炭表面及孔隙内部主要以CuO和Cu2O形式存在,随着浸渍CuCl2质量分数的增加活性炭比表面积降低、孔容积减小,但微孔比表面积和比例提高,其中AC5的微孔比表面积为733.20 m2/g,微孔比例达到72.99%。改性活性炭AC5对气相苯吸附性能最佳,对5 mg/L苯的平衡吸附量为356.40 mg/g,平衡吸...  相似文献   

20.
木质素-聚丙烯酸钠高吸水树脂的制备及性能   总被引:1,自引:0,他引:1  
采用水溶液聚合法通过改变木质素种类合成木质素-聚丙烯酸钠吸水树脂,比较了不同树脂的形态特征、吸水及耐盐性能,并研究了不同木质素对合成树脂的微观孔隙结构和比表面积的影响,进一步采用动力学模型拟合树脂的溶胀行为。结果表明:碱木质素(AL)的少量(2.67%)添加对聚丙烯酸吸水树脂的吸水能力有显著提高,木质素邻苯三酚合成树脂(LP-g-PAA,2 137 g/g)木质素磺酸盐合成树脂(LS-g-PAA,1 348 g/g)木质素间苯二酚合成树脂(LR-g-PAA,1 344 g/g)木质素对甲酚合成树脂(LC-g-PAA,1 262 g/g)碱木质素合成树脂(AL-g-PAA,518 g/g)聚丙烯酸树脂(PAA,439 g/g)。添加不同种类木质素的合成树脂的溶胀行为均符合Schott二级溶胀动力学模型,R2值均大于0.98。LP-g-PAA的耐盐性能受离子价位、水合离子半径和离子浓度的影响,其耐盐性能强弱顺序如下:KClKNO_3≈LiClK_2SO_4K_2CO_3CaCl_2FeCl_3。FE-SEM和BET分析表明:添加少量不同种类的木质素能够不同程度地改变合成树脂的孔隙结构和比表面积,从而影响其吸液性能。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号