首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 857 毫秒
1.
建立了气相色谱-离子阱质谱(GC-ITMS)检测稻田水、土壤、糙米、稻壳和植株中噻呋酰胺残留的分析方法,通过田间试验研究了噻呋酰胺在稻田中的残留及消解动态。结果表明:在0.03~6 mg/L范围内,噻呋酰胺的进样质量浓度与色谱峰面积间呈良好的线性关系;在添加水平为0.03、0.3和3 mg/L时,噻呋酰胺在田水、土壤、糙米、稻壳和水稻植株中的平均回收率在71%~100%之间,相对标准偏差(RSD)在1.8%~11.4%之间。噻呋酰胺在以上基质中的方法定量限(LOQ)为0.03 mg/kg,检出限(LOD)为0.01 mg/kg。分别用一级动力学方程和二级动力学方程对消解动态试验数据进行了拟合,田水中噻呋酰胺的消解半衰期为2.4~9.2 d,土壤中的为1.8~10.3 d,植株中的为1.3~4.1 d。本研究结果表明,在有效使用剂量不高于169.2 g/hm2,水稻生育期施药次数不超过3次的条件下,稻谷成熟收获时噻呋酰胺在稻谷中的残留量远低于中国国家标准中规定的3 mg/kg。  相似文献   

2.
丙炔氟草胺的水解及光解特性研究   总被引:1,自引:1,他引:0  
为深入了解丙炔氟草胺的环境化学行为,通过室内模拟试验研究了其在不同条件下的水解和光解特性。结果表明:15℃下,初始质量浓度为2 mg/L的丙炔氟草胺在pH值为5、7和9的缓冲溶液中的水解半衰期分别为63.00、33.00和28.50 h,即其在碱性条件下水解最快;中性(pH 7)条件下,丙炔氟草胺在15、25和35℃下的水解半衰期分别为33.00、23.10和8.88 h,表明其水解受温度影响,温度越高,水解速率越快;丙炔氟草胺在河水中的水解速率高于在自来水和蒸馏水中的水解速率,3种条件下的半衰期分别为2.70、6.03和19.80 h。300 W汞灯照射下,丙炔氟草胺在碱性条件下的光解速率大于在酸性和中性条件下,半衰期分别为0.03、0.45和0.44 h;此外,丙炔氟草胺在不同有机溶剂中的光解速率顺序依次为甲醇 > 乙酸乙酯 > 正己烷 > 乙腈 > 丙酮;其在不同光源下的光解速率依次为500 W汞灯 > 300 W汞灯 > 氙灯。研究结果可为丙炔氟草胺的环境风险评价提供参考。  相似文献   

3.
为明确引起山西省玉米纹枯病的主要丝核菌融合群对氟酰胺、噻呋酰胺和戊菌隆3种杀菌剂的敏感性,采用菌丝生长速率法测定了氟酰胺、噻呋酰胺和戊菌隆对268株丝核菌菌丝生长的EC50值,建立敏感基线并分析了噻呋酰胺和其他杀菌剂对病菌活性的相关性。结果表明:立枯丝核菌Rizoctonia solani融合群AG-5和玉蜀黍丝核菌R. zeae融合群WAG-Z对噻呋酰胺最为敏感,对氟酰胺敏感性次之,对戊菌隆敏感性最差;立枯丝核菌融合亚群AG-1-IA则对戊菌隆最为敏感,对噻呋酰胺次之,对氟酰胺最差。通过箱形图分析剔除异常的EC50值后,融合群AG-5和WAG-Z对氟酰胺、噻呋酰胺和戊菌隆的敏感性频率均呈连续的单峰曲线分布,符合正态分布。因此,将EC50均值0.165、0.048和2.500μg/mL分别作为融合群AG-5对氟酰胺、噻呋酰胺和戊菌隆的敏感基线;将0.518、0.106和1.616μg/mL分别作为融合群WAG-Z对氟酰胺、噻呋酰胺和戊菌隆的敏感基线。噻呋酰胺与氟酰胺、戊菌隆、己唑醇或咯菌腈对融合群AG-5和WAG-Z的抑制活性不存在相关性。研究结果可为山西省玉米纹枯病杀菌剂施用策略的制...  相似文献   

4.
采用菌丝生长速率法,分别测定了采自河北、山东和河南未使用过酰胺类药剂地区的166株小麦纹枯病菌Rhizotonia cerealis Van der Hoeven对噻呋酰胺的敏感性,并对小麦纹枯病菌抗噻呋酰胺突变体的诱导方法及突变体的主要生物学性状进行了研究。结果表明:噻呋酰胺对166株小麦纹枯病菌的平均EC50值为(0.072±0.022)μg/mL,菌株频率呈连续单峰曲线分布,未发现敏感性明显下降的亚群体,因此可将该EC50值作为小麦纹枯病菌对噻呋酰胺的敏感基线。通过紫外诱导加菌落角变的方法获得了5株抗噻呋酰胺突变体,其抗药性水平介于5.5~18.9倍之间;药剂驯化未能获得抗药性突变体。突变体在PSA平板上的生长速率与亲本菌株无显著性差异,但其菌丝干重、菌核形成数量和菌核干重均明显低于亲本菌株;除突变体HD7-7U对石新828的致病力未发生明显变化外,其他突变体对石新828和良星99的致病力均明显减弱;5株突变体的抗药性均不能稳定遗传;噻呋酰胺与戊唑醇、井冈霉素、咯菌腈、三唑酮、丙环唑和多菌灵之间无交互抗性关系。  相似文献   

5.
为明确引起山西省小麦纹枯病的丝核菌Rhizoctonia种类及其对杀菌剂的敏感性,通过形态学特征观察、rDNA ITS序列分析及致病性测定鉴定分离自23个麦区小麦病样的195株纹枯病菌,并采用菌丝生长速率法测定菌株对氟酰胺、噻呋酰胺和己唑醇的敏感性。结果显示,所有菌株的菌落形态接近于丝核菌,呈双核,可与融合群(anastomosis group,AG)D组各亚群菌株菌丝发生融合反应,但在系统发育树中全部与AG-DI亚群菌株聚为一支,表明195株菌株均为禾谷丝核菌R. ce-realis AG-DI亚群,且经致病性试验验证这些菌株均为山西省小麦纹枯病的病原菌。氟酰胺、噻呋酰胺和己唑醇对菌株的EC50范围分别为0.092~0.610、0.067~0.142和0.008~0.111 μg/mL,均值分别为0.331、0.074和0.052 μg/mL,且菌株对氟酰胺、噻呋酰胺和己唑醇的敏感性频率分布均呈连续的单峰曲线,因此可将以上均值作为山西省小麦纹枯病病原菌禾谷丝核菌AG-DI亚群对氟酰胺、噻呋酰胺和己唑醇的敏感基线。  相似文献   

6.
分别从未使用过噻呋酰胺及使用噻呋酰胺3年以上的浙江省稻田采集分离立枯丝核菌Rhizoctonia solani,通过监测、分析病原菌群体对噻呋酰胺的敏感性变化,研究了立枯丝核菌对噻呋酰胺的抗药性风险;并以戊唑醇、井冈霉素等纹枯病防治常用药剂为对照,通过田间试验评价了噻呋酰胺油悬浮剂 (OD) 对稻田天敌群落的影响。结果表明:浙江省未接触过噻呋酰胺的立枯丝核菌群体 (n = 164) 的EC50值分布在 0.008~0.135 mg/L 之间,且呈近似正态单峰曲线,平均EC50值为 (0.073 ± 0.005) mg/L,可作为立枯丝核菌对噻呋酰胺的敏感性基线,用于后续田间抗药性监测。接触过噻呋酰胺3年以上的立枯丝核菌群体 (n = 130) 的EC50值分布在 0.009~0.126 mg/L之间,平均EC50值为 (0.069 ± 0.080) mg/L,未观察到明显的敏感性下降。对稻田天敌群落影响的田间试验表明,采用12%噻呋酰胺油OD处理 7 d 后,绍兴稻田的 Shannon多样性指数和丰富度指数均显著高于清水对照(CK),而其他时间和地点均与CK无显著性差异。研究表明,采用噻呋酰胺防治水稻纹枯病的田间抗药性风险低,对稻田天敌安全性高。  相似文献   

7.
《广西植保》2021,34(1)
农药减量为当前农作物病虫害防控工作的更高要求与重大挑战。本文开展"激健"助噻呋酰胺减量防治纹枯病试验,噻呋酰胺减量40%在药后7 d和18 d均能取得与噻呋酰胺正常用量相当的防效,持效期长,对水稻生长安全。生产中推荐使用240 g/L噻呋酰胺180 m L/ha (噻呋酰胺减量40%)+"激健"225 g/ha防治纹枯病,能较好的实现农药减量控害。  相似文献   

8.
建立一种同时分析噻呋酰胺和吡唑醚菌酯的高效液相色谱法。采用高效液相色谱法,以甲醇-乙腈-水为流动相,使用ODS-C_(18)色谱柱和紫外检测器,在246nm波长下对试样中的噻呋酰胺和吡唑醚菌酯进行液相分离和定量分析。噻呋酰胺和吡唑醚菌酯的线性相关系数分别为0.999 8和0.999 4;标准偏差为0.07%和0.04%;变异系数为0.35%和0.40%;回收率为99.4%和99.4%。本方法简便、快速、准确率高,可以满足噻呋酰胺和吡唑醚菌酯的定性和定量分析。  相似文献   

9.
敌草快的水解动力学研究   总被引:2,自引:1,他引:2  
研究了敌草快于25℃下在去离子水、河水和地下水3种水体不同pH值(pH 5、7、9)条件下的水解动力学以及pH为9时不同温度(10、25、35℃)条件下的水解行为。结果表明,敌草快的水解动力学属于一级反应,且其在去离子水中的水解速率与其在河水和地下水中的相似;敌草快在酸性和中性条件下比较稳定,不易水解,而在碱性条件下水解较快;温度升高有利于水解反应,水解活化能为25.89 kJ/mol,活化熵为-191.81 J/mol·K,温度效应系数为1.52。  相似文献   

10.
建立一种同时分析噻呋酰胺和戊唑醇的高效液相色谱法.采用高效液相色谱法,以甲醇和水为流动相,使用C18柱和紫外检测器,在220nm波长下对试样中噻呋酰胺和戊唑醇进行液相色谱分离和定量分析.噻呋酰胺和戊唑醇的线性相关系数分别为0.999 98和0.999 93,标准偏差为0.09和0.11,变异系数为0.86%和0.58%,回收率为99.99%和99.37%.本方法简便、快速、准确度高,可以满足噻呋酰胺和戊唑醇的定性和定量分析.  相似文献   

11.
在实验室条件下,采用高效液相色谱和高效液相色谱-串联质谱研究了唑啉草酯在不同条件下的水解和光解特性。结果表明:在pH值分别为4.0、7.0和9.0的缓冲溶液中,25 ℃时唑啉草酯的半衰期分别为347、40.8和1.08 h,50 ℃时则分别为57.8、11.6和0.498 h,均为易水解;唑啉草酯在碱性条件下易水解,酸性条件下水解较慢;其水解速率随温度升高而升高,温度效应系数为2.18~6.00。在模拟太阳光氙灯辐射下,唑啉草酯在缓冲溶液中的光解速率随其pH值的升高而加快,在pH值为8.0时最短,为10.0 h;唑啉草酯在自然水体中的光解速率依次为池塘水 > 稻田水 > 河水 > 纯水,4种条件下的半衰期分别为5.17、7.79、8.56和38.5 h。唑啉草酯水解的主要产物是 M2 (8-(2,6-二乙基-4-甲基苯基)-9-羟基-1,2,4,5-四氢吡唑[1,2-d][1,4,5]噁二氮杂卓-7-酮),其降解机理主要是酯水解反应, M2 在光照条件下进一步降解,表明光解为唑啉草酯降解的一个重要途径。研究结果可为唑啉草酯在水体中的环境行为及其环境安全性评价提供参考。  相似文献   

12.
增效磷在液相中的光化学降解研究   总被引:9,自引:0,他引:9  
研究了增效磷在正己烷、甲醇、乙腈、丙酮及水溶液中以及在不同光源下的光化学降解, 结果表明: 在正己烷、甲醇、乙腈溶液中, 增效磷降解效应显著, 在汞灯下的半衰期分别为0. 98、1. 54、2. 11 h, 在紫外灯下, 半衰期分别为3. 59、3. 55、6. 01 h; 增效磷在丙酮溶剂中降解缓慢, 三种光源下的半衰期分别为8. 25、53. 32、990. 14 h; 增效磷在水中光解迅速, 高压汞灯下的光解半衰期为0. 33 h; 丙酮对增效磷在水中的光解有极显著的猝灭作用, 猝灭效率与丙酮的量具有显著的相关性, 猝灭效率最高达- 322. 34%。对反应体系的吸收光谱测定结果表明,增效磷在液相中的光解差异与吸收光谱的改变有一定程度的相关性。  相似文献   

13.
实验室条件下,采用高效液相色谱法研究了东莨菪内酯在水溶液中的光解特性以及初始质量浓度、光源、pH值和温度等因素对其光解的影响。结果表明,东莨菪内酯在水溶液中的光解均符合一级动力学方程。在初始质量浓度为5~40 mg/L范围内,其光解速率随初始质量浓度的增大而降低;在不同光源条件下,其光解速率从大到小依次是:500 W高压汞灯18 W紫外灯500 W氙灯;在pH值为5~9的缓冲溶液中,其光解半衰期随pH值的升高而降低,pH为9时的光解半衰期最短,为4.81 h;在5~65℃范围内,其光解速率随温度升高呈先升高后降低趋势,于15℃时达到最大值。研究表明,东莨菪内酯在水溶液中的光解与其初始质量浓度、光源、pH值和温度相关。所得结果可为其环境风险评价提供参考。  相似文献   

14.
为明确2,4-滴异辛酯的环境行为规律,采用室内模拟试验方法,研究了2,4-滴异辛酯在不同温度、pH值、水体及初始浓度下的水解特性及其在不同pH值、水体、光源和初始浓度下的光解特性。结果表明:中性 (pH = 7) 条件下,初始质量浓度为5 mg/L的2,4-滴异辛酯在15、25 和35 ℃ 下的水解半衰期分别为346.6、231.0和173.3 h;25 ℃下,5 mg/L的2,4-滴异辛酯在pH值分别为4、7 和9 的缓冲溶液中的水解半衰期分别为77.0、231.0 和138.6 h;2,4-滴异辛酯在稻田水、自来水和河水中的水解速率高于其在蒸馏水中的水解速率,4 种条件下的半衰期分别为23.1、25.7、40.8 和63.0 h;初始质量浓度分别为1、3和5 mg/L的2,4-滴异辛酯在pH值为7的缓冲溶液中的水解半衰期分别为231.0、173.3和138.6 h。300 W汞灯照射下,2,4-滴异辛酯在酸性条件下的光解速率大于其在中性和碱性条件下,半衰期分别为49.5、77.0 和138.6 h;2,4-滴异辛酯在河水和稻田水中的光解速率高于其在自来水和蒸馏水中的光解速率,4 种条件下的半衰期分别为6.7、7.6、43.3 和46.2 h;2,4-滴异辛酯在不同光源下的光解速率依次为500 W汞灯 > 300 W汞灯 > 500 W氙灯;初始质量浓度分别为1、3和5 mg/L的2,4-滴异辛酯在pH值为7的缓冲溶液中的光解半衰期分别为63.0、43.3和40.8 h。2,4-滴异辛酯水解及光解的主要产物是2,4-滴,其降解机制主要是酯水解反应。研究结果可为2,4-滴异辛酯的合理使用及其环境风险评估提供参考。  相似文献   

15.
The hydrolysis of cyanazine
  • 1 Cyanazine is the proposed common name for the herbicide sold under the Shell registered trade name BLADEX.
  • (2-chloro-4-cyanoisopropylamino-6-ethylamino-1,3,5-triazine) has been studied using 14C-ring labelled compound over a temperature range of 25° to 75 °C and over a range of pH values from 1.5 to 12. The activation energies and the activation entropy changes during hydrolysis showed there was a different mechanism under acid and alkaline conditions. The only product identified after hydrolysis in acid solutions was 2-hydroxy-4-carboxyisopropylamino-6-ethylamino-1,3,5-triazine. In alkaline solution the same hydroxy-acid was the end-product, but 2-chloro-4-amidoisopropylamino-6-ethylamino-1,3,5-triazine was isolated as an intermediate. The variation of the specific rate constants with temperature for hydrolytic catalysis by H+, OH? was determined, thus enabling the hydrolytic half-life of cyanazine to be calculated at any pH and temperature.  相似文献   

    16.
    采用气相色谱仪,建立了水中乙羧氟草醚残留量的分析检测方法,并在室内研究了其在不同温度、不同pH值缓冲溶液中的降解动态。结果表明:乙羧氟草醚在不同温度和不同pH值条件下的降解均符合典型的一级动力学规律。在同一温度下,其水解速率常数随着pH的升高而增大;在同一pH值条件下,温度升高,降解速率加快。在25℃时,乙羧氟草醚在pH值分别为9、7、5的缓冲溶液中的降解半衰期分别为85.6 min、144.4 h和12.2 d;在50℃时,其在相应缓冲溶液中的降解半衰期分别为23.3 min、13.4 h和10.7 d。研究表明乙羧氟草醚为易水解农药。  相似文献   

    17.
    丁香菌酯在水中的光解影响因素研究   总被引:1,自引:0,他引:1  
    为了更好地了解丁香菌酯(coumoxystrobin)在环境中的归趋,基于《化学农药环境安全评价试验准则》推荐方法,采用高效液相色谱 (HPLC) 分析方法研究了光源(500 W氙灯和20 W汞灯)、初始质量浓度 (1、5、10和15 mg/L)、pH值(4、7和9)和添加助溶剂吐温80对丁香菌酯在水中光解的影响。结果表明:在试验条件下,丁香菌酯的光解反应均符合准一级反应动力学方程;在500 W氙灯和20 W汞灯两种光源条件下,其半衰期分别为2.23和1.10 h,20 W汞灯下的光解速率约为500 W氙灯下的2倍;在同一光源下,光解速率随丁香菌酯初始质量浓度的增加而降低,二者呈负相关关系;丁香菌酯在pH值不同的3种缓冲溶液中的光解速率从大到小依次为pH 9、pH 4和pH 7;吐温80对丁香菌酯的光解有抑制作用。该研究结果可为丁香菌酯的合理使用及环境评价提供参考。  相似文献   

    18.
    The hydrolysis of triasulfuron, metsulfuron‐methyl and chlorsulfuron in aqueous buffer solutions and in soil suspensions at pH values ranging from 5.2 to 11.2 was investigated. Hydrolysis of all three compounds in both aqueous buffer and soil suspensions was highly pH‐sensitive. The rate of hydrolysis was much faster in the acidic pH range (5.2–6.2) than under neutral and moderately alkaline conditions (8.2–9.4), but it increased rapidly as the pH exceeded 10.2. All three compounds degraded faster at pH 5.2 than at pH 11.2. Hydrolysis rates of all three compounds could be described well with pseudo‐first‐order kinetics. There were no significant differences (P = 0.05) in the rate constants (k, day−1) of the three compounds in soil suspensions from those in buffer solutions within the pH ranges studied. A functional relationship based on the propensity of nonionic and anionic species of the herbicides to hydrolyse was used to describe the dependence of the ‘rate constant’ on pH. The hydrolysis involving attack by neutral water was at least 100‐fold faster when the sulfonylurea herbicides were undissociated (acidic conditions) than when they were present as the anion at near neutral pH. In aqueous buffer solution at pH > 11, a prominent degradation pathway involved O‐demethylation of metsulfuron‐methyl to yield a highly polar degradate, and hydrolytic opening of the triazine ring. It is concluded that these herbicides are not likely to degrade substantially through hydrolysis in most agricultural alkaline soils. © 2000 Society of Chemical Industry  相似文献   

    19.
    嘧菌酯在水和有机溶剂中的光化学降解   总被引:1,自引:0,他引:1  
    以500 W氙灯为光源,研究了嘧菌酯在水和有机溶剂中的光化学降解动态及其影响因素。结果表明:当质量浓度为5 mg/L时,嘧菌酯在纯水中光解的半衰期为5.8 h,在2~20 mg/L范围内,其光解速率随初始质量浓度的增大而降低;嘧菌酯在不同介质中的光解速率从大到小依次为乙腈水甲醇正己烷丙酮,其半衰期分别为4.8、5.8、11.5、12.1和23.5 h;硝酸盐对嘧菌酯在水中的光解具有光敏化作用,当NO-3质量浓度为1、2、10和20 mg/L时,其半衰期分别为5.5、5.1、4.5和3.9 h;在1~2 mg/L质量浓度下,NO-2对嘧菌酯在水中的光解具有光敏化作用,而在10~20 mg/L时则表现为光淬灭作用;Fe3+及表面活性剂十二烷基硫酸钠(SDS)对嘧菌酯在水中的光解具有光敏化作用,而腐殖酸和Fe2+则对其表现为光淬灭作用。研究结果可为嘧菌酯的科学合理使用及其环境风险评估提供参考。  相似文献   

    设为首页 | 免责声明 | 关于勤云 | 加入收藏

    Copyright©北京勤云科技发展有限公司  京ICP备09084417号