首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
ABSTRACT Strawberry leaves (cv. Tristar) inoculated with Colletotrichum acuta-tum conidia were incubated at 10, 15, 20, 25, 30, and 35 degrees C under continuous wetness, and at 25 degrees C under six intermittent wetness regimes. The number of conidia and appressoria was quantified on excised leaf disks. In order to assess pathogen survival, inoculated leaves were frozen and incubated to induce acervular development. Germination, secondary3 conidiation, and appressorial development were significantly (P /= 0.95) related to appressorial populations prior to this treatment and was greatest following periods of continuous wetness. Production of secondary conidia and appressoria of C. acutatum on symptomless strawberry leaves under a range of environmental conditions suggests that these processes also occur under field conditions and contribute to inoculum availability during the growing season.  相似文献   

2.
ABSTRACT Conidial suspensions of Colletotrichum acutatum were prepared in 1:27, 1:45, and 1:81 (wt/vol) dilutions of an extract of strawberry (cv. Tristar) flowers or leaves in water. Strawberry leaves and plastic coverslips were sprayed with the conidial suspensions, incubated at 25 degrees C and continuous wetness for 48 h, and the number of conidia and appressoria were counted. In another experiment, leaves and coverslips were sprayed with a conidial suspension in water, incubated for 72 h to establish C. acutatum populations, and placed in a growth chamber under dry conditions for up to 6 weeks. At each sampling time, leaves and coverslips were sprayed with flower extracts, leaf extracts, or water, incubated for 48 h at 25 degrees C and continuous wetness, and the number of conidia and appressoria were counted. Flower extracts significantly (P 相似文献   

3.
ABSTRACT Colletotrichum acutatum, which causes anthracnose disease on strawberry, can also persist on several other plant species without causing disease symptoms. The genetic and molecular bases that determine pathogenic and nonpathogenic lifestyles in C. acutatum are unclear. We developed a transformation system for C. acutatum by electroporation of germinating conidia, and transgenic isolates that express the green fluorescent protein (GFP) were produced. Details of the pathogenic and nonpathogenic lifestyles of C. acutatum were determined by using GFP-transgenic isolates. Major differences between colonization-mediating processes of strawberry and of other plants were observed. On the main host, strawberry, the germinating conidia formed branched, thick hyphae, and large numbers of appressoria were produced that were essential for plant penetration. In strawberry, the fungus developed rapidly, filling the mesophyll with dense mycelium that invaded the cells and caused necrosis of the tissue. In nonpathogenic interactions on pepper, eggplant, and tomato, the conidia germinated, producing thin, straight germ tubes. Appressoria were produced but failed to germinate and penetrate leaf tissue, resulting in epiphytic growth without invasion of the plant. Penetration of the plant occurred only several days after inoculation and was restricted to the intercellular spaces of the first cell layers of infected tissue without causing any visible damage. Much of the new fungal biomass continued to develop on the surface of inoculated organs in the nonpathogenic interaction. The differences in fungal development on strawberry compared with the other plant species suggest that signal molecules, which may be present only in strawberry, trigger appressorial germination and penetration of the primary host.  相似文献   

4.
Curry KJ  Abril M  Avant JB  Smith BJ 《Phytopathology》2002,92(10):1055-1063
ABSTRACT Ontogeny of the invasion process by Colletotrichum acutatum and C. fragariae was studied on petioles and stolons of the strawberry cultivar Chandler using light and electron microscopy. The invasion of host tissue by each fungal species was similar; however, each invasion event occurred more rapidly with C. fragariae than with C. acutatum. Following cuticular penetration via an appressorium, subsequent steps of invasion involved hyphal growth within the cuticle and within the cell walls of epidermal, subepidermal, and subtending cells. Both species of fungi began invasion with a brief biotrophic phase before entering an extended necrotrophic phase. Acervuli formed once the cortical tissue had been moderately disrupted and began with the development of a stroma just beneath the outer periclinal epidermal walls. Acervuli erupted through the cuticle and released conidia. Invasion of the vascular tissue typically occurred after acervulus maturation and remained minimal. Chitin distribution in walls of C. fragariae was visualized with gold-labeled wheat germ agglutinin. The outer layer of bilayered walls of conidia, germ tubes, and appressoria contained less chitin than unilayered hyphae in planta.  相似文献   

5.
The infection and colonization process of Colletotrichum acutatum on ripe blueberry fruit from two cultivars with different susceptibility to anthracnose were examined using light and confocal laser scanning microscopy. Ripe fruit from susceptible cv. Jersey and resistant cv. Elliott were drop-inoculated with a conidial suspension of C. acutatum, and epidermal peels were evaluated at selected times after inoculation and incubation. Results from pre-penetration studies demonstrated that there were significant differences in the rate of formation of melanized appressoria between the two cultivars, with the rate of formation being faster in the susceptible one. In both cultivars, penetration by the pathogen occurred via appressoria 48 h post-inoculation (hpi). However, in the susceptible cv. Jersey, C. acutatum then adopted an intracellular hemibiotrophic-like infection strategy, whereas in the resistant cv. Elliott subcuticular intramural-like infection occurred. In cv. Jersey by 108 hpi, intracellular growth of the pathogen led to the formation of numerous acervuli, with orange conidial masses. By 120 hpi, the conidial masses had coalesced covering the entire inoculated area. In cv. Elliott, acervuli were not seen until 144 hpi and contained few conidia. These results demonstrate for the first time the ability of C. acutatum to adopt a different infection and colonization strategy depending on the susceptibility of the host tissue being colonized.  相似文献   

6.
ABSTRACT The early infection and colonization processes of Colletotrichum acutatum on leaves and petals of two almond cultivars with different susceptibility to anthracnose (i.e., cvs. Carmel and Nonpareil) were examined using digital image analysis of light micrographs and histological techniques. Inoculated tissue surfaces were evaluated at selected times after inoculation and incubation at 20 degrees C. Depth maps and line profiles of the digital image analysis allowed rapid depth quantification of fungal colonization in numerous tissue samples. The results showed that the early development of C. acutatum on petals was different from that on leaf tissue. On petals, conidia germinated more rapidly, germ tubes were longer, and fewer appressoria developed than on leaves. On both tissues, penetration by the pathogen occurred from appressoria and host colonization was first subcuticular and then intracellular. On petals, colonizing hyphae were first observed 24 h after inoculation and incubation at 20 degrees C, whereas on leaves they were seen 48 to 72 h after inoculation. Intercellular hyphae were formed before host cells became necrotic and macroscopic lesions developed on petals >/=48 h and on leaves >/=96 h after inoculation. Histological studies complemented data obtained by digital image analysis and showed that the fungus produced infection vesicles and broad hyphae below the cuticle and in epidermal cells. In both tissues, during the first 24 to 48 h after penetration fungal colonization was biotrophic based on the presence of healthy host cells adjacent to fungal hyphae. Later, during intercellular growth, the host-pathogen interaction became necrotrophic with collapsed host cells. Quantitative differences in appressorium formation and host colonization were found between the two almond cultivars studied. Thus, on the less susceptible cv. Nonpareil fewer appressoria developed and host colonization was reduced compared with that on cv. Carmel.  相似文献   

7.
Real-time PCR assays for Colletotrichum acutatum , one of the most important pathogens of strawberry worldwide, were developed using primers designed to the ribosomal DNA internal transcribed spacer 1 (rDNA ITS1) and the β-tubulin 2 gene. Using TaqMan technology, the ITS-based assay could reliably detect as little as 50 fg genomic DNA, 100 copies of target DNA, or 25 conidia. The β-tubulin-based assay was c . 66 times less sensitive, and therefore less suitable for detection purposes. The TaqMan-ITS assay recognized all C. acutatum isolates tested from various intraspecific molecular groups, while no amplification was observed with several other Colletotrichum species or other strawberry pathogens, indicating the specificity of this assay. Detection and quantification of C. acutatum was demonstrated in artificially and naturally infected strawberry leaves. First, C. acutatum was detected in plant mixes of which only 0·001% of the tissue was infected by C. acutatum . Secondly, real-time PCR analysis of leaf samples taken at various times after inoculation indicated that the assay allowed monitoring of growth progression of C. acutatum . This real-time PCR-mediated monitoring of the pathogen was well-correlated with microscopic data, and confirmed that leaf age may play a role in the extent of C. acutatum infection. Finally, the assay allowed detection of C. acutatum in naturally infected and symptomless strawberry leaves collected from production fields and planting material.  相似文献   

8.
Colletotrichum lagenarium is the casual agent of anthracnose disease of melons. Light and scanning electron microscopy were used to observe the infection process of C. lagenarium on the leaves of two melon cultivars differing in susceptibility. On both cultivars conidia began germinating 12 h after inoculation (hai), forming appressoria directly or at the tips of germ-tubes. By 48 hai appressoria had melanised and direct penetration of host tissue had begun. On the susceptible cultivar, infection vesicles formed within 72 hai and developed thick, knotted primary hyphae within epidermal cells. By 96 hai C. lagenarium produced highly branched secondary hyphae that invaded underlying mesophyll cells. After 96 hai, light brown lesions appeared on the leaves, coincident with cell necrosis and invasion by secondary hyphae. While appressoria formed more quickly on the resistant cultivar, fewer germinated to develop biotrophic primary or invasive necrotrophic secondary hyphae than on the susceptible cultivar. These results confirm that C. lagenarium is a hemibiotrophic pathogen, and that resistance in melons restricts colonisation by inhibiting the development of necrotrophic secondary hyphae.  相似文献   

9.
A comparison of rates of germination and appressorium formation by an isolate of Colletotrichum gloeosporioides on mango leaves, fruit surfaces and cellophane membranes showed that behaviour was broadly similar on all three substrates. Frequency of appressorium formation was slightly higher on cellophane membranes, and both hyaline and melanized appressoria were formed. Only melanized appressoria were formed on mango surfaces. In vitro experiments on membranes showed comparative differences in physiological behaviour with temperature for two Philippine isolates of C. gloeosporioides . The most stimulatory temperature for production of appressoria differed in isolates I-2 and I-4 (25 and 20°C, respectively). At 30°C more appressoria became melanized than at lower temperatures, but the frequency of formation of penetration pegs was highest at 25°C. Conidia of C. gloeosporioides germinated on cellophane membranes at relative humidities as low as 95%, but the percentage of conidia germinating and forming appressoria increased as the RH approached 100%. Approximately 18% of conidia of C. gloeosporioides I-2 held at 62 and 86% RH for 4 weeks retained viability, and some were capable of forming appressoria when placed at 100% RH. These results have implications for epidemiological models for disease control.  相似文献   

10.
ABSTRACT The initial penetration process of appressoria of Colletotrichum acutatum on almond leaves was studied using digital image analysis of light micrographs and scanning electron microscopy. For image analysis, a series of sequential, partially focused digital micrographs of appressoria was analyzed to generate a single, completely focused montage image with a continuous in-focus depth of field. In studies on the development of the internal light spot (ILS), we observed that 50.4% of the appressoria formed an ILS after leaves were inoculated and incubated for 12 h at 20 degrees C, and that this increased to 95.8% after 24 h. Comparative image analyses of appressoria with and without ILSs using depth relief mapping and line profile software options showed that the ILS had a depth relief that was below that of the leaf surface. Depth relief analysis in the ILS region during incubation revealed an increase in depth in this area of up to 1.8 mum in some of the appressoria. A comparative morphological study of the ILS in montage images and the penetration pore of appressoria in scanning electron micrographs showed similar shapes and dimensions of the two structures in the appressorium. Light micrographs of histological sections confirmed fungal penetration and internal vesicle formation in almond leaves within 36 h after inoculation and incubation at 20 degrees C. This study represents the first direct evidence that the ILS in appressoria corresponds to the penetration pore and the developing penetration peg using a rapid, digital image analysis technique.  相似文献   

11.
The mode of action of soluble silicon against strawberry powdery mildew (Sphaerotheca aphanis var. aphanis) was investigated in four experiments. First, silicon-treated leaves from plants grown with silicate (Si+) and control leaves were excised, inoculated with conidia, and subsequent germination and formation of appressoria in a petri dish was assessed after 24 h. The germination rate was 49.7% on Si+ leaves, and was 67.2% on control leaves (t-test, P < 0.01). Second, we soaked cellulose membranes in various solvents and then placed the membranes on 4% water agar, dusted the membranes with conidia, and examined after 12 h. No difference was apparent between any treatment and the control (distilled water). Third, strawberries growing hydroponically with additional silicon in the medium were inoculated with conidia, and leaves were observed with a scanning electron microscope 1–2 days after inoculation. Germ tubes and secondary hyphae were shorter and had fewer branches on Si+ leaves than on the control. Moreover, penetration appeared to be inhibited. Fourth, the cuticle was separated from leaves from plants grown as in the third experiment, placed on water agar, and dusted with conidia. Germination of conidia, observed with a light microscope, on Si+ leaves was suppressed markedly to 40%–60% of that of the control. These results suggested that soluble silicon induced physiological changes in the cuticle layer after absorption by the plant. In addition, soluble silicate reduced germination of conidia, formation of appressoria, and possibly the penetration of powdery mildew.  相似文献   

12.
为明确苹果炭疽叶枯病病原菌围小丛壳Glomerella cingulata的侵染致病特征,在分离获得该病原菌的基础上,采用形态学观察、ITS序列分析和致病性测定对其进行了鉴定,并利用光学和扫描电子显微镜对病原菌在嘎啦苹果叶片上的侵染过程进行了研究.结果表明,在陕西咸阳地区分离获得的9株病原菌均为围小丛壳G.cingulata.25 ℃下接种9 h后,分生孢子中间产生隔膜,双胞化,并萌发产生芽管和附着胞;24 h后分生孢子的2个细胞均可萌发并形成芽管及附着胞,部分芽管顶端可产生次级分生孢子;48 h后次级分生孢子萌发形成附着胞;72 h后,附着胞下形成的侵染钉可直接入侵寄主,在表皮细胞内形成初生菌丝和次生菌丝,此时叶片表面已出现褐色斑点.接种7 d后叶片病斑处出现分生孢子盘和子囊壳.表明陕西省近年出现的苹果炭疽叶枯病病原菌为围小丛壳G.cingulata,该病菌在嘎啦叶片上的一些特殊侵染行为可能是导致该病害易在短时间内暴发的重要原因.  相似文献   

13.
ABSTRACT Powdery mildew disease on poinsettias (Euphorbia pulcherrima) growing in commercial greenhouses was first observed in the United States in 1990 and has become an economically significant problem for poinsettia growers in the Midwest and northern United States since 1992. The temporal development of infection structures produced by conidial germ tubes of the pathogen (Oidium sp.) and the effect of high temperature on their development were investigated using poinsettia leaf disks placed in humidity chambers. Observations were made using light microscopy and scanning electron microscopy. At 20 degrees C (85% relative humidity), conidia germinated and formed an appressorium within 6 h of inoculation. Germination over time followed a monomolecular curve (r(2) = 0.77, P 相似文献   

14.
ABSTRACT Colletotrichum crown rot of strawberry in Florida is caused primarily by Colletotrichum gloeosporioides. To determine potential inoculum sources, isolates of Colletotrichum spp. from strawberry and various noncultivated plants growing in the areas adjacent to strawberry fields were collected from different sites. Species-specific internal transcribed spacer primers for C. gloeosporioides and C. acutatum were used to identify isolates to species. Random amplified polymorphic DNA (RAPD) markers were used to determine genetic relationships among isolates recovered from noncultivated hosts and diseased strawberry plants. Selected isolates also were tested for pathogenicity on strawberry plants in the greenhouse. In all, 39 C. gloeosporioides and 3 C. acutatum isolates were recovered from diseased strawberry crowns, and 52 C. gloeosporioides and 1 C. acutatum isolate were recovered from noncultivated hosts. In crown inoculation tests, 18 of the 52 C. gloeosporioides isolates recovered from noncultivated hosts were pathogenic to strawberry. Phylogenetic analysis using RAPD marker data divided isolates of C. gloeosporioides from noncultivated hosts into two separate clusters. One cluster contained 50 of the 52 isolates and a second cluster contained 2 isolates that were homothallic in culture. Isolates from strawberry were interspersed within the cluster containing the 50 isolates that were recovered from noncultivated hosts. The results are not inconsistent with the hypothesis that C. gloeosporioides isolates obtained from strawberry and noncultivated hosts adjacent to strawberry fields are from the same population and that noncultivated hosts can serve as potential inoculum sources for Colletotrichum crown rot of strawberry.  相似文献   

15.
Conidia of Alternaria linicola germinated on both water agar and linseed leaves (detached or attached) over a wide range of temperatures (5–25°C) by producing one to several germ tubes. At temperatures between 10°C and 25°C and under continuous wetness in darkness, germination started within 2 h after inoculation and reached a maximum (100%) by 8 to 24 h, depending on temperature. At 5°C, the onset of germination was later and the rate of germ tube elongation was slower than that at 10–25°C. During germination, conidia of A. linicola were sensitive to dry interruptions of wet periods and to light. Short (2 h) or long (12 h) dry interruptions occurring at any time between 2 and 6 h after inoculation stopped conidial germination and germ tube elongation. With continuous wetness, light periods 2 to 12 h long immediately after inoculation inhibited conidial germination, which was resumed only when a dark period followed subsequently. However, germination and germ tube elongation of A. linicola conidia stopped and the viability of the conidia was lost during exposure to dry light periods immediately after inoculation with spore suspensions. Penetration of leaves by A. linicola was evident after 12 h and occurred mainly through epidermal cells (direct) with or without the formation of appressoria.  相似文献   

16.
Steiner U  Oerke EC 《Phytopathology》2007,97(10):1222-1230
ABSTRACT During formation of appressoria produced from conidia and ascospores of Venturia inaequalis, a dark brown ring structure was detected at the base of appressoria. This melanized appressorial ring structure (MARS) was attached to the leaf surface like a sealing ring and formed the fungus-plant interface; it is believed to be required for pathogen penetration of the cuticle. Neither germ tubes nor infection structures beneath the cuticle were found to be visibly melanized. MARS were formed not only on apple leaves but also on leaves of nonhost plants and artificial surfaces differing in hydrophobicity; the formation of appressoria and MARS was confined to hard surfaces. The melanin nature of the ring was confirmed by using melanin biosynthesis inhibitors. Applications prior to inoculation largely inhibited the melanization and reduced infection rate by 45 to 80%; curative applications were not effective. Transmission electron microscopy verified a localized melanization of the cell wall around the penetration pore, and melanin was incorporated into all layers of the fungal cell wall. Appressoria without MARS were not able to infect the plant, suggesting that this structure can be considered to be a pathogenicity factor in V. inaequalis.  相似文献   

17.
ABSTRACT Observations were made of the ultrastructure of infection and colonization of leaves of a susceptible maize inbred by Colletotrichum graminicola and by a C. graminicola pathogenicity mutant. The mutant causes no symptoms on either maize leaves or stalks. Prior evidence suggested that it is deficient in production of signal peptidase, responsible for cleavage of signal peptides from proteins destined for transport through the endoplasmic reticulum. There was no significant difference in the process of infection or colonization by the mutant and wild-type strains up to 48 h after inoculation. Both the mutant and the wild type produced globose, melanized appressoria within 24 h after inoculation on the host surface. By 36 h, both strains had penetrated the host epidermal cells directly. The host cells frequently formed papillae in response to appressoria, but these were not usually successful in preventing fungal ingress in either case. Penetration was followed by formation of irregularly shaped, swollen infection hyphae. Infection hyphae of both strains grew biotrophically for a relatively short time (less than 12 h). One or more hyphal branches was produced from each infection hypha, and these invaded adjacent mesophyll cells. Both strains of the fungus grew cell-to-cell, setting up new biotrophic interactions in each cell, between 36 and 48 h after inoculation. Papillae were frequently formed by the mesophyll cells, but these were not successful in preventing fungal ingress. The first noticeable difference between the mutant and the wild type was related to their interaction with mesophyll cells. Cells invaded by the wild type died relatively quickly, whereas those infected by the mutant appeared to survive longer. The most dramatic difference between the mutant and wild type occurred when the mutant completely failed to make a transition to necrotrophic growth, while the wild type made that switch at 48 to 72 h after inoculation. The mutant may be unable to secrete sufficient quantities of one or more proteins that are necessary to support the switch between biotrophy and necrotrophy.  相似文献   

18.
ABSTRACT Grape berries are highly susceptible to powdery mildew 1 week after bloom but acquire ontogenic resistance 2 to 3 weeks later. We recently demonstrated that germinating conidia of the grape powdery mildew pathogen (Uncinula necator) cease development before penetration of the cuticle on older resistant berries. The mechanism that halts U. necator at that particular stage was not known. Several previous studies investigated potential host barriers or cell responses to powdery mildew in berries and leaves, but none included observation of the direct effect of these factors on pathogen development. We found that cuticle thickness increased with berry age, but that ingress by the pathogen halted before formation of a visible penetration pore. Cell wall thickness remained unchanged over the first 4 weeks after bloom, the time during which berries progressed from highly susceptible to nearly immune. Autofluorescent polyphenolic compounds accumulated at a higher frequency beneath appressoria on highly susceptible berries than on highly resistant berries; and oxidation of the above phenolics, indicated by cell discoloration, developed at a significantly higher frequency on susceptible berries. Beneath the first-formed appressoria of all germinated conidia, papillae occurred at a significantly higher frequency on 2- to 5-day-old berries than on 30- to 31-day-old fruit. The relatively few papillae observed on older berries were, in most cases (82.8 to 97.3%), found beneath appressoria of conidia that had failed to produce secondary hyphae. This contrasted with the more abundantly produced papillae on younger berries, where only 35.4 to 41.0% were located beneath appressoria of conidia that had failed to produce secondary hyphae. A pathogenesis-related gene (VvPR-1) was much more highly induced in susceptible berries than in resistant berries after inoculation with U. necator. In contrast, a germin-like protein (VvGLP3) was expressed within 16 h of inoculation in resistant, but not in susceptible berries. Our results suggest that several putative barriers to infection, i.e., cuticle and cell wall thickness, antimicrobial phenolics, and two previously described pathogenesis-related proteins, are not principal causes in halting pathogen ingress on ontogenically resistant berries, but rather that infection is halted by one or more of the following: (i) a preformed physical or biochemical barrier near the cuticle surface, or (ii) the rapid synthesis of an antifungal compound in older berries during the first few hours of the infection process.  相似文献   

19.
Light, scanning electron and fluorescent microscopy were used to observe the infection process of Botrytis elliptica on leaves of oriental lily (cv. Star Gazer). At 20 °C and 100% relative humidity, conidia germinated on both adaxial and abaxial foliar surfaces, but germ tubes failed to invade epidermal cells on the adaxial surface. On abaxial surfaces, short (< 20 m) swollen germ tube appressoria penetrated through stomatal openings (19%), through the epidermis near guard cells (52%), or directly through epidermal cells (29%). Esterase activity was detected on germ tubes and conidia after 6 h of incubation, and deformation of the cuticle on abaxial surfaces of lily was observed surrounding infection sites. By 3 h after inoculation, almost 70% of the conidia had germinated, but no penetration was observed. At 6 h after inoculation, almost one-third of germinated conidia had penetrated epidermal cells, and water-soaked lesions were associated with 20% of the penetrations. By 9 h after inoculation, approximately 60% of the germinated conidia had penetrated plant tissues, and water-soaked lesions were associated with 60% of the infections. Fluorescent microscopy with a specific fungal stain allowed assessment of successful infection and visualization of sub-epidermal hyphae. We conclude that penetration of abaxial foliar surfaces of oriental lilies by B. elliptica occurs via short swollen germ tube appressoria mostly near stomata.  相似文献   

20.
ABSTRACT Anthracnose is one of the major fungal diseases of strawberry occurring worldwide. In Israel, the disease is caused primarily by the species Colletotrichum acutatum. The pathogen causes black spot on fruit, root necrosis, and crown rot resulting in mortality of transplants in the field. The host range and specificity of C. acutatum from strawberry was examined on pepper, eggplant, tomato, bean, and strawberry under greenhouse conditions. The fungus was recovered from all plant species over a 3-month period but caused disease symptoms only on strawberry. Epiphytic and endophytic (colonization) fungal growth in the different plant species was confirmed by reisolation from leaf tissues and by polymerase chain reaction (PCR)-specific primer amplification. C. acutatum was also isolated from healthy looking, asymptomatic plants of the weed genera Vicia and Conyza. Isolates that were recovered from the weeds caused disease symptoms on strawberry and were positively identified as C. acutatum by PCR. The habitation of a large number of plant species, including weeds, by C. acutatum suggests that, although it causes disease only on strawberry and anemone in Israel, this fungus can persist on many other plant species. Therefore, plants that are not considered hosts of C. acutatum may serve as a potential inoculum source for strawberry infection and permit survival of the pathogen between seasons.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号