首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
为明确山东省棉蚜对新烟碱类杀虫剂的抗性水平,采用毛细管微量点滴法测定了泰安、聊城和东营3个田间种群及1个敏感种群对吡虫啉、烯啶虫胺、啶虫脒、噻虫嗪、噻虫啉、噻虫胺6种新烟碱类杀虫剂的敏感性,同时测定了磷酸三苯酯(TPP)、顺丁烯二酸二乙酯(DEM)和增效醚(PBO)3种酶抑制剂的增效作用。结果表明:泰安棉蚜种群对烯啶虫胺的抗性倍数为16.95,处于中等抗性水平,对吡虫啉和啶虫脒的抗性倍数分别为5.69和9.57,已产生低水平抗性,对噻虫胺、噻虫嗪和噻虫啉的抗性倍数均小于3.0,仍较敏感;聊城棉蚜种群对吡虫啉、啶虫脒和噻虫嗪的抗性倍数分别为28.51、25.88和18.16,属中等抗性水平,对噻虫啉和噻虫胺的抗性倍数分别为6.01和6.37,已产生低水平抗性,对烯啶虫胺仍处于敏感阶段;东营棉蚜种群对吡虫啉、啶虫脒和噻虫胺的抗性倍数分别为37.95、21.52和12.95,已产生中等水平抗性,对噻虫啉、烯啶虫胺和噻虫嗪的抗性倍数分别为7.07、6.38和4.75,处于低水平抗性阶段。多功能氧化酶抑制剂PBO和羧酸酯酶抑制剂TPP对6种供试新烟碱类杀虫剂的增效作用明显,谷胱甘肽-S-转移酶抑制剂DEM对这6种药剂也具有一定的增效作用。研究表明,山东省泰安等3地区棉蚜种群对6种新烟碱类杀虫剂均产生了不同程度的抗药性,多功能氧化酶和羧酸酯酶可能在棉蚜对该类杀虫剂的抗性中起主要作用,谷胱甘肽-S-转移酶可能也具有一定的作用。  相似文献   

2.
为筛选出高效安全的韭蛆防治药剂,室内采用胃毒触杀联合毒力法比较了吡虫啉、啶虫脒、噻虫嗪、噻虫胺、呋虫胺、烯啶虫胺、噻虫啉与毒死蜱和高效氯氟氰菊酯等6种对照药剂对韭菜迟眼蕈蚊幼虫的毒力,同时用人工土壤法测定了13种药剂对蚯蚓的急性毒性,并通过盆栽试验验证了其对韭蛆和蚯蚓的选择毒力。结果表明,吡虫啉、噻虫胺、呋虫胺、噻虫啉、噻虫嗪对韭菜迟眼蕈蚊4龄幼虫的毒力明显高于6种对照药剂,对虫酰肼的相对毒力倍数分别为101.6、55.0、32.9、27.2、13.6;13种供试药剂中,除吡虫啉、啶虫脒、噻虫胺、呋虫胺对蚯蚓中等毒性外,其余均为低毒;盆栽试验中,吡虫啉、噻虫嗪、毒死蜱、噻唑膦、高效氯氟氰菊酯的防虫效果和保苗效果均分别高于其它药剂,但其中只有噻虫嗪对蚯蚓没有明显致死作用。  相似文献   

3.
Applied aspects of neonicotinoid uses in crop protection   总被引:2,自引:0,他引:2  
Neonicotinoid insecticides comprise seven commercially marketed active ingredients: imidacloprid, acetamiprid, nitenpyram, thiamethoxam, thiacloprid, clothianidin and dinotefuran. The technical profiles and main differences between neonicotinoid insecticides, including their spectrum of efficacy, are described: use for vector control, systemic properties and versatile application forms, especially seed treatment. New formulations have been developed to optimize the bioavailability of neonicotinoids through improved rain fastness, better retention and spreading of the spray deposit on the leaf surface, combined with higher leaf penetration. Combined formulations with pyrethroids and other insecticides are also being developed with the aim of broadening the insecticidal spectrum of neonicotinoids and to replace WHO Class I products from older chemical classes. These innovative developments for life-cycle management, jointly with the introduction of generic products, will, within the next few years, turn neonicotinoids into the most important chemical class in crop protection.  相似文献   

4.
采用稻苗浸渍法测定了长、短翅型褐飞虱对烯啶虫胺、环氧虫啶、呋虫胺、噻虫嗪、噻虫胺、吡虫啉、毒死蜱、敌敌畏、噻嗪酮、异丙威、吡蚜酮和醚菊酯的敏感性,并对其体内解毒酶活力进行了比较分析。结果表明:长翅型与短翅型褐飞虱若虫对新烟碱类杀虫剂呋虫胺、噻虫嗪、噻虫胺和吡虫啉的敏感性存在显著差异,长翅型比短翅型更敏感;相反,对于有机磷类杀虫剂毒死蜱,短翅型褐飞虱则更敏感;2种生物型对烯啶虫胺、环氧虫啶、敌敌畏、噻嗪酮、异丙威、吡蚜酮和醚菊酯的敏感性无显著差异。解毒酶相对比活力测定结果表明,长翅型褐飞虱若虫酯酶比活力显著高于短翅型,细胞色素P450单加氧酶比活力显著低于短翅型,而谷胱甘肽S-转移酶比活力无显著性差异。本研究结果可为褐飞虱的有效防控提供科学参考。  相似文献   

5.
BACKGROUND: Although there are still no confirmed reports of strong resistance to neonicotinoid insecticides in aphids, the peach-potato aphid (Myzus persicae Sulzer) shows variation in response, with some clones exhibiting up to tenfold resistance to imidacloprid. Five clones varying in response to imidacloprid were tested with four other neonicotinoid molecules to investigate the extent of cross-resistance.RESULTS: All four compounds-thiamethoxam, thiacloprid, clothianidin and dinotefuran-were cross-resisted, with ED(50) values ranked in the same order as for imidacloprid. Resistance factors ranged up to 11 for imidacloprid, 18 for thiamethoxam, 13 for thiacloprid, 100 for clothianidin and 6 for dinotefuran.CONCLUSION: This variation in response does not appear to be sufficient to compromise the field performance of neonicotinoids aimed at controlling aphids. However, it highlights the need for careful vigilance and stewardship in all M. persicae populations, and a need to consider neonicotinoids as a single cross-resisted group for management purposes.  相似文献   

6.
Biological characterization of sulfoxaflor, a novel insecticide   总被引:1,自引:0,他引:1  
BACKGROUND: The commercialization of new insecticides is important for ensuring that multiple effective product choices are available. In particular, new insecticides that exhibit high potency and lack insecticidal cross‐resistance are particularly useful in insecticide resistance management (IRM) programs. Sulfoxaflor possesses these characteristics and is the first compound under development from the novel sulfoxamine class of insecticides. RESULTS: In the laboratory, sulfoxaflor demonstrated high levels of insecticidal potency against a broad range of sap‐feeding insect species. The potency of sulfoxaflor was comparable with that of commercial products, including neonicotinoids, for the control of a wide range of aphids, whiteflies (Homoptera) and true bugs (Heteroptera). Sulfoxaflor performed equally well in the laboratory against both insecticide‐susceptible and insecticide‐resistant populations of sweetpotato whitefly, Bemisia tabaci Gennadius, and brown planthopper, Nilaparvata lugens (Stål), including populations resistant to the neonicotinoid insecticide imidacloprid. These laboratory efficacy trends were confirmed in field trials from multiple geographies and crops, and in populations of insects with histories of repeated exposure to insecticides. In particular, a sulfoxaflor use rate of 25 g ha?1 against cotton aphid (Aphis gossypii Glover) outperformed acetamiprid (25 g ha?1) and dicrotophos (560 g ha?1). Sulfoxaflor (50 g ha?1) provided a control of sweetpotato whitefly equivalent to that of acetamiprid (75 g ha?1) and imidacloprid (50 g ha?1) and better than that of thiamethoxam (50 g ha?1). CONCLUSION: The novel chemistry of sulfoxaflor, its unique biological spectrum of activity and its lack of cross‐resistance highlight the potential of sulfoxaflor as an important new tool for the control of sap‐feeding insect pests. Copyright © 2010 Society of Chemical Industry  相似文献   

7.
The Colorado potato beetle, Leptinotarsa decemlineata (Say), has developed resistance to many insecticides used for its control, recently including imidacloprid, a neonicotinoid compound. Other neonicotinoids are now being deployed to control this pest. A key point in the strategies of resistance management is the monitoring of resistance and cross-resistance. In the summer of 2003, imidacloprid-resistant adult Colorado potato beetles collected from Long Island, New York, USA were bioassayed using topical applications of imidacloprid and nine other neonicotinoids. Compared to a standard susceptible strain, the Long Island beetles showed 309-fold resistance to imidacloprid, and lower levels of cross-resistance to all other neonicotinoids, despite these never having been used in the field, i.e., 59-fold to dinotefuran, 33-fold to clothianidin, 29-fold to acetamiprid, 28-fold to N-methylimidacloprid, 25-fold to thiacloprid, 15-fold to thiamethoxam, 10-fold to nitenpyram, but less than 2-fold to nicotine. In injection bioassays, high resistance to imidacloprid was also found (116-fold). Piperonyl butoxide partially suppressed resistance to imidacloprid, but the resistance level was still over 100-fold, indicating that other mechanisms were primarily responsible for resistance. Low levels of resistance (8- to 10-fold) were found to the nicotinic activator, spinosad, in an imidacloprid-resistant strain collected from the same field in 2004. The cross-resistance seen with all the neonicotinoids tested suggests that the rotation of imidacloprid with other neonicotinoids may not be an effective long-term resistance management strategy. Rotation with spinosad also carries some risk, but it is unlikely that spinosad resistance in this case is mechanistically related to that for the neonicotinoids.  相似文献   

8.
为明确苹果中残留的烯啶虫胺、噻虫嗪、吡虫啉、噻虫胺、呋虫胺和啶虫脒6种新烟碱类药剂在不同加工过程中的变化情况,采用高效液相色谱法研究了6种药剂在苹果实验室罐头、果酱、果酒和果醋模拟加工过程中的残留量变化。结果表明:在苹果罐头加工过程中,6种药剂在罐头中残留量与初始浓度相比均显著降低,其中吡虫啉和噻虫胺在罐头中的加工因子较高,均为0.8,啶虫脒在罐头中的加工因子最低,为0.1。罐头汁中烯啶虫胺的加工因子最高,为0.5,其次为啶虫脒和噻虫嗪,均为0.4。在果酱加工过程中,烯啶虫胺、噻虫嗪、吡虫啉、噻虫胺、呋虫胺和啶虫脒的加工因子分别为0.8、0.9、0.9、1.0、0.9和0.9。在果酒中除吡虫啉的加工因子为0.1外,其余药剂加工因子均小于0.1。在果醋中除噻虫胺有少量残留(0.05 mg/kg)外,其余药剂均低于检出限。6种新烟碱类药剂在苹果实验室模拟加工过程中,加工因子均小于1,残留降低。  相似文献   

9.
BACKGROUND: Neonicotinoid insecticides are generally efficacious against many turfgrass pests, including several important phloem‐feeding insects. However, inconsistencies in control of western chinch bugs, Blissus occiduus, have been documented in field efficacy studies. This research investigated the efficacy of three neonicotinoid insecticides (clothianidin, imidacloprid and thiamethoxam) against B. occiduus in buffalograss under field conditions and detected statistically significant differences in B. occiduus numbers among treatments. A subsequent study documented the relative quantity and degradation rate of these insecticides in buffalograss systemic leaf tissues, using HPLC. RESULTS: Neonicotinoid insecticides initially provided significant reductions in B. occiduus numbers, but mortality diminished over the course of the field studies. Furthermore, while all three neonicotinoids were present in the assayed buffalograss leaf tissues, imidacloprid concentrations were significantly higher than those of clothianidin and thiamethoxam. Over the course of the 28 day study, thiamethoxam concentrations declined 700‐fold, whereas imidacloprid and clothianidin declined only 70‐fold and 60‐fold respectively. CONCLUSIONS: Field studies continued to verify inconsistencies in B. occiduus control with neonicotinoid insecticides. This is the first study to document the relative concentrations of topically applied neonicotinoid insecticides in buffalograss systemic leaf tissues. Copyright © 2012 Society of Chemical Industry  相似文献   

10.
BACKGROUND: Previous studies have suggested that the resistance mechanism towards spinosad in Frankliniella occidentalis (Pergande) is an altered target site. Like the neonicotinoids, the spinosyns act on nicotinic acetylcholine receptors (nAChRs) in insects, but at a distinct site. The changes in nAChRs related to spinosad resistance in thrips might involve interaction with neonicotinoids. In this study, the efficacy of spinosad and neonicotinoids, alone and in combination, was evaluated in susceptible and spinosad‐resistant thrips strains. RESULTS: The neonicotinoids tested were imidacloprid, thiacloprid, acetamiprid, thiamethoxam and clothianidin. No cross‐resistance was shown between spinosad and any of the neonicotinoids. However, an increased toxicity was observed when a mixture of spinosad with thiamethoxam or clothianidin was tested. No synergism was found in the susceptible strains. The more spinosad‐resistant the thrips strain, the stronger was the synergism. CONCLUSION: Data suggest that spinosad and thiamethoxam may interact at the nAChRs in spinosad‐resistant thrips, facilitating enhanced insecticidal action. Copyright © 2012 Society of Chemical Industry  相似文献   

11.
Wang Y  Chen J  Zhu YC  Ma C  Huang Y  Shen J 《Pest management science》2008,64(12):1278-1284
BACKGROUND: In recent years, outbreaks of the brown planthopper, Nilaparvata lugens (Stål), have occurred more frequently in China. The objective of this study was to determine the susceptibility of N. lugens to neonicotinoids and other insecticides in major rice production areas in China. RESULTS: Results indicated that substantial variations in the susceptibility to different insecticides existed in N. lugens. Field populations had developed variable resistance levels to neonicotinoids, with a high resistance level to imidacloprid (RR: 135.3–301.3‐fold), a medium resistance level to imidaclothiz (RR: 35–41.2‐fold), a low resistance level to thiamethoxam (up to 9.9‐fold) and no resistance to dinotefuran, nitenpyram and thiacloprid (RR < 3‐fold). Further examinations indicated that a field population had developed medium resistance level to fipronil (up to 10.5‐fold), and some field populations had evolved a low resistance level to buprofezin. In addition, N. lugens had been able to develop 1424‐fold resistance to imidacloprid in the laboratory after the insect was selected with imidacloprid for 26 generations. CONCLUSION: Long‐term use of imidacloprid in a wide range of rice‐growing areas might be associated with high levels of resistance in N. lugens. Therefore, insecticide resistance management strategies must be developed to prevent further increase in resistance. Copyright © 2008 Society of Chemical Industry  相似文献   

12.
Neonicotinoids bind selectively to insect nicotinic acetylcholine receptors with nanomolar affinity to act as potent insecticides. While the members of the neonicotinoid class have many structural features in common, it is not known whether they also share the same mode of binding to the target receptor. Previous competition studies with [3H]imidacloprid, the first commercialised neonicotinoid, indicated that thiamethoxam, representing a novel structural sub-class, may bind in a different way from that of other neonicotinoids. In the present work we analysed the mode of [3H]imidacloprid displacement by established neonicotinoids and newly synthesized analogues in the aphids Myzus persicae Sulzer and Aphis craccivora Koch. We found two classes of neonicotinoids with distinct modes of interference with [3H]imidacloprid, described as direct competitive inhibition and non-competitive inhibition, respectively. Competitive neonicotinoids were acetamiprid, nitenpyram, thiacloprid, clothianidin and nithiazine, whereas thiamethoxam and the N-methyl analogues of imidacloprid and clothianidin showed non-competitive inhibition. The chloropyridine or chlorothiazole heterocycles, the polar pharmacophore parts, such as nitroimino, cyanoimino and nitromethylene, and the cyclic or acyclic structure of the pharmacophore were not relevant for the mode of inhibition. Consensus structural features of the neonicotinoids were defined for the two mechanisms of interaction with [3H]imidacloprid binding. Furthermore, two sub-classes of non-competitive inhibitors can be discriminated on the basis of their Hill coefficients for imidacloprid displacement. We conclude from the present data that the direct competitors share the binding site with imidacloprid, whereas non-competitive compounds, like thiamethoxam, bind to a different site or in a different mode.  相似文献   

13.
新疆北疆马铃薯甲虫成虫对新烟碱类杀虫剂的敏感性变化   总被引:1,自引:0,他引:1  
采用点滴法于2009和2010年监测了新疆维吾尔自治区北疆马铃薯甲虫Leptinotarsa decemlineata 9个田间种群成虫对新烟碱类杀虫剂吡虫啉、啶虫脒、噻虫嗪和噻虫啉的敏感性变化,发现其对吡虫啉和噻虫嗪的敏感性逐年降低。2009年监测的6个种群中有3个对啶虫脒和噻虫嗪低抗(抗性倍数5.0~10.0);2010年监测的6个种群全部对噻虫嗪产生了抗性,其中中抗(抗性倍数10.1~40.0)和低抗种群各3个。噻虫嗪与高效氯氟氰菊酯可能存在交互抗性。  相似文献   

14.
新烟碱类杀虫剂种子包衣防治麦蚜的可行性评价   总被引:3,自引:2,他引:1  
为评价不同新烟碱类杀虫剂处理种子防治小麦蚜虫的应用潜力,采用种子包衣法分别在室内及田间比较了吡虫啉、噻虫嗪、啶虫脒、烯啶虫胺、噻虫啉防治小麦蚜虫的效果及安全性,并测定了吡虫啉和噻虫嗪的持效、对天敌和小麦产量的影响及其在小麦籽粒中的最终残留量。结果表明,在2.4、3.6和4.8 g/kg种子剂量下,啶虫脒明显降低小麦出苗率,而其它药剂均无显著影响;至抽穗前烯啶虫胺、啶虫脒和噻虫啉对麦蚜的防效低,吡虫啉和噻虫嗪则均有较高防效,在58.17%以上,而在小麦抽穗扬花期防效下降,为33.57%~60.46%。吡虫啉和噻虫嗪对叶部麦蚜防效均相应高于穗部。与喷雾处理相比,吡虫啉、噻虫嗪各剂量种子包衣对瓢虫和蚜茧蜂等天敌昆虫影响小,在3.6、4.8 g/kg种子剂量下,小麦千粒重和产量无显著差异,且在小麦籽粒中的残留量低。表明吡虫啉和噻虫嗪种子包衣防治麦蚜的应用潜力大。  相似文献   

15.
20种杀虫剂对草地贪夜蛾的杀卵活性   总被引:2,自引:0,他引:2  
在前期测定14种杀虫剂对草地贪夜蛾杀卵活性的基础上,本文采用浸渍法又测定了20种不同类型杀虫剂的杀卵活性,以期为草地贪夜蛾卵期防治药剂的选择提供更全面的参考。结果表明,所测的20种杀虫剂均具有一定的杀卵活性。在100 mg/L浓度下,溴氰菊酯、高效氯氰菊酯和乙基多杀菌素表现出出色的杀卵活性,能够完全抑制卵的孵化,杀虫双的杀卵活性最差,低于10%。而噻虫胺、氯虫苯甲酰胺、高效氯氟氰菊酯、多杀霉素、联苯菊酯、噻虫啉、氧乐果、噻虫嗪、甲氰菊酯、烯啶虫胺和啶虫脒的杀卵活性相对较好,其校正死亡率在70.95%~98.52%之间,毒死蜱、吡虫啉、辛硫磷、虫螨腈和杀虫单的杀卵活性相对较差,在42.26%~61.51%之间。在10 mg/L浓度下,噻虫胺、乙基多杀菌素和噻虫啉的杀卵活性均在70%以上,而杀虫双、毒死蜱和烯啶虫胺的杀卵活性低于15%。特别是在100 mg/L和10 mg/L浓度下,新烟碱类杀虫剂噻虫胺和噻虫啉对草地贪夜蛾表现出较高的杀卵活性,分别为98.52%、76.91%和89.37%、72.44%。上述药剂在田间对草地贪夜蛾的杀卵效果还有待进一步验证。  相似文献   

16.
BACKGROUND: B‐biotype Bemisia tabaci (Gennadius) has invaded China over the past two decades. To understand the risks and to determine possible mechanisms of resistance to thiamethoxam in B. tabaci, a resistant strain was selected in the laboratory. Cross‐resistance and the biochemical mechanisms of thiamethoxam resistance were investigated in the present study. RESULTS: A 66.3‐fold thiamethoxam‐resistant B. tabaci strain (TH‐R) was established after selection for 36 generations. Compared with the susceptible strain (TH‐S), the selected TH‐R strain showed obvious cross‐resistance to imidacloprid (47.3‐fold), acetamiprid (35.8‐fold), nitenpyram (9.99‐fold), abamectin (5.33‐fold) and carbosulfan (4.43‐fold). No cross‐resistance to fipronil, chlorpyrifos or deltamethrin was seen. Piperonyl butoxide (PBO) and triphenyl phosphate (TPP) exhibited significant synergism on thiamethoxam effects in the TH‐R strain (3.14‐ and 2.37‐fold respectively). However, diethyl maleate (DEM) did not act synergistically with thiamethoxam. Biochemical assays showed that cytochrome P450 monooxygenase activities increased 1.21‐ and 1.68‐fold respectively, and carboxylesterase activity increased 2.96‐fold in the TH‐R strain. However, no difference was observed for glutathione S‐transferase between the two strains. CONCLUSION: B‐biotype B. tabaci develops resistance to thiamethoxam. Cytochrome P450 monooxygenase and carboxylesterase appear to be responsible for the resistance. Reasonable resistance management that avoids the use of cross‐resistance insecticides may delay the development of resistance to thiamethoxam in this species. Copyright © 2009 Society of Chemical Industry  相似文献   

17.
四种新烟碱类杀虫剂对蜜蜂的急性毒性及初级风险评估   总被引:2,自引:1,他引:1  
采用饲喂管法和点滴法,分别测定了吡虫啉、噻虫嗪、噻虫胺、啶虫脒4种原药及其制剂对意大利蜜蜂成年工蜂的急性毒性,并采用危害商值(HQ)法进行了初级风险评价。结果表明:饲喂管法测得97.3%吡虫啉原药、25%吡虫啉可湿性粉剂、96%噻虫嗪原药、30%噻虫嗪悬浮剂、97%噻虫胺原药、5%噻虫胺可湿性粉剂、96%啶虫脒原药及40%啶虫脒可溶性粉剂的经口毒性48 hLD50值分别为有效成分8.04×10-3、9.46×10-3、7.04×10-3、4.64×10-3、11.8×10-3、5.25×10-3、5.22和6.31μg/蜂;点滴法测得各药剂的接触毒性48 h-LD50值分别为有效成分2.46×10-2、1.33×10-2、3.63×10-2、9.27×10-3、1.52×10-2、2.21×10-2、5.82和5.07μg/蜂。按《化学农药环境安全评价试验准则》的毒性等级划分标准,啶虫脒原药及其可溶性粉剂对蜜蜂的急性毒性均为中等毒,其他6种药剂对蜜蜂的急性毒性均为高毒;根据危害商值(HQ),啶虫脒对蜜蜂为低风险,吡虫啉、噻虫嗪和噻虫胺对蜜蜂均存在高风险。  相似文献   

18.
BACKGROUND: Most insecticides used to control rice water weevil (Lissorhoptrus oryzophilus Kuscel) infestations are pyrethroids. However, pyrethroids are highly toxic to non‐target crayfish associated with rice–crayfish crop rotations. One solution to the near‐exclusive reliance on pyrethroids in a rice–crayfish pest management program is to incorporate neonicotinoid insecticides, which are insect specific and effective against weevils but not extremely toxic to crayfish. This study aimed to take the first step to assess neonicotinoids as alternatives to pyrethroids in rice–crayfish crop rotations by measuring the acute toxicities of three candidate neonicotinoid insecticides, clothianidin, dinotefuran and thiamethoxam, to juvenile Procambarus clarkii (Girard) crayfish and comparing them with the acute toxicities of two currently used pyrethroid insecticides, lambda‐cyhalothrin and etofenprox. RESULTS: Neonicotinoid insecticides are at least 2–3 orders of magnitude less acutely toxic (96 h LC50) than pyrethroids to juvenile Procambarid crayfish: lambda‐cyhalothrin (0.16 µg AI L?1) = etofenprox (0.29 µg AI L?1) ? clothianidin (59 µg AI L?1) > thiamethoxam (967 µg AI L?1) > dinotefuran (2032 µg AI L?1). CONCLUSION: Neonicotinoid insecticides appear to be much less hazardous alternatives to pyrethroids in rice–crayfish crop rotations. Further field‐level neonicotinoid acute and chronic toxicity testing with crayfish is needed. Copyright © 2009 Society of Chemical Industry  相似文献   

19.
新烟碱类杀虫剂在苹果果实不同部位中的残留   总被引:1,自引:0,他引:1  
为了明确噻虫嗪、烯啶虫胺、吡虫啉、啶虫脒、噻虫胺和呋虫胺6种新烟碱类杀虫剂在苹果果实不同部位中的迁移转化规律,以10年生红富士苹果树为试材,分别于蚜虫发生期 (7月10日) 和果实采收前1 d (9月25日) 通过整株喷雾施药,随机取样,采用高效液相色谱仪测定,外标法定量,分析各杀虫剂在生长期套袋果实和不套袋果实及储藏期果实不同部位中的残留量及迁移规律。结果表明:在果实套袋情况下,施药后72 h内果实不同部位各新烟碱类杀虫剂的含量均呈现先逐渐上升而后下降的趋势,且在果皮中的残留量最低 (均低于0.08 mg/kg),其中烯啶虫胺和吡虫啉在果皮中的残留量低于最低检测浓度,而在果柄和果肉中的残留量明显高于果皮中的,表明套袋果实中药剂主要来源于枝叶运输,经果柄进入果实后易向果肉累积;在果实未套袋情况下,施药后72 h 6种杀虫剂在果肉中的含量均高于套袋果实果肉中的,分别是套袋果实果肉中含量的7.75、3.52、3.36、6.57、2.92和3.06倍,表明套袋可有效降低果实中该类药剂的残留量。储藏试验结果表明:直接向果面喷施6种新烟碱类杀虫剂后,药剂主要存在于果皮中,施药后14和21 d在果肉中的含量均低于最低检测浓度,表明储藏期果皮为该类药剂的主要残留部位,且不易向果肉中转移。  相似文献   

20.
The neonicotinoid insecticides imidacloprid, acetamiprid, dinotefuran, thiamethoxam and clothianidin are commonly used in greenhouses and/or interiorscapes (plant interiorscapes and conservatories) to manage a wide range of plant‐feeding insects such as aphids, mealybugs and whiteflies. However, these systemic insecticides may also be harmful to natural enemies, including predators and parasitoids. Predatory insects and mites may be adversely affected by neonicotinoid systemic insecticides when they: (1) feed on pollen, nectar or plant tissue contaminated with the active ingredient; (2) consume the active ingredient of neonicotinoid insecticides while ingesting plant fluids; (3) feed on hosts (prey) that have consumed leaves contaminated with the active ingredient. Parasitoids may be affected negatively by neonicotinoid insecticides because foliar, drench or granular applications may decrease host population levels so that there are not enough hosts to attack and thus sustain parasitoid populations. Furthermore, host quality may be unacceptable for egg laying by parasitoid females. In addition, female parasitoids that host feed may inadvertently ingest a lethal concentration of the active ingredient or a sublethal dose that inhibits foraging or egg laying. There are, however, issues that require further consideration, such as: the types of plant and flower that accumulate active ingredients, and the concentrations in which they are accumulated; the influence of flower age on the level of exposure of natural enemies to the active ingredient; the effect of neonicotinoid metabolites produced within the plant. As such, the application of neonicotinoid insecticides in conjunction with natural enemies in protected culture and interiorscape environments needs further investigation. Copyright © 2010 Society of Chemical Industry  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号