首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
A gcometrical definition, fractal dimension, was introduced in this study to evaluate copper adsorption in wood treated with copper-containing preservatives. It is based on the assumption that some copper would compete the hydroxyl groups in wood cell wall with water molecules, and therefore influence the fractal dimension of internal wood surfaces revealed by the moisture adsorption in wood. Southern yellow pine (Pinus spp.) specimens were treated with different concentrations of copper ethanolamine (Cu-EA) solution to obtain different copper retention levels. Then the adsorption isotherms of untreated and Cu-EA treated specimens were determined at 4, 15, 30, and 40℃ to provide the source data for fractal dimension calculation. The results showed that, at all temperatures, the fractal dimension of the internal wood surfaces had a decreasing trend with increasing copper retention. That is, the internal spaces in wood become “thinner“ due to the copper adsorption on some hydroxyl groups in wood cell wall. The correlation between the fractal dimension and adsorbed copper ions makes it possible to evaluate the copper adsorption in wood cell wall.  相似文献   

2.
As a substitute for high-cost copper azole (CuAz) and alkaline copper quaternary (ACQ) wood preservatives, alternative wood preservatives were formulated with okara, which is an organic waste from the production of tofu, and copper chloride and/or borax. Each preservative was used in treatment of wood blocks in a reduced-pressure method to measure its treatability. The treated wood blocks were placed in hot water for 3 days to examine the stability of the preservatives against hot-water leaching. The preservatives successfully penetrated into wood blocks, probably due to the use of ammonium hydroxide as a dissociating agent. However, the stability of okara-based preservatives dropped as the concentration of acid in the solutions used for hydrolysis of okara increased. The treatability and leachability of the preservatives were not affected by hydrolysis temperature but were negatively affected by the addition of borax. Leached wood blocks treated with okara-based preservatives and exposed to decay fungi Gloeophyllum trabeum and Postia placenta over 12 weeks showed good decay resistance. Okara-based wood preservatives can protect wood against fungal attack as effectively as CuAz, and have potential for use as environmentally friendly wood preservatives.  相似文献   

3.
The extended use of woods treated with traditional or alternative preservatives for exterior applications requires an assessment of wood adhesive performance. This study attempts to evaluate the performance of wood adhesives for woods treated with various waterborne preservatives. Two softwood species, i.e. Korean pine (Pinus koraiensis Sieb. et Zucc.) and Japanese Larch (Larix leptolepis [Sieb. et Zucc.] Gordon) were treated with copper–chrome–arsenic (CCA), CB-HDO, or copper azole (CY), and then bonded with four different wood adhesives such as urea–melamine–formaldehyde (UMF) resin, melamine–formaldehyde (MF) resin, phenol–formaldehyde (PF) resin, and resorcinol–formaldehyde (RF) resin. The performance of these adhesives was evaluated by measuring the dry shear strength of adhesive-bonded wood block on compression. Both UMF and MF resins produced a relatively strong adhesive strength for CY-treated pine and larch woods. The PF resin also produced good bond strength when bonded with either larch wood treated with CY or pinewood treated with CB-HDO. The best result was obtained when the CB-HDO-treated woods were bonded with RF resin. For a better bond strength development, a proper combination of adhesive, preservative, and wood species should be selected by taking into consideration of the characteristics of these three parameters as well as their interactions.  相似文献   

4.
A method for calculating the complex dielectric permittivity of an anisotropic wood structure at microwave frequencies is presented. A numerical model for describing the 3D wood structure containing fibers, rays, vessels and cracks with changeable dimensions and material composition is built. This model is introduced into an efficient solver that calculates the effective dielectric constant of any 3D structure of dielectric materials. Using our numerical model we succeeded in theoretically reproducing the results of recent measurements of the dielectric permittivity of wood, in various directions and various moisture contents. The qualitative agreement is realistic, reproducing all the trends of the changes in ɛ as the direction of the electric field and the moisture content are varied. The quantitative agreement is practical and reliable for engineering calculations with an average deviation of ±10% in ɛ′ and ±5% in ɛ′′. As microwave processing of wood involves internal temperatures as high as 150°C and pressures of up to 5 atm, the dielectric properties of wood were also calculated with the same numerical model by simulating high internal temperature and pressure. A comparison between the calculated and measured values shows once again how accurate the model reproduces the empirical study.  相似文献   

5.
The tensile stress relaxation of Chinese fir wood treated with copper–ethanolamine (Cu–EA) was compared with that of untreated control to investigate the influence of Cu–EA treatment on the dimensional stability of wood in long-term application, and also for a better understanding of copper–wood–water interactions in copper containing water-borne preservative systems. The results showed that temperature and moisture conditions play important roles in the stress relaxation behavior of wood with or without Cu–EA treatment. At 25°C, Cu–EA treatment has little influence on stress relaxation; while at 35°C, Cu–EA treatment can significantly reduce the stress relaxation of wood, suggesting that Cu–EA treatment can increase dimensional stability of wood at high atmospheric temperature in long-term application. The complicated effect of copper retention on stress relaxation further confirms that copper competes for hydroxyl groups as adsorption sites with water molecules, as put forward in the previous report.  相似文献   

6.
本文调查了三种耐用木材(Afzelia africana J.E. Smith; Erythrophleum suaveolens (Guill & Perr.) Brenam. Syn. E guinensis G.Don. or Milicia excelsa (Welw) C.C. Berg. Syn. Chlorophora excelsa (Welw) Benth.)的心材提取物(在60%的甲醇中风干提取)和两种专用木材防腐剂(CCA和Penta)在暴露的土壤区组设计条件下,抑制三种木材腐朽菌(Coridopsis Polyzona Klotzch; Lenzites trabea; or Trametes cingulata Fr.)对见血封喉边材的侵袭的相对潜能,并测定其阈值。提取物和防腐剂的剂量分别是8.009、24.778、48.056、96.111、144.167 kg·m-3 ,样品的暴露处理时间与ASTM D1413-72规定的一致分别是14周和18周。结果显示:在阈值范围内,任何一种心材提取物或木材防腐剂在研究中对木材腐朽菌的抑制能力在0.01的显著水平下,差异显著。这些生物杀灭剂的相对功效是取决于真菌的种类。没有任何一种心材提取物或木材防腐剂(除在用最高的存留水平处理被侵袭的非洲毒箭木的条件下)对于被处理的木材能够授予"非常持久"等级。本土树种的心材提取物相对持久力的减少的可能原因是复杂的。在最高的存留量(144.167 kg·m-3)水平下,在0.05显著水平下每种心材提取物和任一种专用木材防腐剂(CCA和Penta)之间的功效差异不显著.  相似文献   

7.
The performance of wooden louvres treated with four preservatives (Celcure A, copper sulfate + sodium pentachlorophenate, pentachlorophenol and Tanalith C) and exposed in a cooling tower in Pretoria is described. The copper-chrome-arsenate (CCA) preservatives Tanalith C and Celcure A (at retention of 30 kg/m3) protected the louvres very well against deterioration. Untreated Pinus canariensis wood outperformed P. pinaster and P. radiata wood.  相似文献   

8.
In this study, the contact angles of four different reference liquids (including distilled water, diiodomethane, formadide and glycerol) formed on the surfaces of wood, treated with chromated copper arsenate (CCA) and two other emerging copper-based water-borne systems (commercial names: NW and NS) were measured with sessile drop method. Based on the contact angle data, the surface energy was obtained from the acid-base approach. The total surface energy consisted of Lifshiz-van der Waals parameter and acid-base parameter. Results showed that the NW and CCA treatments made the wood surface more hydrophobic while the NS treatment had the reverse effect on the wood surface mainly owing to the increased penetration of earlywood. By using three liquids, diiodomethane, formamide and distilled water, the total surface energy obtained for untreated earlywood, untreated latewood, CCA-treated earlywood, CCA-treated latewood, NW-treated earlywood, NW-treated latewood, NS-treated earlywood and NS-treated latewood were 43.1, 44.5, 43.4, 45.1, 49.4, 40.6, 46.0 and 40.9 mJ/m2, respectively. The surface energy of CCA-treated wood was almost the same as untreated wood. After NW and NS treatments, the surface energy of both earlywood and latewood changed a little. However, the change was not so obvious as to draw any further conclusion concerning the influence of NW and NS treatments on the surface energy of wood. __________ Translated from Journal of Beijing Forestry University, 2006, 28(4): 1–4 [译自: 北京林业大学学报]  相似文献   

9.
In this study, the contact angles of three different reference liquids (including distilled water, diiodomethane, and formamide) and PF resin on the surfaces of Chinese fir (Cunningharnia lanceolata) samples untreated or treated with different concentrations of ACQ-D (ammoniacal copper quat Type D) solutions were measured. Then, the surface free energy was calculated by two approaches: acid-base approach and geometric mean approach. ACQ-D treatment caused higher contact angles and lower surface free energies at a retention level corresponding to the commodity treated wood products. When wood was treated with much higher concentrations of ACQ-D, the total surface free energy of wood would be higher than the untreated control. Acid-base/polar components related with the hydrogen bonding state in wood were considered to be responsible for the observed changes according to the applied approaches. The hydrophobic properties and also higher contact angles of PF resin drop on wood surfaces after ACQ-D treatment at a reasonable retention level confirms the changes on surface free energy.  相似文献   

10.
Summary The existence of three overlapping dielectric relaxation spectra from oven dry yellow birch was found over the frequency range from 20 Hz ... 2 GHz and at the temperature range from 20 ... 100°C. Origin of the spectra is largely attributed to hindered reorientation of various dipolar groups in the material. The spectra were resolved in terms of the super-position principle for dielectric loss and permittivity, and the distribution of relaxation times. The spectral resolution was checked by the Cole-Cole plot. The values for the activation energies indicate, as expected, that the dipolar groups are imbedded by hydrogen bonding in the solid structure. The crystalline portion of native cellulose in the wood estimated from the spectra agrees with such data from other sources.  相似文献   

11.
Influence of heating and drying history on micropores in dry wood   总被引:1,自引:1,他引:0  
To investigate the influence of heating and drying history on the microstructure of dry wood, in addition to the dynamic viscoelastic properties, CO2 adsorption onto dry wood at ice.water temperature (273 K) was measured, and the micropore size distribution was obtained using the Horvath-Kawazoe (HK) method. Micropores smaller than 0.6 nm exist in the microstructures of dry wood, and they decreased with elevating out-gassing temperature and increased again after rewetting and drying. Dry wood subjected to higher temperatures showed larger dynamic elastic modulus (E′) and smaller loss modulus (E″). This is interpreted as the result of the modification at higher temperature of the instability caused by drying. Drying history influenced the number of micropores smaller than 0.6 nm in dry wood not subjected to high temperature, although the difference in the number of micropores resulting from the drying history decreased with increasing out-gassing temperature. A larger number of micropores smaller than 0.6 nm exist in the microstructure of dry wood in more unstable states, corresponding to smaller E′ and larger E″ than in the stable state. Consequently, unstable states are considered to result from the existence of temporary micropores in the microstructures of dry wood, probably in lignin. Part of this report was presented at the 55th Annual Meeting of the Japan Wood Research Society, Kyoto, March 2005, and at the 56th Annual Meeting of the Japan Wood Research Society, Akita, August 2006  相似文献   

12.
ABSTRACT

Acetylated wood is now commercially available and designed to be used in certain outdoor applications as an alternative to preservative-treated wood. Fastener corrosion can be a concern in preservative treated wood when the wood remains wet for long periods. However, little data on the corrosiveness of acetylated wood exists beyond the product literature. Here we examine the corrosiveness of commercially obtained acetylated wood and compare it against unmodified (untreated) southern pine (Pinus spp.). Corrosion rates of plain carbon steel, hot dip galvanized steel, and stainless steel were calculated gravimetrically after a one year exposed in the wood. Four different moisture conditions were examined: 90% relative humidity (RH), 95% RH, 100% RH, and a fully water saturated condition. When compared to literature data on the corrosion of fasteners in preservative treated wood at 100% RH, the acetylated wood had much lower steel corrosion rates than all preservatives examined; the measured corrosion rates for galvanized steel were lower than all preservatives except chromated copper arsenate. These measured corrosion rates across a range of moisture conditions can be used to inform the selection of appropriate corrosion resistant fasteners when building with acetylated wood.  相似文献   

13.
In this study heartwood from a Chinese fir [Cunninghamia lanceolata (Lamb.) Hook] plantation was treated using a high-temperature drying (HTD) method at 115°C, a low-temperature drying (LTD) method at 65°C, and freeze vacuum drying (FVD), respectively. The dynamic viscoelastic properties of dried wood specimens were investigated. The measurements were carried out at a temperature range of −120 to 250°C at four different frequencies (1, 2, 5, and 10 Hz) using dynamic mechanical analysis (DMA). We have drawn the following conclusions: 1) the storage modulus E′ and loss modulus E″ are the highest for HTD wood and the lowest for FVD wood; 2) three relaxation processes were detected in HTD and LTD wood, attributed to the micro-Brownian motion of cell wall polymers in the non-crystalline region, the oscillations of the torso of cell wall polymers, and the motions of the methyl groups of cell wall polymers in the non-crystalline region in a decreasing order of temperatures at which they occurred; and 3) in FVD wood, four relaxation processes were observed. A newly added relaxation is attributed to the micro-Brownian motions of lignin molecules. This study suggests that both the HTD and the LTD methods restrict the micro-Brownian motion of lignin molecules somewhat by the cross-linking of chains due to their heating history. __________ Translated from Journal of Beijing Forestry University, 2008, 30(3): 96–100 [译自: 北京林业大学学报]  相似文献   

14.
A series of experiments were carried out to investigate the colour stability of chemically treated and thermally modified wood compared to non-modified wood during long term artificial UV light irradiation. One set of wood samples was vacuum-pressure impregnated with alkaline (pH 9.8) copper (II) ethanolamine aqueous solution, while another set of samples from the same wood block was thermally modified at 210°C and −0.90 bar for 2 h. The treated and modified wood samples along with the non-modified ones were exposed to artificial UV light with the wave length in the region of UVA (315–400 nm) and UVB (280–315 nm) intermittently for 500 h. Colour measurements were carried out throughout the irradiation period at an interval of 100 h according to CIEL*a*b* system, where the results are presented in terms of ΔE, ΔL*, Δa* and Δb* values. Better photo-stability in terms of colour changes was recorded for both treated and modified woods compared to the non-modified one. By means of EPR and DRIFT spectroscopic study it was shown that some degree of colour stability of treated and modified woods, achieved during artificial UV light irradiation, resulted from lignin modifications and monomers of phenolic compounds.  相似文献   

15.
For a better understanding of the binding between silicon dioxide and wood as well as the dielectric properties of silicon dioxide/wood composite, dielectric relaxation was measured for untreated wood [Cunninghamia lanceolata (Lamb.) Hook] and for silicon dioxide/wood composite with different weight percentage gain (WPG). Cole–Cole’s circular arc law, distribution spectrum of relaxation time and relation model were applied to the results of relaxation due to motions of the methylol groups. The results were as follows. The generalized relaxation time and ε s ε decreased with increasing WPG. The distribution spectrum of relaxation time decreased more and more and broadened with increasing WPG. The methylol group in the amorphous region of the wood cell wall participated in hydrolysis reaction and condensation reaction caused by tetraethylorthosilicate (TEOS), and there is a cross-link between silicon dioxide and wood. The value of apparent activation energy (ΔE) increased for silicon dioxide/wood composite, and increased with increasing WPG. Activation enthalpy (ΔH) and activation entropy (ΔS) increased, while activation free energy (ΔG) decreased with increasing WPG. The number of hydroxyl groups cut in dielectric relaxation increased with increasing WPG.  相似文献   

16.
Delignified hinoki wood and cellulose as well as hinoki and lauan woods were carbonized at 590°C for 1 h. The dielectric properties of these specimens were measured at 20°C in a frequency range of 20 Hz to 1 MHz. Inflection points in the dielectric constant (ε′) versus the logarithm of frequency (log f) curves as well as in the logarithm of the electric conductivity (log σ) versus log f curves for all specimens prepared were recognized. Peaks in the dielectric loss and the imaginary part of the complex conductivity versus the log f curves were detected in the frequency location corresponding to the inflection point in the ε′ and log σ versus log f curves. It was considered that this relaxation was responsible for the interfacial polarization observed in heterogeneous materials because no permanent dipoles existed in the specimens carbonized above 500°C. The Cole–Cole circular arc law was applied to account for this relaxation. Similar average relaxation times were obtained for all specimens. These results suggested that the observed relaxation was ascribed to interfacial polarization at microscopic levels in the cell walls.  相似文献   

17.
新型水基防腐剂在木材中的固着机理研究进展   总被引:3,自引:0,他引:3  
对几种主要的水基木材防腐在木材中的固着机理进行了介绍。其中,在胺/氨铜防腐剂体系中,防腐剂中有效成分与木材实质间的反应主要为木质素及半纤维素中的羧基及羟基发生离子交换反应;在微化铜木材防腐剂体系(MCQ/MCA)中,防腐剂中有效成分通过高分子分散剂与木材纤维间较强的附着力固着在处理材中;而在硼类防腐剂体系中,防腐剂中有效成分的固着机理与铜比较相似,但硼酸盐无法直接固着在羧基及羟基中,因此有效成分的固着研究主要涉及以下两个方面:1)增加硼类防腐处理材的疏水性;2)与有机化学物质复合生成稳定的化合物固着在木材中。  相似文献   

18.
This study investigated the behavior of piezoelectric, dielectric, and elastic constants and the crystallinity in wood cellulose by repeated measurements (n = 42) between 100°C and 220°C. There was an insignificant change in the piezoelectric constant during repeated measurements in this temperature range. On the other hand, thermal decomposition of the amorphous region contributed to the decreasing trend of dielectric and elastic constants, although only a small increase in the elastic constant was found at the time of the initial measurements. The increase in the repeated measurements in this temperature range resulted in an increase in the piezoelectric loss modulus constantd 25, which is closely related to energy loss. Thed 25 peak shifted to a higher temperature with increasing measurements, which might be due not to the increase in rigidity of the wood specimen but to the increase in total peak area, which was observed during the later measurements. At the same time, variations of piezoelectric loss modulusd 25 ande 25 at advanced stages of the measurements suggested damage and structural changes in the wood.  相似文献   

19.
TGA modeling of the thermal decomposition of CCA treated lumber waste   总被引:1,自引:0,他引:1  
 To guide the development of thermal decomposition methods for disposal of CCA treated wood, reactions during the thermal decomposition of CCA treated wood were modeled using thermogravimetric analysis (TGA), with special focus placed on arsenic volatilization. Simple inorganic compounds, such as As2O5, CuO, and Cr2O3, were used to model the thermal behavior of the inorganics in CCA treated wood. In air and nitrogen, arsenic (V) oxide began to volatilize at 600 °C during temperature ramps at 5 °C/min. During a 5 °C/min ramp in a hydrogen mix, arsenic (V) oxide began decomposition at 425 °C. Arsenic volatile loss from CCA treated wood can depend strongly on the gases produced by wood thermal decomposition. In the presence of As2O5, chromium (III) oxide and copper (II) oxide formed arsenates in air and nitrogen. Chromium arsenates began decomposition as low as 790 °C. This suggested that chromium arsenates in CCA treated wood formed during original preservative fixation may decompose as low as 790 °C. Copper arsenates were stable up to 900 °C in air, but showed only a limited range of stability in nitrogen. Depending on process conditions, the formation of copper arsenates may limit arsenic loss during thermal decomposition of CCA treated wood up to 900 °C. The thermal decomposition of inorganic oxides was influenced by interactions with wood and wood decomposition products. In a dry YP sawdust/As2O5 mix, arsenic (V) oxide volatilized at 370 °C during inert pyrolysis at 5 °C/min and at 320 °C during smoldering combustion at 5 °C/min. Thermal dwells of a dry YP/As2O5 mix showed no arsenic loss at 250 °C, but significant loss occurred during higher temperature dwells. During inert pyrolysis at 5 °C/min, the formation of complexes and hydrates were shown to prevent arsenic loss up to 400 °C. Received 14 July 1999  相似文献   

20.
The durability of wood is improved by wood preservatives. Due to new environmental legislation, commonly used active ingredients such as chromium and arsenate are being replaced by alternative and more environmentally friendly preservatives. However, the alternative wood preservatives are more difficult to detect in the wood. Detection of the preservatives is necessary in order to monitor millwork production for qualitative assessment of the wood preservative uptake. The aim of this study is to examine the use of solid phase desorption-ion mobility spectrometry (SPD-IMS) can be used for rapid detection of the wood preservatives propiconazole and tebuconazole in Scots pine (Pinus sylvestris). The findings proved that SPD-IMS is capable of detecting and distinguishing wood preservatives directly from treated wood shavings. SPD-IMS requires no additional sample preparation or extraction of the wood sample. The findings show that SPD-IMS is a fast and easily applied method for direct detection of propiconazole and tebuconazole in small wood samples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号