首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 492 毫秒
1.
利用1991年-2021年南雄国家基准气候站逐小时降水资料,统计分析韶关南雄地区短时强降水的特征,结果表明:南雄短时强降水主要集中在4-9月,6月最多,尤其在“龙舟水”期间频繁出现。南雄短时强降水具有明显日变化,上午甚少出现,前汛期集中出现在午夜和傍晚前后,后汛期集中出现在傍晚后至上半夜。南雄短时强降水在前汛期多为全境大范围多区域出现,而后汛期短时强降水多为局地生成。  相似文献   

2.
利用2004—2014年5—9月的常规气象资料和青海省东北部10个自动气象站的小时气象要素资料,对青海省东北部短时强降水的时空分布特征、地面气象要素特征、环流形势、云图TBB变化特征等进行了综合分析,结果表明:青海省东北部短时强降水多以局地对流性降水为主,范围小、持续时间短,主要集中在7—8月,以夜雨为主,16:00—24:00为主高峰;由副高压与高空槽形成的"东高西低"的天气形势是出现短时强降水的主要形势;短时强降水出现前1~3 h地面气压开始上升,气温下降,表现为地面冷高压影响特征。短时强降水出现时间落后于TBB最大值出现时间1~4 h。  相似文献   

3.
利用云龙县40个区域自动气象站2013—2021年逐小时降水数据资料,分析云龙县近9年短时强降水时空分布特征。结果表明,云龙县短时强降水空间分布极其不均,局地性特征明显,出现频次自西南向东北呈多—少—多的分布态势,短时强降水以20 mm/h≤R<40 mm/h为主,R≥50 mm/h的极端短时强降水在2017年开始隔年出现。云龙县短时强降水有很强的季节性和日变化,主要集中在7—8月,易出现在16:00—次日05:00,最易出现在16:00—22:00。  相似文献   

4.
利用2016—2022年4—10月朝阳地区153个自动气象站逐小时降水观测数据资料,对朝阳地区短时强降水的时空分布特征进行分析。结果表明:朝阳地区短时强降水时间分布特征明显,年变化整体呈现波动特征,各年均以20~<30 mm/h的强度发生次数最多;最早出现在5月上旬,最晚在10月下旬,主要集中在7月上旬、7月下旬和8月上旬;第一高发时段在15:00—19:00。朝阳地区短时强降水空间分布不均匀,整体分布呈现东西少、中间多的态势,高发区主要集中在朝阳地区中部,不同级别强度的短时强降水高发区有明显差异;短时强降水类型以个别短时强降水和局地短时强降水为主;6—8月短时强降水事件的空间分布具有明显的区域特征;大部分地区最大小时雨强(极值)在30~<50 mm/h。  相似文献   

5.
利用瀛汶河流域8个区域自动气象站2009~2014年5~9月份的逐时降水资料,统计分析了瀛汶河流域短时强降水的时空分布规律,利用常规的地面和高空观测资料对该流域短时强降水个例进行天气学分析,总结出了该流域短时强降水的特征信息。结果表明,瀛汶河流域短时强降水的空间分布具有明显的地域性,局地性强,对暴雨的贡献较大,从西南部平原到东北部山区呈递增趋势。该流域短时强降水的年际频次变化大,集中出现在7~8月份,7月上旬至8月中旬是该流域短时强降水的高发期。该流域的短时强降水日变化明显,一日中有傍晚和清晨两个峰值,夜雨特征突出。流域内山区的短时强降水多在午后到夜间形成,且频次多,强度大;平原区多在夜间和早晨形成,频次少,强度小,山区傍晚的短时强降水峰值比平原提前1 h。由强对流系统造成的短时强降水过程,高空冷空气、低层暖湿输送等热力条件较好,持续时间短;暴雨过程中的短时强降水动力和水汽条件好,持续时间长,容易诱发北部山区山洪、泥石流等地质灾害,应给予高度关注。  相似文献   

6.
黎成超  荣昕 《安徽农业科学》2018,(5):166-168,226
分析了1986—2016年云南省暴雨日和2009—2016年短时强降水的时空分布特征,结果发现,云南省暴雨日数呈现出由北向南减少的趋势,大值区集中在滇南地区;云南省短时强降水的极值分布大体上有由北向南、由西向东增大的趋势,其中,大值区主要分布在滇南和滇东的局部地区;云南省年暴雨日数呈现微弱的增加趋势,增幅不显著;短时强降水次数呈现波动中显著减少的趋势。云南省暴雨和短时强降水集中出现在云南的雨季(5—10月),其中7月出现暴雨的日数最多,而8月出现短时强降水次数最多;短时强降水出现时段呈现出了2个波峰状,其中18:00出现次数最多。  相似文献   

7.
2011年梅汛期4次暴雨过程短时强降水特征分析   总被引:1,自引:0,他引:1  
利用湖北省区域气象站和国家气象站降水资料,分析了2011年梅汛期4次暴雨过程的短时强降水时空分布特征,利用NCEP资料进一步分析了西南急流对短时强降水时空分布的可能影响。结果显示:短时强降水的出现时间主要集中在夜间,且后半夜(02:00~08:00)居多;短时强降水高发区分别位于洪湖、咸宁、黄冈一线,鹤峰以及潜江、仙桃至蔡甸一线,3小时雨量≥100 mm区域主要出现在荆州南部、潜江附近和咸宁南部;4次暴雨过程均有低空西南急流相配合,急流核主要位于江西和湖南,当急流核中心位置偏东时(江西省内),有利于湖北省出现大范围短时强降水。  相似文献   

8.
利用2010~2013年滇西12个自动气象站逐时降水资料和高空观测资料,研究了滇西短时强降水的时空分布特征,并分析典型短时强降水过程的环境背景场特征。结果表明,滇西短时强降水的频次的空间变化总体趋势呈南北向分布,大值中心在龙陵站;滇西短时强降水频次有显著的年变化;短时强降水集中发生在5~9月;日变化呈多峰型,最强峰值出现在04:00~05:00;滇西短时强降水存在5种环流概念模型。  相似文献   

9.
本文分析了2004—2014年海东市短时强降水、暴雨的时空分布特征对互助县南门峡水库流量及现时水位的影响,提高对海东市汛期水库安全运行的短时强降水、大到暴雨过程预报服务能力,为海东市水库安全渡汛和抢险工作提供科学依据。  相似文献   

10.
利用盘锦地区2007—2011年区域气象观测站资料,分析了盘锦短时强降水的年际、月际以及强度、空间分布变化特征。结果表明:盘锦市短时强降水发生频率较高,集中发生在5—9月,7月发生频次最多,其次为8月,最少的是10月;盘锦市短时强降水一般符合降水强度越强出现频次越小的规律,但40~50 mm/h降水出现的频次略高于30~40 mm/h降水等级出现的频次;盘锦短时强降水频次空间分布不均,中部、南部地区频次较少,西北部、东南部频次较多。  相似文献   

11.
《农技服务》2019,(10):91-93
短时强降水及其引发的洪涝灾害是葫芦岛市主要的气象灾害之一,为做好防灾减灾工作提供参考,对1988~2017年葫芦岛市4个国家级自动气象站(葫芦岛、绥中、兴城和建昌)和2012年7月以来区域自动站的短时强降水时空特征进行分析,并利用欧洲中心ERA-Interim再分析资料对短时强降水的天气形势进行分析。结果表明:沿海的葫芦岛、绥中和兴城短时强降水出现次数较位于西部山区的建昌多,而沿海地区以位于南部的绥中稍多,短时强降水主要集中在6月下旬到8月上旬,最多出现在午后和前半夜,区域自动站短时强降水主要出现在7月,8月和6月次之,5月和9月偶尔有之,短时强降水出现的时段与国家站的分布基本一致;葫芦岛市大范围的短时强降水过程分为高空冷涡型、高空槽型、高空低涡型和低空切变线型。  相似文献   

12.
利用朝阳地区 2016~2022年4月~10月朝阳地区153个自动气象站逐小时降水观测数据资料,对朝阳地区短时强降水的时空分布特征进行分析。结果表明:朝阳地区短时强降水时间分布特征明显,年变化整体呈现“M”型波动特征,各年均以20~29.9mm/h的强度发生次数最多;最早出现在5月上旬,最晚在10月下旬,主要集中在7月上旬、下旬和8月上旬;第一高发时段在15:00~19:00。空间分布不均匀,整体呈现东西少、中间多的分布态势,高发区主要集中在朝阳地区中部,不同级别强度的短时强降水高发区有明显差异。短时强降水类型主要以个别短时强降水和局地短时强降水为主。6~8月短时强降水事件的空间分布具有明显的区域特征。大部分地区最大小时雨强(极值)在30mm/ h~50mm/ h。  相似文献   

13.
利用邯郸市2006—2013年区域自动雨量站资料,分析了河北省邯郸市短时强降水的时空分布特征。结果表明:夏季短时强降水主要发生在每年的7—8月,其中7月中旬至8月中旬是最为活跃的时期;16:00至次日2:00是短时强降水的高发时段,其中6月主要发生在傍晚,而7月、8月夜间较多;6月短时强降水的平均持续时间、峰值小时雨强、平均雨强要比7月、8月小;区域分布上,平原东部发生的频次最多,且平原地区的峰值小时雨强、平均雨强要比山区大。  相似文献   

14.
利用1983—2017年湖北省夏季(6—8月)74个国家气象站逐小时降水数据,分析了小时强降水时空分布特征。结果表明,夏季≥20、≥30、≥50 mm/h的3类小时雨强频次年际和日变化具有较好的一致性。强降水频次日变化具有双峰型结构特征,分别出现在17:00—20:00和8:00,其中傍晚前后的连续性峰值现象形成了一个持续性活跃强降水时段。湖北省小时强降水多发生在鄂东,随着小时雨强增大,高频次站点随之向西部扩展。特殊地形条件下的地面中尺度辐合线或涡旋是造成小时强降水极大频次站点的重要因素。不同持续时间强降水事件频次日变化显示,下午到傍晚是短历时强降水事件的高发期,蕴涵众多的局地短时强降水,而长历时强降水事件具有“夜发性”,对应于系统性强降水过程;年频次周期性特征显著,短历时存在准12年、准6年和准2年的3个主振荡模态,长历时存在1个准6年主振荡模态。长历时强降水高频次站点多集中于鄂东地区,与湖北省夏季西南低空急流的发展方向有关,短历时分布范围更广,与夏季局地短时强降水的形成多样有关;极大频次站点分布与湖北省的马蹄状地形有重要关系,多位于湖北省东、西、北三面近山区域。  相似文献   

15.
利用2013~2022年横江中下游流域昭通段自动气象站汛期4~10月逐日20~20时降水资料,采用泰森多边形法计算4个子流域逐日面雨量,并对其时空分布特征进行了分析。结果表明:近10a横江中下游汛期降水时空变化特征明显,汛期面雨量平均值为843.3mm,降雨主要集中在5~9月,5月开始有强降水发生,8月最多;各个子流域汛期面雨量强降水平均值为2.4~5.2次,关河流域最易出现强降水,洒渔河流域最少,除洒渔河外,子流域均会出现日面雨量≥60mm以上强降水,其中白水江强降水最大;出现流域性强降水频次为3.4/a,白水江易与洛泽河或关河同时发生强降水,全流域性强降水的可能性不可忽视。  相似文献   

16.
利用2013-2015年延安市7次短时强降水天气多普勒雷达资料和常规观测资料,对短时强降水期间的雷达产品进行分析发现,短时强降水以带状和块状居多,且40dBz以上强回波伸展高度在4km左右,呈现低质心结构;回波中心强度和回波顶高与短时强降水雨强、持续时间有关,雨强越大,降水越集中,则回波中心强度越大,回波顶高越高;本地VIL值偏小,一般为8~23kg·m-2,少数可以达到43kg·m-2以上。在此基础上,找出了延安短时强降水天气的雷达临近预警指标:当满足天气尺度辐合特征,同时满足组合反射率、40dBz强回波伸展高度平均值达48.8dBz、4km,那么可以考虑该站点及附近地区进入短时强降水临近预警状态,并利用2016-2018年延安市发生的短时强降水对其性能进行检验,其成功概率和临界成功指数均为80%。  相似文献   

17.
利用Micaps高空、地面逐小时实况资料和多普勒天气雷达资料,对2011—2016年潜江市23次短时强对流天气过程进行统计分析,总结出潜江市中小尺度强降水短临预警指标,在2017年短临预报业务中投入使用并加以订正。结果表明,潜江市短时强降水每年出现4次左右,多发生在4—9月,7月是短时强降水最为频发的月份。短时强降水环流背景特征有锋面、低槽、切变线、低压、低涡等天气系统,短时强降水前,物理量特征为水汽充沛、湿层深厚,暖云层厚度较厚,0℃层高度位于5 000 m左右,对流有效位能CAPE属中等强度,57494站或57461站必有一站K指数在36℃以上的比例为91.3%。短时强降水的雷达回波演变方式有3种类型,即移入型,可分为一般移入型和"列车效应"移入型;合并加强型;本地发展型。短时强降水雷达回波形状以带状居多,涡带状、片状、弓状、涡旋形态较少。短时强降水时,1 h有6个以上体扫反射率因子大于35.0 dBz,强回波40 dBZ伸展到7 km左右,DVIL在2 g/m3左右,垂直风切变值在10 m/s左右。  相似文献   

18.
甘南高原短时强降水潜势预报研究和雷达回波分析   总被引:1,自引:1,他引:0  
利用甘南州8个国家气象观测站和146个乡镇区域自动气象站2011—2012年5—9月降水观测资料,风云2E红外云图资料和合作、武都高空站高空观测资料,对甘南高原短时强降水天气的特征进行分析,建立了甘南州短时强降水过程的天气尺度和中尺度概念模型和甘南州分县短时强降水潜势预报方程。同时利用2013—2014年甘南新一代天气雷达资料对甘南高原短时强降水多普勒雷达回波特征进行统计分析。结果表明:5—9月甘南州各县市均可发生短时强降水,8月是短时强降水发生频次最高的月份,5月和7月次之,6月和9月相对较少。按照环流形势甘南高原短时强降水过程可以分为高原低槽切变型、槽后西北气流型和高压内部型3种类型。甘南短时强降水云顶亮温值在8月达到最低。甘南短时强降水大部分个例回波强度大于20 dbz,回波顶高度在3 km以上,垂直液态含水量在5 kg/m2,77%的短时强降水速度场有明显的辐合和中气旋。  相似文献   

19.
川渝盆地主汛期短时强降水事件日变化特征研究   总被引:2,自引:0,他引:2       下载免费PDF全文
利用四川盆地和重庆地区1980-2012年主汛期(5-9月)基本站小时降水观测资料,分析了短时强降水事件降水量、频次和强度的日变化特征,研究了短时强降水事件日峰值位相和空间分布特征,事件极值降水日变化和持续时间等分布特征,得出以下主要结论:1)川渝盆地短时强降水事件开始时间的日变化上(01:00-24:00时,北京时间,下同),表现为"V"型结构下典型夜间峰值位相特征;结束时间的日变化上,表现为多个峰值型结构分布.强降水事件持续时间的日变化上,频次和降水量均呈双峰型结构,频次极大峰值出现在3h,而强度上随着持续时间的延长,呈现逐渐增加的趋势;2)短时强降水事件极值开始时间空间分布上,极大频次和极大降水量出现在20:00-01:00时内,主要分布在盆地南部和西部大部分地区;日峰值频次结束时间主要发生在20:00-01:00时和08:00-13:00时两个时段内,主要分布于盆地南部、中部和西部大部分地区;3)短时强降水事件极值降水的日变化上,降水量和频次呈现单峰型结构,白天多为短时间(2~4h)强降水事件出现极值,而傍晚开始至第二天清晨,持续2~10h强降水事件出现极值均有发生;强降水事件极值降水持续时间日变化,1~24h内呈单峰型结构,峰值出现在2h.  相似文献   

20.
2020年8月5日19:00至6日7:00地处青藏高原边坡地带的临夏地区出现强降水天气,最大降水量达70.6 mm,小时最大降水量达57.8 mm,且伴有雷雨大风天气。利用高空、地面观测资料以及卫星、雷达资料重点分析此次强降水过程不同尺度系统配合机制、强降水水汽来源和输送以及临近预警指标。结果表明:临夏此次出现大范围短时强降水的直接影响系统为中尺度低空切变线和低空急流,间接影响系统是西太平洋副热带高压(简称副高),副高的西伸北抬导致其外围具备高能量级的偏南暖湿气流沿着大风速带被源源不断从低纬度向高原边坡输送并产生汇聚、抬升、凝结,从而导致强降水;强降水类型为典型的暖区短时强降水,地面中尺度干线是直接触发机制,低空西南大风速带上的湿轴向东北方向伸展,水汽长时间汇聚为临夏短时暴雨提供了物质来源;雷达回波显示的低质心回波特征奠定了短时强降水的降水性质。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号