首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Many observations have been made on cloned embryos and on adult clones by somatic cell nuclear transfer (SCNT), but it is still unclear whether the progeny of cloned animals is presenting normal epigenetic status. Here, in order to accumulate the information for evaluating the normality of cloned cattle, we analyzed the DNA methylation status on satellite I region in blastocysts obtained from cloned cattle. Embryos were produced by artificial insemination (AI) to non‐cloned or cloned dams using semen from non‐cloned or cloned sires. After 7 days of AI, embryos at blastocyst stage were collected by uterine flushing. The DNA methylation levels in embryos obtained by using semen and/or oocytes from cloned cattle were similar to those in in vivo embryos from non‐cloned cattle. In contrast, the DNA methylation levels in SCNT embryos were significantly higher (P < 0.01) than those in in vivo embryos from non‐cloned and cloned cattle, approximately similar to those in somatic cells used as donor cells. Thus, this study provides useful information that epigenetic status may be normal in the progeny of cloned cattle, suggesting the normality of germline cells in cloned cattle.  相似文献   

2.
Epigenetic abnormalities in cloned animals are caused by incomplete reprogramming of the donor nucleus during the nuclear transfer step (first reprogramming). However, during the second reprogramming step that occurs only in the germline cells, epigenetic errors not corrected during the first step are repaired. Consequently, epigenetic abnormalities in the somatic cells of cloned animals should be erased in their spermatozoa or oocytes. This is supported by the fact that offspring from cloned animals do not exhibit defects at birth or during postnatal development. To test this hypothesis in cloned cattle, we compared the DNA methylation level of two imprinted genes (H19 and PEG3) and three non‐imprinted genes (XIST, OCT4 and NANOG) and two repetitive elements (Satellite I and Satellite II) in blood and sperm DNAs from cloned and non‐cloned bulls. We found no differences between cloned and non‐cloned bulls. We also analyzed the DNA methylation levels of four repetitive elements (Satellite I, Satellite II, Alpha‐satellite and Art2) in oocytes recovered from cloned and non‐cloned cows. Again, no significant differences were observed between clones and non‐clones. These results suggested that imprinted and non‐imprinted genes and repetitive elements were properly reprogramed during gametogenesis in cloned cattle; therefore, they contributed to the soundness of cloned cattle offspring.  相似文献   

3.
Epigenetic reprogramming confers totipotency even during somatic cell nuclear transfer (SCNT), which has been used to clone various animal species. However, as even apparently healthy cloned animals sometimes have aberrant epigenetic status, the harmful effects of these defects could be passed onto their offspring. This is one of the biggest obstacles for the application of cloned animals for livestock production. Here, we investigated the DNA methylation status of four developmentally regulated genes (PEG3, XIST, OCT4, and NANOG) in sperms from a cloned and a non‐cloned bull, and blastocysts obtained by in vitro fertilization using those sperms and SCNT. We found no differences in the methylation status of the above genes between cloned and non‐cloned bull sperms. Moreover, the methylation status was also similar in blastocysts obtained with cloned and non‐cloned bull sperms. In contrast, the methylation status was compromised in the SCNT blastocysts. These results indicate that sperm from cloned bulls would be adequately reprogrammed during spermatogenesis and, thus, could be used to produce epigenetically normal embryos. This study highlights the normality of cloned bull offspring and supports the application of cloned cattle for calf production.  相似文献   

4.
体细胞核移植(somatic cell nuclear transfer,SCNT)是一种能将已分化的体细胞重编程为全能胚胎的繁殖生物技术,在良种扩繁、濒危物种保护和治疗性克隆等方面有着广泛的应用前景,但极低的克隆效率、克隆动物胎盘异常、出生后胎儿畸形等严重限制了该技术的实际应用。造成克隆效率低和胚胎发育异常的主要原因是供体核表观遗传重编程错误或不完全。1958年,将非洲爪蟾(Xenopus laevis)幼体肠细胞核移入去核卵母细胞,获得了第1例SCNT动物个体;1986年,通过电融合1个卵裂球与去核卵母细胞成功获得了3只存活的羔羊;1997年,将成年母羊的乳腺上皮细胞与去核卵细胞电融合,获得首个SCNT哺乳动物"多利",开启了克隆时代,目前牛、小鼠、山羊、猪、欧洲盘羊、家兔、家猫、马、大鼠、骡子、狗、雪貂、狼、水牛、红鹿、单峰骆驼、食蟹猴等相继成功克隆,其中最引人瞩目的是2018年食蟹猴的成功克隆。作者通过将SCNT胚胎与受精胚胎的发育进行对比,阐述了SCNT过程中DNA甲基化、组蛋白修饰、基因组印迹、染色体状态等的重编程过程和缺陷,并从表观修饰剂、组蛋白去甲基化酶、抑制Xist表达、补充鱼精蛋白和精子RNA方面探讨单独或联合消除表观遗传重编程障碍对克隆效率的影响。随着低样本量测序技术的发展和完善,人们能够在SCNT胚胎中检测到更详细的全基因组表观遗传修饰图谱,进一步揭示SCNT胚胎表观遗传重编程中的缺陷,为提高克隆效率提供了线索。通过上述内容的阐述,希望为后续开发联合消除多种表观遗传障碍而提高克隆效率的策略和思路。  相似文献   

5.
利用体细胞移植技术获得克隆动物的成功是几十年来生命科学领域取得的重大突破之一,这项技术引起了社会的广泛关注。然而,由于哺乳动物克隆效率低下,且克隆后代发育异常等问题,已成为目前制约动物克隆技术发展和应用的瓶颈。克隆动物中经常出现后代过大综合征(LOS),该病导致克隆动物早产、难产和易夭折。LOS类似于人的伯-伟综合征(BWS),BWS也称为Wlims瘤,表现为巨舌、内脏肿大等症状。研究发现BWS的发病机理与WT1基因(Wilms’tumor 1gene)异常表达有关。本文对体细胞核重编程和表观遗传学调控细胞重编程的研究进展进行综述,并对WT1基因组蛋白乙酰化修饰与体细胞重编程之间的联系进行简要介绍,以期为生命科学领域的进一步探索与研究提供借鉴。  相似文献   

6.
Bovine somatic cell nuclear transfer (SCNT) embryos can develop to the blastocyst stage at a rate similar to that of embryos produced by in vitro fertilization. However, the full‐term developmental rate of SCNT embryos is very low, owing to the high embryonic and fetal losses after embryo transfer. In addition, increased birth weight and postnatal mortality are observed at high rates in cloned calves. The low efficiency of SCNT is probably attributed to incomplete reprogramming of the donor nucleus and most of the developmental problems of clones are thought to be caused by epigenetic defects. Applications of SCNT will depend on improvement in the efficiency of production of healthy cloned calves. In this review, we discuss problems and recent progress in bovine SCNT.  相似文献   

7.
Transgenic research on cattle embryos has been developed to date using viral or plasmid DNA delivery systems. In this study, a different gene delivery system, piggybac transposition, was employed to investigate if it can be applied for producing transgenic cattle embryos. Green or red fluorescent proteins (GFP or RFP) were transfected into donor fibroblasts, and then transfected donor cells were reprogrammed in enucleated oocytes through SCNT and developed into pre-implantation stage embryos. GFP was expressed in donor cells and in cloned embryos without any mosaicism. Induction of RFP expression was regulated by doxycycline treatment in donor fibroblasts and pre-implantational stage embryos. In conclusion, this study demonstrated that piggybac transposition could be a mean to deliver genes into bovine somatic cells or embryos for transgenic research.  相似文献   

8.
Successful cloning requires reprogramming of epigenetic information of the somatic nucleus to an embryonic state. However, the molecular mechanisms regarding epigenetic reprogramming of the somatic chromatin are unclear. Herein, we transferred NIH3T3 cell nuclei into enucleated mouse oocytes and evaluated the histone H3 dimethyl-lysine 4 (H3K4me2) dynamics by immunocytochemistry. A low level of H3K4me2 in the somatic chromatin was maintained in pseudo-pronuclei. Unlike in vitro fertilized (IVF) embryos, the methylation level of nuclear transfer (NT) embryos was significantly increased at the 8-cell stage. NT embryos showed lower H3K4me2 intensity than IVF embryos at the 2-cell stage, which is when the mouse embryonic genome is activated. Moreover, the H3K4me2 signal was weak in the recloned embryos derived from single blastomeres of the NT embryos, whereas it was intense in those from IVF embryos. Two imprinted genes, U2afbp-rs and Xist, were abnormally transcribed in cloned embryos compared with IVF embryos, and this was partly correlated to the H3K4me2 level. Our results suggest that abnormal reprogramming of epigenetic markers such as histone acetylation and methylation may lead to dysregualtion of gene expression in cloned embryos.  相似文献   

9.
OBJECTIVE: To assess the innate resistance of and transmission in naive Bos taurus cross Bos indicus and purebred Bos indicus cattle when placed in a paddock with cattle infected with Anaplasma marginale and carrying Boophilus microplus ticks. DESIGN: A group of 49 purebred B indicus, and 48 B indicus cross B taurus (50%, F1 generation) 24-month-old steers were kept in the same paddock with cattle artificially infected with a virulent isolate of A marginale and Boophilus microplus. The cattle were seronegative for A marginale at the start of the trial but had previously been exposed to Babesia bovis and B bigemina. PROCEDURE: Cattle were inspected twice weekly for 118 days. Whole blood, blood smears and serum samples were collected from the cattle on day 37 after exposure and then at regular intervals to day 83 after exposure to measure packed-cell volumes, parasitaemias and antibody titres to A marginale. Any animals that met preset criteria were treated for anaplasmosis. On day 83 all cattle were treated with an acaricide and cattle infected with A marginale were removed from the rest of the group. RESULTS: A marginale was detected in blood smears from 14 crossbred and 9 B indicus steers between days 56 and 72 after exposure. Five and two of the infected crossbred and B indicus steers required treatment, respectively. One of the Bos indicus cattle died as a result of the A marginale infection despite treatment. Antibodies to A marginale were detected in the 23 infected cattle. The mean packed-cell volume depression was 40 and 37% in the affected crossbred and Bos indicus groups, respectively. There was no significant difference detected in susceptibility between these two groups. CONCLUSIONS: Innate resistance of purebred B indicus and crossbred cattle was not significantly different. The results confirm that purebred B indicus and crossbred cattle are sufficiently susceptible to warrant the use of vaccination against Anaplasma infections.  相似文献   

10.
The aim of the present study was to clarify the overall efficiency of porcine somatic cell nuclear transfer (SCNT) by incorporating cryopreservation of the cloned embryos before transfer. The SCNT embryos reconstructed with preadipocytes and in vitro-matured (IVM) oocytes were cultured to harvest morula stage embryos; they were then subjected to delipation (removal of cytoplasmic lipid droplets) and vitrification. After warming and culture, the embryos developing to blastocysts were transferred to recipients to obtain cloned piglets. From 372 reconstructed embryos, 188 (50.5%) reached the morula stage and 117 (31.5%) developed to blastocysts after vitrification. Transfer of 98 (26.3%) morphologically normal blastocysts gave rise to 6 (1.6%) piglets, including 1 stillborn. The efficiency of the cloned piglet production was comparable with that obtained using SCNT embryos without cryopreservation (2.7%, 17/635). Here, we demonstrate that porcine somatic cell cloning can be performed without a significant reduction in efficiency even when the SCNT embryos are cryopreserved before transfer.  相似文献   

11.
This review reveals that relative to Bos taurus cattle, cattle varying in Bos indicus inheritance, especially cattle that are > 1/2 Bos indicus inheritance, lack carcass tenderness. Because consumers are willing to pay for more tender beef, it seems imperative that the commercial beef cattle industry should refrain from producing cattle that are > 1/2 Bos indicus inheritance. Because of their Superior preweaning maternal performance, F1Bos indicus ♂ × Bos taurus 9 females and their resulting contemporary F1steer mates will continue to be produced by the commercial beef cattle industry in the Southeast and Golf Coast areas of the U.S. Further, as progeny testing for tenderness is expensive, it is suggested that the F1Bos indicus ♂ x Bos taurus 9 steers be identified by the commercial beef cattle industry so that the packing/ retail industries can utilize existing postmortem technology (electrical stimulation, blade tenderization, extended aging, calcium chloride injections) to partially alleviate the lack of tenderness expressed by carcasses resulting from these cattle.  相似文献   

12.
The low viability of embryos reconstructed by somatic cell nuclear transfer (SCNT) is believed to be associated with epigenetic modification errors, and reduction of those errors may improve the viability of SCNT embryos. The present study shows the effect of trichostatin A (TSA), a strong inhibitor of histone deacetylase, on the development of murine SCNT embryos. After enucleation and nuclear injection, reconstructed murine oocytes were activated with or without TSA for 6 hr (TSA-6 hr). After activation, TSA treatment was extended to 3 hr (TSA-9 hr), 5 hr (TSA-11 hr) and 18 hr (TSA-24 hr) during culture. As a result, the SCNT embryos in the TSA-11 hr group showed a remarkably higher blastocyst rate (21.1%) when compared with the nontreated embryos (3.4%), while the concentration of TSA did not significantly affect embryonic development. The expressions of histone deacetylase (HDAC1 and HDAC2) and DNA methylation (DNMT3a and DNMT3b) genes decreased in the TSA-11 hr and TSA-24 hr groups, while there was an increase in the expression of histone acetyltransferase (P300 and CBP), pluripotency (OCT4 and NANOG) and embryonic growth/trophectoderm formation (FGF4)-related genes in the same groups. The expression of CDX2, a critical gene for trophectoderm formation was upregulated only in the TSA-24 hr group. Our results show that TSA treatment during the peri- and postactivation period improves the development of reconstructed murine embryos, and this observation may be explained by enhanced epigenetic modification of somatic cells caused by TSA-induced hyperacetylation, demethylation and upregulation of pluripotency and embryonic growth after SCNT.  相似文献   

13.
14.
[目的]研究中国黄牛Y染色体STRs的遗传多样性及父系起源。[方法]利用非变性聚丙烯酰胺凝胶电泳,选择2个牛Y-STRs位点INRA189和BM861,分析16个中国地方黄牛品种284头公牛与4头缅甸黄牛公牛的Y染色体遗传多样性。[结果]在中国16个黄牛品种中,2个Y-STR位点可以区分中国黄牛中的普通牛和瘤牛类型,表明中国黄牛有普通牛和瘤牛两种父系起源。4头缅甸黄牛均为瘤牛类型。在中国16个黄牛品种中,普通牛和瘤牛分布频率分别为57.0%和43.0%,其中普通牛频率在北方黄牛中占优势(98.3%),瘤牛频率在南方黄牛中占优势(76.1%),中原黄牛中普通牛频率较高为63.8%,瘤牛频率为36.2%。[结论]中国黄牛存在普通牛和瘤牛两种父系起源;普通牛频率自北向南逐渐减少,瘤牛频率自北向南逐渐增加,中原地区为普通牛和瘤牛的交汇处。  相似文献   

15.
由于在核移植试验中,所用的水和化学物质都不可避免的会被一些金属离子轻微污染,造成胚胎内抗氧化物和过氧化物之间难以保持平衡,从而导致胚胎发育率降低,本试验以此为出发点,探讨了在延边黄牛体细胞核移植重组胚早期培养液中添加乙二胺四乙酸钠(EDTA-Na)和柠檬酸钠(sodium citrate)2种金属螯合剂类抗氧化剂,对其后续发育的影响,以期筛选出最佳的体外培养条件。结果表明:适合延边黄牛体细胞核移植重组胚后期发育的EDTA-Na和柠檬酸钠的最佳浓度分别为50μmol/L和0.6mmol/L。  相似文献   

16.
Feedlot steers (n = 36) from three biological types (Bos indicus, Bos taurus-Continental, and Bos taurus-English) were used to determine the Ca, P, and vitamin D3 status of feedlot cattle. The USDA yield and quality grade traits were measured at slaughter, and the concentrations of vitamin D3 (VITD) and the metabolites 25-hydroxyvitamin D3 (25-OH D) and 1,25-dihydroxyvitamin D3 (1,25-(OH)2 D) were determined in LM, liver, kidney, and plasma. Plasma and muscle Ca and P concentrations also were determined. Biological type of cattle affected a number of carcass traits. Carcasses from Bos taurus-English cattle had more marbling, resulting in higher quality grades (P < 0.05). Carcasses from Bos taurus-Continental cattle had lower calculated yield grades (P < 0.05) than did carcasses from cattle in the other biological types. In general, differences in carcass traits resulting from biological type were consistent with other reports. Plasma and LM Ca and P concentrations were not affected (P = 0.06) by biological type of cattle, indicating that Ca and P homeostasis is a conserved trait across the different types of cattle. Plasma VITD and 25-OH D concentrations were not affected (P = 0.41) by biological type, whereas plasma 1,25-(OH)2 D concentration was lower (P < 0.05) in Bos taurus-English cattle than in Bos taurus-Continental and Bos indicus cattle. Liver VITD and 25-OH D were not affected by biological type (P = 0.76), but liver 1,25-(OH)2 D concentration was greater (P < 0.05) in Bos indicus cattle than in Bos taurus-Continental cattle. Kidney vitamin D metabolite concentrations were not affected by biological type of cattle (P = 0.21). Muscle VITD concentration was greater (P < 0.05) in Bos taurus-English cattle than in the other two biological types, and muscle 25-OH D concentrations were greater (P < 0.05) in Bos taurus-English cattle than in Bos indicus cattle. Muscle 1,25-(OH)2 D concentration was less (P < 0.05) in the Bos taurus-Continental cattle than in the other two biological types. Cooking eliminated vitamin D metabolite differences among the biological types. Our results suggest that Bos indicus cattle had greater 1,25-(OH)2 D (the biologically active form) in tissues, and greater 1,25-(OH)2 D plasma concentrations than Bos taurus cattle. Thus, the need for VITD supplementation and optimal levels of Ca and P in feedlot diets might differ between Bos indicus and Bos taurus cattle.  相似文献   

17.
18.
The production of transgenic farm animals(e.g., cattle) via genome engineering for the gain or loss of gene functions is an important undertaking. In the initial stages of genome engineering, DNA micro-injection into one-cell stage embryos(zygotes) followed by embryo transfer into a recipient was performed because of the ease of the procedure.However, as this approach resulted in severe mosaicism and has a low efficiency, it is not typically employed in the cattle as priority, unlike in mice. To overcome the above issue with micro-injection in cattle, somatic cell nuclear transfer(SCNT) was introduced and successfully used to produce cloned livestock. The application of SCNT for the production of transgenic livestock represents a significant advancement, but its development speed is relatively slow because of abnormal reprogramming and low gene targeting efficiency. Recent genome editing technologies(e.g.,ZFN, TALEN, and CRISPR-Cas9) have been rapidly adapted for applications in cattle and great results have been achieved in several fields such as disease models and bioreactors. In the future, genome engineering technologies wil accelerate our understanding of genetic traits in bovine and wil be readily adapted for bio-medical applications in cattle.  相似文献   

19.
20.
Obtaining sufficient transgenic cells via selective cultivation of genetically manipulated somatic cells is difficult due to the limited number of cell divisions. Additionally, if irreversible mutations in a cell's chromosomes occur during selective cultivation and the cell is used as the nuclear donor, somatic cell nuclear transfer (SCNT) embryos often exhibit abnormal development. On the other hand, a SCNT method in which fetal cells derived from SCNT embryos are used as the nuclear donor (recloning method) is an effective technique for obtaining large quantities of transgenic cells. In this study, we compared the in vivo development rate of SCNT embryos produced from porcine alpha1-3 galactosyltransferase gene knockout (GTKO) cells by a recloning method with that of SCNT embryos produced without recloning from porcine GTKO cells (direct method). In the direct method, 557 and 462 cloned embryos were produced using two types of activation methods, the two-step activation (TA) method and the delayed activation (DA) method, and then transferred into 6 and 4 recipients, respectively, but no piglets were born from these recipients. In the recloning method, 956 and 1038 cloned embryos were produced using the TA and DA methods, respectively, and then transferred to 8 and 7 recipients, respectively. Two piglets were born from one recipient in the TA group and 6 piglets were born from 3 recipients in the DA group. This report indicates that the recloning method improved the developmental capacity of SCNT embryos reconstructed with gene-targeted somatic cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号