首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
The fallout radionuclide cesium-137(137 Cs) has been widely employed as a tracer for assessment of soil loss from thick uniform soils;however,few studies have been conducted on thin stony soils on slopes underlain by carbonate rocks which are widely distributed in karst areas.Information derived from 137 Cs measurement of soil samples collected along a carbonate rock slope with thin stony soil where neither soil erosion nor deposition occurred was used to investigate the characteristics of 137 Cs redistribution in a karst area of Southwest China.The results indicated that the 137 Cs inventories of the surface soil on the slope studied were much lower than that of the local 137 Cs reference inventory and the 137 Cs activities were much higher than those on slopes with thick uniform soils.The spatial distribution of 137 Cs inventories was characterized by considerable variation.The high 137 Cs depletion in the stony soil of the slope studied was mainly because a considerable proportion of the fallout input of 137 Cs could be lost with runoff and the dissolution of carbonate particles in the soil promoted the loss of 137 Cs.These demonstrated that the rates of soil loss could not be estimated from the degree of depletion of the 137 Cs inventory relative to the local reference inventory for the thin stony soil of the rocky slope underlain by carbonate rocks in the study area in the way that has been widely used in areas with thick uniform soils.  相似文献   

2.
Determining how soil erosion affects enzyme activity may enhance our understanding of soil degradation on eroded agricultural landscapes. This study assessed the changes in enzyme activity with slope position and erosion type by selecting water and tillage erosion-dominated slopes and performing analyses using the 137Cs technique. The 137Cs data revealed that soil loss occurred in the upper section of the two eroded slope types, while soil accumulation occurred in the lower section. The invertase activity increased downslope and exhibited a pattern similar to the 137Cs data. The spatial patterns of urease and alkaline phosphatase activities were similar to the 137Cs inventories on the water and tillage erosion-dominated slopes, respectively. On both the eroded slope types, the invertase activity and soil organic carbon content were correlated, but no correlation was observed between the alkaline phosphatase activity and total phosphorus content. Nevertheless, the urease activity was correlated with the total nitrogen content only on the water erosion-dominated slopes. The enzyme activity-to-microbial biomass carbon ratios indicated high activities of invertase and urease but low activity of phosphatase on the water erosion-dominated slopes compared with the tillage erosion-dominated slopes. Both the invertase activity and the invertase activity-to-microbial biomass carbon ratio varied with the slope position. Changes in the urease activity-to-microbial biomass carbon ratio were significantly affected by the erosion type. These suggested that the dynamics of the invertase activity were linked to soil redistribution on the two eroded slope types, whereas the dynamics of the urease and alkaline phosphatase activities were associated with soil redistribution only on the water or tillage erosion-dominated slopes, respectively. The erosion type had an obvious effect on the activities of invertase, urease and alkaline phosphatase. Soil redistribution might influence the involvement of urease in the N cycle and alkaline phosphatase in the P cycle. Thus, enzyme activity-to-microbial biomass ratios may be used to better evaluate microbiological activity in eroded soils.  相似文献   

3.
The impact of soil erosion on the nutrient dynamics in alpine grassland soils is still an essential problem. Selecting a grass-covered hillslope in eastern Tibet Plateau, the cesium-137 (137Cs) technique was used to determine the impacts of soil erosion on soil organic carbon (SOC), total nitrogen (TN), total phosphorus (TP), and total potassium (TK). The 137Cs data revealed that there were distinct soil redistribution patterns in different hillslope positions because of the influences of slope runoff, plant coverage and grazing activity. For the upper slope, soil erosion first decreased downward, followed by soil deposition in its lower part. In contrast, for middle and toe slopes, there was an increasing soil erosion along a downslope transect. Across the lower slope, soil erosion showed an irregular variation. Influenced by the selective transport of water erosion, SOC, TN and TP storage decreased with increasing soil erosion in upper, middle and toe slopes. In contrast, SOC, TN and TP storage varied little with soil erosion in the lower slope. On the whole hillslope, TK storage also varied little with soil erosion due to the large amount of potassium elements derived from soil parent materials. Particularly noteworthy was the greatest storage of SOC, TN and TP in the lower slope where most obvious net soil erosion occurred, which is closely related to the humus accumulation combined with gravel separation as well as weathering and pedogenesis of parent rocks induced by soil freeze-thaw.  相似文献   

4.
Fallout caesium‐137 has been used to trace soil redistribution in abandoned fields located in the Central Spanish Pyrenees. A total of 28 fields with different lengths, slope angles and time since abandonment were selected on a representative south‐facing slope of the Estarrún valley. The local reference inventory and the magnitude and spatial distribution of 137Cs inventories within these fields were documented and used as a basis for assessing patterns of soil redistribution. The local reference inventory was estimated to be 4,500 Bqm−2. Within the fields, the average 137Cs inventory at the top of the slope was 3,920 Bqm−2, and accumulation of soil at the bottom of the slopes was demonstrated by an average 137Cs inventory of 5,320 Bqm−2. Deviations from the reference inventory were highest for fields with the longest slopes that had been abandoned for less than 30 years. Here, increases in the 137Cs inventory, relative to the reference inventory, in excess of 20% were found at the bottom of the slopes. Considering all the fields and all geomorphic positions within the fields, the greatest 137Cs losses and gains were found in the fields with the longest duration of abandonment, indicating more intense soil redistribution. Irrespective of the timing of abandonment, the ranges of 137Cs inventories in the fields were found to be proportional to the water erosion index. The 137Cs technique demonstrated that patterns of sediment redistribution were closely related to the topographic and physiographic characteristics of the slopes. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

5.
Quantitative assessment of soil redistribution in landscapes remains a challenging task. In this study we used radioactive soil redistribution tracer 137Cs together with soil morphological characteristics and empirically-based modeling for quantitative assessment of long-term soil conservation effectiveness. Three pairs of arable slopes were selected, all located within the territory of the Novosil experimental station (the Orel Region, central European Russia). One slope in each pair undergone creation of artificial terraces with forest shelter belts located parallel to topography contour lines and spaced at approximately 100 m from each other.Preliminary results have shown that slopes with soil-protective measures are characterized by a 11–80% reduction of average soil redistribution rates, as shown by soil profile morphology and 137Cs methods. Discrepancy in values obtained can be attributed to differences in temporal resolution of methods as well as possible influence of individual extreme events on results yielded by the 137Cs method. On the other hand, more significant decrease in average soil degradation rates on slopes with soil conservation (62–75% for each pair of slopes) was predicted by the model.The 137Cs method overestimates gross and net soil redistribution rates, as a result of the influence of extreme erosion prior to tillage mixing of a fresh fallout isotope, not accounted for by calibration models used. Another shortcoming of the estimations obtained is that sediment redeposition directly within forest belts was not taken into account. Therefore, net erosion rates obtained for slopes with forest belts should be regarded as overestimation. Nevertheless, it can be generally concluded that the multi-technical approach has allowed acquiring much more detailed information on temporal and spatial variability of soil redistribution rates than single method-based studies.  相似文献   

6.
Wind erosion has degraded over one-half billion hectares of land worldwide. 137Cesium (137Cs) has been used as a tracer to study long-term rates of soil redistribution by water and, to a lesser extent, by wind. Early studies assumed that the decline in 137Cs activity for a potentially eroded soil relative to that for an uneroded soil was linearly proportional to soil loss. More recently, models have emerged that consider the effects of soil cultivation and the particle surface area-dependent partitioning of 137Cs on soils. We investigated the partitioning of 137Cs in wind-eroded sediments and with soil surface samples sieved into contiguous ranges of particle sizes. We also compared the 137Cs activities and stratification of several adjacent soils with known wind erosion and deposition histories. Finally, we tested 137Cs-based soil loss models with measured data from sites with documented histories. 137Cs activities and mean particle diameters of aeolian samples agreed well with the 137Cs activities and respective mean diameters of the sieved surface soil samples. Good agreement between model estimations and measured data indicated that 137Cs models developed to estimate soil redistribution by water were also applicable to soil redistribution by wind provided that the models contained an appropriate particle size correction parameter.  相似文献   

7.
利用137Cs示踪技术评价东北黑土侵蚀和沉积过程   总被引:6,自引:1,他引:6  
Soil and water losses through erosion have been serious in the black soil region of Northeast China. Therefore, a sloping cultivated land in Songnen Plain was selected as a case study to: 1) determine the ^137Cs reference inventory in the study area; 2) calculate erosion and deposition rates of black soil on different slope locations; 3) conduct a sensitivity analysis of some model parameters; and 4) compare overall outputs using four different models. Three transects were set in the field with five slope locations for each transect, including summit, shoulder-slope, back-slope, foot-slope, and toe-slope. Field measurements and model simulation were used to estimate a bomb-derived ^137Cs reference inventory in the study area. Soil erosion and deposition rates were estimated using four ^137Cs models and percentage of ^137Cs loss/gain. The ^137Cs reference value in the study area was 2 232.8 Bq m^-2 with ^137Cs showing a clear topographic pattern, decreasing from the summit to shoulder-slope, then increasing again at the foot-slope and reaching a maximum at the toe-slope, Predicted soil redistribution rates for different slope locations varied. Among models, the Yang Model (YANG-M) overestimated erosion loss but underestimated deposition. However, the standard mass balance model (MBM1) gave predictions similar to a mass balance model incorporating soil movement by tillage (MBM2). Sensitivity analysis of the proportion factor and distribution pattern of ^137Cs in the surface layer demonstrated the impact of ^137Cs enrichment on calculation of the soil erosion rate. Factors influencing the redistribution of fallout ^137Cs in landscape should be fully considered as calculating soil redistribution rate using ^137Cs technique.  相似文献   

8.
The sediment budget is a key concept and tool for characterizing the mobilization, transfer and storage of fine sediment within a catchment. Caesium‐137 measurements can provide valuable information on gross and net erosion rates associated with sheet and rill erosion that can be used to establish the slope component of a catchment sediment budget. However, there is a need to validate the use of 137Cs measurements for this purpose, because their reliability has sometimes been questioned. The study reported focuses on a small (3·04 ha) steepland (mean slope 37%) catchment in Southern Italy. It exploits the availability of information on the medium‐term sediment output from the catchment provided by the construction of a reservoir at its outlet in 1978 and the existence of estimates of soil redistribution rates derived from 137Cs measurements made on 68 replicate soil cores collected from the slopes of a substantial proportion of the catchment in 2001, to validate the use of 137Cs measurements to construct the slope component of the catchment sediment budget. An additional 50 replicate soil cores were collected from the catchment slopes for 137Cs analysis, to complement the data already available. Nine cores collected from the area occupied by the reservoir were used to estimate the mean annual sediment input to the reservoir. In the absence of evidence that the poorly developed channel system in the catchment was either a significant sediment source or sink, it was possible to directly compare the estimate of net soil loss from the catchment slopes (7·33 Mg ha−1 y−1) with the estimate of sediment output from the catchment provided by the reservoir deposits (7·52 Mg ha−1 y−1). Taking account of the uncertainties involved, the close agreement of the two values is seen as providing a convincing validation of the use of 137Cs measurements to both estimate soil redistribution rates and as a basis for constructing the slope component of the sediment budget of a small catchment. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

9.
We present a study on the radioactivity of selected Croatian agricultural soils that vary considerably with respect to geological background; physical, chemical, and biological characteristics; soil type; land use; and soil management. Our investigation is focused on the main naturally occurring radionuclides (40K, 238U, 226Ra, 232Th, 235U) and 137Cs as the most threatening long-lived anthropogenic radionuclide. We find that the radioactivity level is not influenced by the application of different soil amendments, at least in moderate quantities, and that no effect of soil management can be detected as well. In contrast, geological and location-specific properties influence radionuclide content in soil, especially regarding the naturally occurring ones. Moreover, physical and chemical soil properties such as texture and soil adsorption complex, respectively, seem to be the main factors regarding fixation of 137Cs in soil. Calculated dose rates for external exposure to the gamma radiation originating from soil have been found to be generally low, except for two locations where they are higher but not at a level that would lead to health problems for workers on the field.  相似文献   

10.
The variation in soil nutrients is crucial to the understanding of productivity of soil undergoing erosion overall, as the latter can result in a decline in soil quality and crop production in the whole landscape. Two toposequences (a long slope and terraced field series) were selected from hilly areas of the Sichuan Basin, China, to determine the effects of soil redistribution rates and topographic changes on P, K and CaCO3 contents, and examine the contribution of water and tillage erosion to the variation and distribution pattern in these chemical properties within different landscapes. For the long slope, soil loss occurred at upper slope positions and soil accumulation was present at lower slope positions. However, terrace banks create a line of zero downslope transport of soil, and lead to abrupt changes in 137Cs inventories over very short distances between the upper (or lower) part of the terrace and the lower (or upper) part of the neighbouring terrace. Extractable K concentrations are significantly related to 137Cs inventories on both the long slope and terraced fields, which suggests that the distribution of extractable K is closely linked to soil redistribution. However, it is noticeable that no close relationship between extractable P concentrations and 137Cs inventories was found on the terraced fields, while there was a highly significant correlation between the two variables on the long slope. The variation in extractable P by soil redistribution was enhanced on the long slope, but was concealed on the terraced fields due to the presence of CaCO3. It is suggested that the variation in extractable P not only depends on soil redistribution in relation to fine soil particles, but is also influenced by other factors such as P‐fixation onto CaCO3, the concentration of which itself is linked to soil erosion and redistribution. Therefore, extractable P dynamics with reference to soil erosion are relatively complex on carbonate‐rich soil and parent materials in areas such as those represented by the Sichuan Basin. Tillage erosion, the dominant soil redistribution process on terraced fields, was found to be a major contributor to the variation in soil chemical properties in the terraced field landscape, while water erosion plays an important role in the variation in soil chemical properties in the long slope landscape. In the case of carbonate‐rich soils or parent materials, however, tillage erosion did not create accumulations of extractable P in depressions, whereas water erosion results in extractable P losses at upper slope positions and accumulation at lower slope positions.  相似文献   

11.
Soil organic carbon (SOC) in eroded soil can be redistributed from upper slope positions and deposited and sequestered in depressional areas. However, the SOC lost from soil erosion is normally not considered when soil carbon budgets are derived and this could result in an overestimation of SOC loss from the agricultural areas. The impact of soil redistribution on the SOC budget of a sloping landscape in the Black soil region in Northeast China was studied using the presence of the 137Cs tracer which has been deposited since 1954 and the fly‐ash tracer, which was deposited in 1903. Five landscape positions (summit, shoulder‐, back‐, foot‐ and toe‐slope) were selected and included in this study. The depths of 137Cs and fly ash and the SOC content of the deposition layers were used to calculate the change in C content of the soil in the various landscape positions over the last century. We found that the most severe soil erosion occurred in soils in the shoulder‐slope position followed by the back‐slope and the summit positions. Soil deposition occurred in the toe‐slope position followed by the foot‐slope position. A total of 683 kg C was eroded from the summit, shoulder‐ and back‐slopes (in a 1 m wide strip) over the past 100 years and 418 kg C (about 61·2 per cent) was deposited in the low‐lying areas (foot‐ and toe‐slopes). Over half (61·5 per cent) of the deposition (257 kg SOC) occurred over the past 50 years. Most of the previously reported loss of C from the upper slope positions in the Black soils was in fact sequestered in the deposition areas in the landscape. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

12.
黄土丘陵区典型峁坡土壤侵蚀空间分异特征   总被引:1,自引:0,他引:1  
选择黄土高原丘陵沟壑区典型峁坡,采用137 Cs示踪技术,通过对不同坡向和坡位土样137 Cs含量的测定,分析了峁坡137 Cs空间分布特征及土壤侵蚀的空间分异。结果表明,不同坡向峁坡侵蚀差异明显,各坡向平均侵蚀速率大小依次为:北坡西南坡东北坡西坡西北坡南坡东南坡东坡,各坡向侵蚀强度均表现为强度侵蚀;峁坡各坡向不同坡位的侵蚀差异也非常明显,坡下部侵蚀量最大,坡面中上部次之。侵蚀速率顺坡呈波动变化趋势,且侵蚀强度表现为中度、强度以及极强度侵蚀,以强度侵蚀为主。  相似文献   

13.
Purple soils are widely distributed in the Sichuan Hilly Basin and are highly susceptible to erosion, especially on the cultivated slopes. Quantitative assessment of the erosion rates is, however, difficult due to small size of the plots of the manually-tilled land, the complex land use, and steep hillslopes. 137Cs and 210Pbex (excess 210Pb) tracing techniques were used to investigate the spatial pattern of soil erosion rates associated with slope-land under hoe tillage in Neijiang of the Sichuan Hilly Basin. The 137Cs and 210Pbex inventories at the top of the cultivated slope were extremely low, and the highest inventories were found at the bottom of the cultivated slope. By combining the erosion rates estimates provided by both 137Cs and 210Pbex measurements, the weighted mean net soil loss from the study slope was estimated to be 3100 t km-2 year-1, which was significantly less than 6930 t km-2 year-1 reported for runoff plots on a 10°cultivated slope at the Suining Station of soil Erosion. The spatial pattern of soil erosion rates on the steep agricultural land showed that hoe tillage played an important role in soil redistribution along the slope. Also, traditional farming practices had a significant role in reducing soil loss, leading to a lower net erosion rate for the field.  相似文献   

14.
The spatial variation of soil erosion and deposition rates was studied in a small catchment cultivated by rainfed agriculture, in the Mouriki area, Viotia Greece, using the 137Cs technique. A 25 m grid was established parallel to the slope and the 137Cs inventories were defined for the grid points. After establishing the local reference inventory, the soil erosion and deposition rates were estimated using the 137Cs residuals for individual points on the grid in conjunction with the four conversion (calibration) models described by Walling and He (2001) [Models for converting 137Cs measurements to estimates of soils redistribution rates on cultivated and uncultivated soils]. The conversion models were validated by means of sensitivity analysis and using local experimental data. The resulting estimates of soil redistribution rates were interpolated by means of kriging, using Surfer Golden software. The magnitude of the soil erosion rates depend on many factors, including the location of the sampling point, the local slope, and the soil properties. The mass balance model 2 (MBM2) and mass balance model incorporating soil movement by tillage (MBM3) conversion models predict soil redistribution rates of the same order of magnitude as the experimental data and are able to take account of Chernobyl fallout. Predicted soil erosion rates for catchment grid varied from 6.71 to 85.55 t ha−1 per year using MBM2 and from 3.54 to 95.78 t ha−1 per year using MBM3. Deposition rates varied from 1.23 to 168.19 t ha−1 per year using MBM2 and from 3.24 to 189.18 t ha−1 per year using MBM3. High correlation was apparent between erosion/deposition rates (MBM2) and soil P (P<0.001), soil K (P<0.001), soil organic matter % (P<0.05), point slope (P<0.05), clay % (P=0.053) and altitude (P=0.057). The total soil losses from the catchment have been estimated at 18.34 t ha−1 per year using MBM2 and 22.12 t ha−1 per year using MBM3.  相似文献   

15.
The southeastern Tibetan Plateau, which profoundly affects East Asia by helping to maintain the stability of climate systems, biological diversity and clean water, is one of the regions most vulnerable to water erosion, wind erosion, tillage erosion, freeze–thaw erosion and overgrazing under global climate changes and intensive human activities. Spatial variations in soil erosion in terraced farmland (TL), sloping farmland (SL) and grassland (GL) were determined by the 137Cs tracing method and compared with spatial variations in soil organic carbon (SOC) and total nitrogen (total N). The 137Cs concentration in the GL was higher in the 0–0.03 m soil layer than in the other soil layers due to weak migration and diffusion under low precipitation and temperature conditions, while the 137Cs concentration in the soil layer of the SL was generally uniform in the 0–0.18 m soil layer due to tillage-induced mixing. Low 137Cs inventories appeared at the summit and toe slope positions in the SL due to soil loss by tillage erosion and water erosion, respectively, while the highest 137Cs inventories appeared at the middle slope positions due to soil accumulation under relatively flat landform conditions. In the GL, the 137Cs data showed that higher soil erosion rates appeared at the summit due to freeze–thaw erosion and steep slope gradients and at the toe slope position due to wind erosion, gully erosion, freeze–thaw erosion and overgrazing. The 137Cs inventory generally increased from upper to lower slope positions within each terrace (except the lowest terrace). The 137Cs data along the terrace toposequence showed abrupt changes in soil erosion rates between the lower part of the upper terrace and the upper part of the immediate terrace over a short distance and net deposition on the lower and toe terraces. Hence, tillage erosion played an important role in the soil loss at the summit slope positions of each terrace, while water erosion dominantly transported soil from the upper terrace to the lower terrace and resulted in net soil deposition on the flat lower terrace. The SOC inventories showed similar spatial patterns to the 137Cs inventories in the SL, TL and GL, and significant correlations were found between the SOC and 137Cs inventories in these slope landscapes. The total N inventories showed similar spatial patterns to the inventories of 137Cs and SOC, and significant correlations were also found between the total N and 137Cs inventories in the SL, TL and GL. Therefore, 137Cs can successfully be used for tracing soil, SOC and total N dynamics within slope landscapes in the southeastern Tibetan Plateau.  相似文献   

16.
The purpose of this research was to evaluate the applicability of conventional 137Cs sampling and a simplified approach, for estimating medium-term tillage- and water-induced soil erosion and sedimentation rates on agricultural land in Chile. For this purpose, four study sites under contrasting land use and management were selected in central-south Chile. First, a conventional 137Cs approach, based on grid sampling was applied, adapting a mass balance conversion model incorporating soil movement by tillage to the site specific conditions of the study region. Secondly, using the same conversion model, the feasibility of estimating soil redistribution rates from measurements of 137Cs inventories based on composite soil samples taken along contour lines was also tested at all four sites. The redistribution rates associated with tillage and water and the total rates estimated using both methods correlated strongly at all four sites. The conventional method provides more detailed information concerning the redistribution processes operating over the landscape. The simplified method is suitable for assessing soil loss and sediment accumulation in areas exhibiting simple topography and almost similar slopes along the contour lines. Under these conditions, this method permits faster estimation of soil redistribution rates, providing the possibility of estimating soil redistribution rates over larger areas in a shorter time. In order to optimise the costs and benefits of the methods, the sampling and inventory quantification strategy must be selected according to the resolution of the required information, and the scale and complexity of the landscape relief. Higher tillage- and water-induced erosion rates were observed in the annually ploughed cropland sites than in the semi-permanent grassland sites. Subsistence managed crop and grassland sites also show greater erosion effects than the commercially managed sites. The 137Cs methods used permit discrimination between redistribution rates observed on agricultural land under different land use and management. The 137Cs technique must be seen as an efficient method for estimating medium-term soil redistribution rates, and for planning soil conservation and sustainable agricultural production under the climatic conditions and the soil type of the region of Chile investigated.  相似文献   

17.
三峡库区紫色土坡耕地土壤侵蚀的137Cs示踪研究   总被引:7,自引:2,他引:5  
坡耕地是三峡库区的重点水土流失区和河流泥沙的主要来源地.采用~(137)Cs示踪技术对三峡库区紫色土坡耕地的土壤侵蚀速率进行了定量研究.结果表明,新政小流域的~(137)Cs本底值为1 420.9 Bq/m~2;平均坡度为11.4°的缓坡耕地的~(137)Cs面积活度介于398.5~1 649.6 Bq/m~2之间,坡长加权平均值为816.0Bq/m~2;采用改进的简化质量平衡模型计算了坡耕地的土壤侵蚀速率,结果得出该坡地的土壤侵蚀模数介于-3 358.8~4 937.4 t/(km~2·a),其加权平均值为1 294.6 t/(km~2·a).受犁耕作用的影响,坡耕地两个坡段的土壤侵蚀速率随坡长增加大致都呈下降趋势,并在坡段下方出现了堆积.坡耕地土壤侵蚀速率不高的原因,一方面是由于所研究坡耕地属于缓坡,坡度较小,另一方面则是由于当地农民总结出了一套有效防止水土流失的耕作方式,使得土壤侵蚀强度大大降低.  相似文献   

18.
Some studies on the relationship between soil erosion and subsequent redeposition of eroded soils in the same field and soil quality have been conducted in croplands, yet few studies have revealed this relationship in rangelands. We selected a toposequence with a slope of 30% and a horizontal length of 342 m from the rangeland in the northern Tibet Autonomous Region, China (31°16′N, 92°09′E) to determine the relationship between soil erosion, soil organic carbon (SOC) content and available P patterns within a hillslope landscape. Soil samples for the determination of 137Cs as well as SOC, available P and particle‐size fractions were collected at 20 m intervals along a transect of this hillslope. Soil redistribution was caused primarily by wind erosion at toe‐slope positions, but primarily by water erosion at the hillslope positions above the toe‐slope. In upper‐ and mid‐slope portions (0 m to 244 m horizontal length), SOC content is closely correlated to 137Cs concentration (r = 0.74, P < 0.01, n= 15), suggesting that SOC distribution along the slope was similar to 137Cs distribution, which itself was dependent on topographic changes. However, SOC contents in toe‐slope portions are less than those above the toe‐slope (i.e. upper‐ and mid‐slope portions), and the correlation between 137Cs and SOC in the toe‐slope portion is weaker than that above the toe‐slope. A highly significant correlation (r = 0.72, P < 0.001, n= 20) between 137Cs concentration and available P was found within the whole hillslope landscape, implying the distribution pattern of available P was somewhat different from that of SOC. We suggest that the distribution of SOC within the hillslope landscape is also affected by factors such as assimilation rates due to difference in grassland productivity at different points and different biological oxidation rates of carbon related to patterns of moisture distribution.  相似文献   

19.
In slopes of Mediterranean mid-mountain areas, land use and land cover changes linked to the abandonment of cropland activity affect soil quality and degradation and soil redistribution; however, limited attention has been paid to this issue at catchment scale. This paper evaluates the effects of cropland abandonment and post-land abandonment management (through natural revegetation and afforestation) on soil redistribution rates using fallout 137Cs measurements in the Araguás catchment (0.45 km2, Central Spanish Pyrenees). A total of 52 soil core samples, distributed in a regular grid, from the first 30–40 cm and 9 sectioned reference samples were collected across the catchment and soil properties were analysed. Fallout 137Cs was measured in a 5 cm sectioned references samples and in bulk grid samples. 137Cs inventories were used to estimate soil erosion and deposition rates across the catchment. Results show that the highest erosion rates were recorded under sparsely vegetated sites in the badland area, while the lowest rates were found in the afforested area, but no significant differences were observed between the different uses and covers in soil redistribution rates likely due to a long history of human intervention through cultivation in steep slopes and afforestation practices. However, the recovery of the soil organic matter in afforested areas suggest that afforestation can reduce soil degradation at long-term scale. The information gained achieve a better understanding of soil redistribution dynamics and provide knowledge for effective land management after cropland abandonment of agroecosystems in Mediterranean mountain areas.  相似文献   

20.
Soil erosion significantly affects the most productive lands in Argentina, particularly the region called “Pampa Ondulada”. Quantification of the actual rates and patterns of soil loss is necessary for designing efficient degradation control strategies. The aim of this investigation was to gather using the 137Cs technique a reliable set of data of erosion and sedimentation rates, in order to describe the long-term erosive landscape dynamic in a 300 ha basin representative for the “Pampa Ondulada” region of Argentina. The general topography of the basin is undulated with slopes gradients between 0 and 2.5% and slope lengths up to 800 m long. The main land use consisted in annual cropping under conventional tillage.For the soil erosion study in the basin the 137Cs technique was used, which is based on the comparison between the 137Cs inventories surveyed with a local reference 137Cs profile. The sampling strategy was based on a multiple transect approach.The estimated mean soil erosion rates obtained applying Mass Balance Model 2 for the studied hillslopes ranged between −11.5 and −36 t ha−1 per year and fitted the low and moderate erosion classes according to FAO. These values ranged beyond the admitted tolerance. Sedimentation was observed at the lower landscape positions probably related to changes from convex to concave slopes. The application of the 137Cs technique in the studied basin proved to be a useful and sensible tool for assessing erosion/deposition rates. In areas with low topographic gradients like the Pampa Ondulada region, the slope length appears to be an important property for predicting spatial patterns of erosion rates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号