首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 109 毫秒
1.
Evaluation of soil erosion in agricultural fields is valuable to develop conservation practices for reducing agricultural nonpoint source pollution.Soil erosion rates were quantified using the fallout radionuclide tracer technique in Mojiagou Basin located on the outskirts of Changchun in Northeast China.The calculated soil erosion rates in the study area were 1.99 and 1.85 mm year-1 using 137Cs and excess 210Pb(210Pbex)measurements,respectively.Both fallout radionuclides showed a similar tendency at downslope sites.All measured sites have experienced net erosion during the past 50 to 100 years.137Cs and 210Pbex measurements were useful to quantify soil erosion rates on field and small basin scales.At this rate of erosion,the current fertile topsoil layer would be entirely removed within 70 years.  相似文献   

2.
利用137Cs示踪技术评价东北黑土侵蚀和沉积过程   总被引:6,自引:1,他引:6  
Soil and water losses through erosion have been serious in the black soil region of Northeast China. Therefore, a sloping cultivated land in Songnen Plain was selected as a case study to: 1) determine the ^137Cs reference inventory in the study area; 2) calculate erosion and deposition rates of black soil on different slope locations; 3) conduct a sensitivity analysis of some model parameters; and 4) compare overall outputs using four different models. Three transects were set in the field with five slope locations for each transect, including summit, shoulder-slope, back-slope, foot-slope, and toe-slope. Field measurements and model simulation were used to estimate a bomb-derived ^137Cs reference inventory in the study area. Soil erosion and deposition rates were estimated using four ^137Cs models and percentage of ^137Cs loss/gain. The ^137Cs reference value in the study area was 2 232.8 Bq m^-2 with ^137Cs showing a clear topographic pattern, decreasing from the summit to shoulder-slope, then increasing again at the foot-slope and reaching a maximum at the toe-slope, Predicted soil redistribution rates for different slope locations varied. Among models, the Yang Model (YANG-M) overestimated erosion loss but underestimated deposition. However, the standard mass balance model (MBM1) gave predictions similar to a mass balance model incorporating soil movement by tillage (MBM2). Sensitivity analysis of the proportion factor and distribution pattern of ^137Cs in the surface layer demonstrated the impact of ^137Cs enrichment on calculation of the soil erosion rate. Factors influencing the redistribution of fallout ^137Cs in landscape should be fully considered as calculating soil redistribution rate using ^137Cs technique.  相似文献   

3.
川中丘陵区土壤侵蚀对土壤特性和作物产量的影响   总被引:8,自引:0,他引:8  
Roles of tillage erosion and water erosion in the development of within-field spatial variation of surface soil properties and soil degradation and their contributions to the reduction of crop yields were studied on three linear slopes in the Sichuan Basin, southwestern China. Tillage erosion was found to be the dominant erosion process at upper slope positions of each linear slope and on the whole short slope (20 m). On the long slope (110 m) and medium slope (40 m), water erosion was the dominant erosion process. Soil organic matter and soil nutrients in the tillage layer were significantly related to slope length and 137Cs inventories on the long slope; however, there was no significant correlation among them on the short slope, suggesting that water erosion lowered soil quality by transporting SOM and surface soil nutrients selectively from the upper to lower slope positions, while tillage erosion transported soil materials unselectively. On the medium slope, SOM, total N, and available N in the tillage layer were correlated with slope length and the other properties were distributed evenly on the slope, indicating that water erosion on this slope was still the dominant soil redistribution process. Similar patterns were found for the responses of grain yield, aboveground biomass, and harvest index for slopes. These results indicated that tillage erosion was a major cause for soil degradation and grain yield reduction on the linear slopes because it resulted in displacement of the tillage layer soil required for maintaining soil quality and plant growth.  相似文献   

4.
The fallout radionuclide cesium-137(137 Cs) has been widely employed as a tracer for assessment of soil loss from thick uniform soils;however,few studies have been conducted on thin stony soils on slopes underlain by carbonate rocks which are widely distributed in karst areas.Information derived from 137 Cs measurement of soil samples collected along a carbonate rock slope with thin stony soil where neither soil erosion nor deposition occurred was used to investigate the characteristics of 137 Cs redistribution in a karst area of Southwest China.The results indicated that the 137 Cs inventories of the surface soil on the slope studied were much lower than that of the local 137 Cs reference inventory and the 137 Cs activities were much higher than those on slopes with thick uniform soils.The spatial distribution of 137 Cs inventories was characterized by considerable variation.The high 137 Cs depletion in the stony soil of the slope studied was mainly because a considerable proportion of the fallout input of 137 Cs could be lost with runoff and the dissolution of carbonate particles in the soil promoted the loss of 137 Cs.These demonstrated that the rates of soil loss could not be estimated from the degree of depletion of the 137 Cs inventory relative to the local reference inventory for the thin stony soil of the rocky slope underlain by carbonate rocks in the study area in the way that has been widely used in areas with thick uniform soils.  相似文献   

5.
中国滇池流域土地利用方式对土壤侵蚀和养分状况的影响   总被引:2,自引:0,他引:2  
Soil erosion and loss of soil nutrients have been a crucial environment threat in Southwest China. The land use and its impact on soil qualities continue to be highlighted. The present study was conducted to compare soil erosion under four land use types(i.e.,forestland, abandoned farmland, tillage, and grassland) and their effects on soil organic carbon(SOC), total nitrogen(TN) and total phosphorus(TP) in the Shuanglong catchment of the Dianchi Lake watershed, China. There were large variations in the erosion rate and the nutrient distributions across the four land use types. The erosion rates estimated by137 Cs averaged 2 133 t km-2year-1under tillage and abandoned farmland over the erosion rate of non-cultivated sites, and the grasslands showed a net deposition. For all sites, the nutrient contents basically decreased with the soil depth. Compared with tillage and abandoned farmland, grassland had the highest SOC and TN contents within 0–40 cm soil layer, followed by forestland. The significant correlations between137 Cs, SOC and TN were observed. The nutrient loss caused by erosion in tillage was the highest. These results suggested that grassland and forestland would be beneficial for SOC and TN sequestration over a long-term period because of their ability to reduce the loss of nutrients by soil erosion. Our study demonstrated that reduction of nutrient loss in the red soil area could be made through well-managed vegetation restoration measures.  相似文献   

6.
坡地开垦的径流泥沙响应   总被引:2,自引:0,他引:2  
Land use and land cover change is a key driver of environmental change. To investigate the runoff and erosion responses to frequent land use change on the steep lands in the Three Gorges area, China, a rainfall simulation experiment was conducted in plots randomly selected at a Sloping Land Conversion Program site with three soil surface conditions: existing vegetation cover, vegetation removal, and freshly hoed. Simulated rainfall was applied at intensities of 60 (low), 90 (medium), and 120 mm h 1 (high) in each plot. The results indicated that vegetation removal and hoeing significantly changed runoff generation. The proportion of subsurface runoff in the total runoff decreased from 30.3% to 6.2% after vegetation removal. In the hoed plots, the subsurface runoff comprised 29.1% of the total runoff under low-intensity rainfall simulation and the proportion rapidly decreased with increasing rainfall intensity. Vegetation removal and tillage also significantly increased soil erosion. The average soil erosion rates from the vegetation removal and hoed plots were 3.0 and 10.2 times larger than that in the existing vegetation cover plots, respectively. These identified that both the runoff generation mechanism and soil erosion changed as a consequence of altering land use on steep lands. Thus, conservation practices with maximum vegetation cover and minimum tillage should be used to reduce surface runoff and soil erosion on steep lands.  相似文献   

7.
Some alternative mehods for estimating soil erosion rates rapily were used to elucidate the relationship between the land use types and land degradation.The ^137Cs content,magnetic susceptibility,aggregate stability,and soil properties were studied in the Dongxi River Basin, a mountainous area of ewstern Fujian, A plot of ^137Cs inventory(Y) against slope angle(X) shows a strong inverse log-log relationship(r=-0.83), indicating that muh more soil erosion occurs on steeper slopes.Average soil loss(in thickness of top soil per year) in the past 30 years for arable slope crest,arable slopes and tea plantation slopes are 1.6,10.4 and 8.0 mm year^-1 respectively,The surface layer enrichment factor of magnetic susceptibility(Y) in soil aslo shows an inverse log-log relationship (r=-0.63), indicating a similar tendency with the realtionship between the ^137Cs inventory(Y) against slope angle (X).The Physical and chemical properties of soils among different land use types show different degraded characteristics at different significant levles.  相似文献   

8.
A brunisolic soil collected from an erosive forest land(HF-1-1) and a yellow soil from and accumulative shallow basin(HF-6-1) in the watershed of Lake Hongfeng (HF) were used for activity measurements of ^7Be,^137Cs,^226Ra and ^228Ra in different geochemical speciation.More than 85% of ^7Be,^137Cs,^226Ra and 228Ra in the soils were bound to organic Fe-Mn oxy-hydroxide and residual fractions.They could move with soil particlesw and be used as tracers for the erosion and /or accumulation of soil particles.^7Be gohemical specition in the soils agreed with its trace for seasonal particle transport.^137Cs geohemial speciaiton was suitable for tracing soil particle accumulation and for sediment aating.^226Ra and ^228Ra were ombined in crystalline skeleton of clay minerals and mainly remained as residues in the soils and little was bound to the soluble,exchangeable and carbonate fractions.The differentiation of ^226 Ra/^228Ra activity ratios in different geoheical fractions in the soils could be used as a parameter to trace accumulation and /or erosion of soil particles.  相似文献   

9.
树的年轮和土壤中元素含量的长期分布情况   总被引:19,自引:0,他引:19  
Soil erosion accelerates soil degradation. Some natural soils and cultivated soils on sloping land in southern Jiangsu Province, China were chosen to study soil degradation associated with erosion. Soil erosion intensity was investigated using the ^137Cs tracer method. Soil particle-size distribution, soil organic matter (OM), total nitrogen (TN) and total phosphorus (TP) were measured, and the effects of erosion on soil physical and chemical properties were analyzed statistically using SYSTAT8.0. Results indicated that erosion intensity of cultivated soils was greater than that of the natural soils, suggesting that cultivation increased soil loss. Erosion also led to an increase of coarser soil particle proportion, especially in natural soils. In addition, silt was the primary soil particle lost due to erosion. However, in cultivated fields, coarser soil particles over time were attributed not only to soil erosion but also to mechanical eluviation as a result of farming activities. Moreover, erosion caused a decrease in soil OM, TN and TP as well as thinning of the soil layer.  相似文献   

10.
侵蚀引起的苏南坡地土壤退化   总被引:5,自引:0,他引:5  
Soil erosion accelerates soil degradation. Some natural soils and cultivated soils on sloping land in southern Jiangsu Province, China were chosen to study soil degradation associated with erosion. Soil erosion intensity was investigated using the 137Cs tracer method. Soil particle-size distribution, soil organic matter (OM), total nitrogen (TN) and total phosphorus (TP) were measured, and the effects of erosion on soil physical and chemical properties were analyzed statistically using SYSTAT8.0. Results indicated that erosion intensity of cultivated soils was greater than that of the natural soils, suggesting that cultivation increased soil loss. Erosion also led to an increase of coarser soil particle proportion, especially in natural soils. In addition, silt was the primary soil particle lost due to erosion. However, in cultivated fields, coarser soil particles over time were attributed not only to soil erosion but also to mechanical eluviation as a result of farming activities. Moreover, erosion caused a decrease in soil OM, TN and TP as well as thinning of the soil layer.  相似文献   

11.
为查明"三北"防护林建设前后农耕地和退耕地土壤保持效益变化,利用137Cs和210Pbex双核素示踪技术,选择了防护林建设较为成功的张家口坝上地区(风力侵蚀区)作为典型区,研究了农耕地以及退耕地土壤137Cs和210Pbex的剖面变化规律及其示踪的土壤侵蚀变化。结果表明:1)由于耕作的混匀作用,农耕地土壤剖面中137Cs和210Pbex均呈均匀态分布;退耕地土壤剖面中137Cs和210Pbex则表现为表层(0~5cm)浓度最高、下层(5~25cm)浓度均相对较低且分布相对均匀的形态,这表明退耕后坡地土壤137Cs和210Pbex剖面形态均会发生一定变化,退耕驱动土壤137Cs和210Pbex剖面变化导致运用土壤核素估算侵蚀模型在该区域难以适用;2)基于土壤137Cs和210Pbex剖面变化规律,利用210Pbex质量平衡方程,提出了退耕地土壤210Pbex土壤侵蚀估算模型;3)利用137Cs比例模型估算退耕地土壤侵蚀速率为27.94±11.92 (t/hm2·a),农耕地侵蚀速率为29.11±14.42 (t/hm2·a),而利用修正后的210Pbex转换模型估算得到"三北"防护林区退耕地造林前平均侵蚀速率为82.16±14.36 (t/hm2·a),造林后平均侵蚀速率为-41.28±33.91 (t/hm2·a);农耕地造林前平均侵蚀速率为68.55±22.11 (t/hm2·a),造林后平均侵蚀速率-8.52±47.32 (t/hm2·a)。这表明137Cs示踪技术主要表征了1963年以来该区坡地土壤侵蚀和沉积的平均结果,而210Pbex示踪技术则可以较好地示踪防护林建成前后的土壤侵蚀变化。此外,研究结果也表明,相比于"三北"防护林建成之前,建成之后该区农耕地和退耕地的土壤侵蚀速率均呈显著下降趋势,且均由前期的风沙侵蚀转变成了风沙沉积。  相似文献   

12.
宁镇地区137Cs与210Pbex 坡面分布特征的地统计学分析   总被引:1,自引:0,他引:1  
为更加深入地揭示核素示踪土壤侵蚀的内在机理,在Arcgis Geostatistics模块的支持下,运用地统计学方法研究了宁镇地区137Cs与210Pbex的空间异质性及其坡面分布特征。研究结果表明:(1)核素所特有的理化性质决定了137Cs与210Pbex的空间异质性及其坡面分布格局的与众不同。137Cs与210Pbex较大的块金值说明了土壤侵蚀及耕作活动等随机性因素对其空间分布的决定性影响,这正是它们能够示踪土壤侵蚀的原因所在。(2)137Cs属中等程度的空间自相关,其坡面分布格局能够较好地反映出地形这一结构性因素在其中所施加的影响,示踪土壤侵蚀的结果也应更为全面、合理,并具有宏观性。210Pbex的空间相关性很弱,说明其对随机性因素的影响有着更为敏感的响应,在揭示坡面侵蚀的细部特征方面应能做得更好。(3)137Cs与210Pbex坡面分布格局存在较大的差异,这一方面说明两者在初始沉降布局、部分理化性质,以及对各种变异影响因素的响应等诸多方面还存在着不小的差异;另一方面也在提示,两者示踪土壤侵蚀进程的结果很难通过数学模型的调整而达成一致。  相似文献   

13.
农耕地土壤137Cs与210Pbex深度分布过程对比研究   总被引:2,自引:0,他引:2  
探讨了137Cs与210Pbex在农耕地土壤深度分布过程的差异。基于137Cs与210Pbex的不同沉降过程,考虑到核素由犁耕层向犁底层的扩散,对农耕地土壤137Cs、210Pbex的深度分布过程进行了理论推导,并以杨凌符家庄麦田剖面的实测数据予以验证,同时讨论了实测符家庄麦田剖面137Cs、210Pbex深度分布的规律特征及其原因,以此阐明了137Cs与210Pbex在农耕地土壤深度分布过程的差异。137Cs源于大气核试爆,没有持续沉降补充,犁耕层和犁底层土壤137Cs深度分布一直处于随时间变化的非稳定态;而210Pbex是天然核素,存在大气沉降的持续补充,犁耕层和犁底层土壤210Pbex深度分布最终呈稳定态。农耕地土壤137Cs、210Pbex深度分布的实测值曲线与理论值曲线的差异,尤其210Pbex,可能与耕作深度的变化历史或土地利用(覆被)变化有关。  相似文献   

14.
三峡库区紫色土坡耕地土壤侵蚀的137Cs示踪研究   总被引:7,自引:2,他引:5  
坡耕地是三峡库区的重点水土流失区和河流泥沙的主要来源地.采用~(137)Cs示踪技术对三峡库区紫色土坡耕地的土壤侵蚀速率进行了定量研究.结果表明,新政小流域的~(137)Cs本底值为1 420.9 Bq/m~2;平均坡度为11.4°的缓坡耕地的~(137)Cs面积活度介于398.5~1 649.6 Bq/m~2之间,坡长加权平均值为816.0Bq/m~2;采用改进的简化质量平衡模型计算了坡耕地的土壤侵蚀速率,结果得出该坡地的土壤侵蚀模数介于-3 358.8~4 937.4 t/(km~2·a),其加权平均值为1 294.6 t/(km~2·a).受犁耕作用的影响,坡耕地两个坡段的土壤侵蚀速率随坡长增加大致都呈下降趋势,并在坡段下方出现了堆积.坡耕地土壤侵蚀速率不高的原因,一方面是由于所研究坡耕地属于缓坡,坡度较小,另一方面则是由于当地农民总结出了一套有效防止水土流失的耕作方式,使得土壤侵蚀强度大大降低.  相似文献   

15.
龙门山地震带坡耕地土壤侵蚀对有机碳迁移的影响   总被引:1,自引:0,他引:1  
坡耕地土壤再分布对土壤有机碳(SOC,soil organic carbon)迁移的作用机制研究已成为土壤侵蚀学研究的热点,然而目前极少有研究关注地震后生态脆弱的龙门山地震带坡耕地土壤侵蚀机理及其导致的土壤有机碳再分布规律。该研究选择龙门山地震带内(都江堰市)一块陡坡耕地和一个梯田系列,采用137Cs法和野外调查,对比分析强震导致田埂垮塌和未受损情况下坡耕地土壤侵蚀空间变化特征和有机碳运移变化机理。结果表明,该区黄棕壤有效137Cs背景值为1 473 Bq/m2;坡度较小的坡式梯田内部上坡表现为侵蚀,下坡表现为沉积,同时,上部梯田的侵蚀速率高于下部梯田,但整个梯田系列净侵蚀量非常小,这表明梯田之间由于缺乏田埂的保护,水力也起着侵蚀、搬运上坡梯田土壤的作用,但是整个坡式梯田系列可以起到较好的保土作用,同时,坡式梯田内部主要以耕作侵蚀为主,是造成梯田上部坡位土壤流失严重的主要原因;陡坡耕地的地形为复合坡,由于田埂垮塌导致其土壤侵蚀速率显著高于坡式梯田系列,在整个坡面上,除了坡顶土壤侵蚀速率高之外,下坡坡度变大(曲率较大)的部位土壤侵蚀速率也非常高,同时,土壤沉积也发生在2个坡位(中下坡坡度较缓的部位和坡脚部位);在梯田系列和陡坡耕地上,SOC与土壤137Cs的空间变化规律较为一致。研究结果表明,在龙门山地震带,质量较好的石埂梯田仍然发挥着较好的土壤保持效果,同时,耕作侵蚀是该区坡耕地上一种重要的土壤侵蚀形式,在制定相应的土壤保持措施时,必须充分考虑耕作侵蚀的作用,才能有效地控制土壤侵蚀,此外,该研究结果还表明采用137Cs核素示踪技术可以比较科学地解释该区域的土壤侵蚀速率和SOC的空间变异规律。  相似文献   

16.
The southeastern Tibetan Plateau, which profoundly affects East Asia by helping to maintain the stability of climate systems, biological diversity and clean water, is one of the regions most vulnerable to water erosion, wind erosion, tillage erosion, freeze–thaw erosion and overgrazing under global climate changes and intensive human activities. Spatial variations in soil erosion in terraced farmland (TL), sloping farmland (SL) and grassland (GL) were determined by the 137Cs tracing method and compared with spatial variations in soil organic carbon (SOC) and total nitrogen (total N). The 137Cs concentration in the GL was higher in the 0–0.03 m soil layer than in the other soil layers due to weak migration and diffusion under low precipitation and temperature conditions, while the 137Cs concentration in the soil layer of the SL was generally uniform in the 0–0.18 m soil layer due to tillage-induced mixing. Low 137Cs inventories appeared at the summit and toe slope positions in the SL due to soil loss by tillage erosion and water erosion, respectively, while the highest 137Cs inventories appeared at the middle slope positions due to soil accumulation under relatively flat landform conditions. In the GL, the 137Cs data showed that higher soil erosion rates appeared at the summit due to freeze–thaw erosion and steep slope gradients and at the toe slope position due to wind erosion, gully erosion, freeze–thaw erosion and overgrazing. The 137Cs inventory generally increased from upper to lower slope positions within each terrace (except the lowest terrace). The 137Cs data along the terrace toposequence showed abrupt changes in soil erosion rates between the lower part of the upper terrace and the upper part of the immediate terrace over a short distance and net deposition on the lower and toe terraces. Hence, tillage erosion played an important role in the soil loss at the summit slope positions of each terrace, while water erosion dominantly transported soil from the upper terrace to the lower terrace and resulted in net soil deposition on the flat lower terrace. The SOC inventories showed similar spatial patterns to the 137Cs inventories in the SL, TL and GL, and significant correlations were found between the SOC and 137Cs inventories in these slope landscapes. The total N inventories showed similar spatial patterns to the inventories of 137Cs and SOC, and significant correlations were also found between the total N and 137Cs inventories in the SL, TL and GL. Therefore, 137Cs can successfully be used for tracing soil, SOC and total N dynamics within slope landscapes in the southeastern Tibetan Plateau.  相似文献   

17.
选择中国西南-东北样带4个典型土壤侵蚀区,包括位于长江上游的西昌,黄土高原延安,北方风蚀区的丰宁和东北黑土区的拜泉,应用环境放射性核素(FRN)技术研究了不同土壤保持措施在减少土壤侵蚀、改善土壤质量方面的作用。在西昌,137Cs和210Pbex的测定结果表明,不同植被覆盖结构减少土壤侵蚀的作用为:灌木>有地被物的乔木>草类>无地被物的乔木;在延安,利用137Cs示踪技术对坡地景观的产沙量估算结果表明,梯田和林草地相对于坡耕地产沙量分别减少了49%和80%,林草地的土壤有机质、碱解氮和速效磷含量相对于坡耕地分别增加了255%、198%和18%,梯田土壤有机质、碱解氮和速效磷含量分别增加了121%、103%和162%,而土壤容重分别降低了1.6%和6.4%;在丰宁,对7Be的测定结果表明,与传统耕作方式相比,4年免耕+作物高留茬(50~56cm)和免耕+作物低留茬(25cm)分别使土壤侵蚀速率下降44%和33%;在拜泉,通过137Cs测定结果发现,坡改梯使土壤流侵蚀降低14%,等高耕作使土壤侵蚀量减少了34%。研究结果说明,灌木林覆盖、林草复合结构是控制西南侵蚀山地土壤侵蚀的优选生物配置措施,梯田和林草复合结构在控制黄土高原土壤侵蚀和改善土壤质量方面有重要作用,免耕+高留茬措施是我国北方风蚀区防治土壤侵蚀退化的有效措施,等高耕作应当成为防治东北黑土区土壤侵蚀的关键措施。  相似文献   

18.
介绍了监测土壤流失和堆积的一种新方法——标线法和在贵州普定喀斯特坡地开展试验研究测定犁耕侵蚀的结果。坡度3°、坡长24.2 m的石灰土旱坡地10次犁耕的试验结果表明:坡顶犁耕侵蚀速率0.67 cm/a,和实际情况相符;顺坡犁耕通量52.6 kg/(m.a),和其他研究者用小石子或137Cs、210Pbex核素示踪法测得的值基本一致。标线法具有简便易行、价值低廉和标线隐蔽性强、不易被发现破坏的特点,所测结果是可靠的。此法解决了侵蚀针或标桩法可能干扰径流和风流场的问题,且不妨碍犁耕,可广泛应用于流水侵蚀、风蚀和犁耕侵蚀的长期监测。标线法测得的是土壤点侵蚀和堆积量值,非常适用于侵蚀随坡长变化的研究。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号