首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
在构建DH群体RFLP图谱的基础上定位了产量因子的数量性状位点(QTL).在杭州和海南两地分别种植包括123个DH原的DH群体及其亲本IR64和Azucena,并对产量因子性状进行了测定.运用调整无偏预测(AUP)法预测遗传主效应值和GE互作效应值,并用于QTL定位.结果表明,一些有主效应的QTL同时具有QTL×环境(QE)互作效应,而一些没有主效应的QTL也可以有QE互作效应.研究还表明,QTL对环境的敏感性不同,有的QTL只能在一个环境中检测到,而另一些QTL能在二个环境中都检测到.产量因子包括总粒数和实粒数的QTL无论是主效还是QE互作效应均具有较大的加性效应值,这些QTL在两个环境中起主基因的作用.  相似文献   

2.
水稻产量性状的QTL定位与上位性分析   总被引:26,自引:1,他引:26  
 应用 16 8个DNA标记 ,对水稻中 15 6 (高产 )×谷梅 2号 (低产 )的重组自交系 (RIL)群体进行基因型检测 ,构建了全长为 14 4 7.9cM、覆盖水稻基因组 12条染色体的连锁图。于 2 0 0 1年分单季和连作晚季两季 ,在杭州中国水稻研究所试验场以完全随机区组设计 ,种植该群体的 30 4个株系及双亲 ,考查穗长、单株有效穗数、每穗颖花数、每穗实粒数、结实率及千粒重等 6个产量构成性状。采用QTLMapper1.0 1统计软件进行QTL定位、上位性分析及其与环境 (季别 )的互作效应分析 ,共检测到产量构成性状的 30个加性主效应QTL ,分别位于除第 5、9染色体以外的 10条染色体上 ,另有 2个QTL与环境之间存在显著互作 ;还检测到 31对影响产量构成性状的加性×加性上位性互作效应QTL。在所有的上位性互作效应中 ,多数加性×加性上位性互作效应的贡献率及效应均较小 ,没有检测到上位性互作效应与环境的显著互作  相似文献   

3.
大豆二粒荚长、宽相关QTL间上位效应和QE互作效应分析   总被引:1,自引:0,他引:1  
【目的】定位大豆二粒荚长、宽QTL,并分析QTL间的上位效应和与环境(QTL-by-environment, QE)的互作效应。【方法】利用Charleston×东农594重组自交系及其F2:14-F2:18代的重组自交系的147个株系为试验材料,164个SSR引物经亲本筛选后用于群体扩增构建的SSR遗传图谱,利用混合区间作图法,对2006-2010年连续5年一个地点的大豆二粒荚长、宽进行QTL定位,并作加性效应、加性×加性上位互作效应及环境互作效应分析。【结果】检测到8对有加性效应的二粒荚长QTL,加性效应的总贡献率27.2%,与环境互作总贡献率达到10.19%;6对有加性效应的二粒荚宽QTL,加性效应的总贡献率16.27%,与环境互作总贡献率达到12.18%。9对影响二粒荚长的加性×加性上位互作效应的QTL,可解释该性状总变异的9.02%;8对影响二粒荚宽的加性×加性上位互作效应的QTL,可解释该性状总变异的8.81%。【结论】上位效应和环境效应在二粒荚长、宽性状的遗传中起了重要作用,因此,在分子标记辅助育种中应该考虑对效应起主要作用的QTL和上位性QTL,又要考虑微效多基因的聚合。  相似文献   

4.
本研究利用Charleston×东农594得到的147个F2:14-F2:19重组自交系群体,对11个环境条件下大豆荚数性状相关QTL的加性、上位性及其与环境互作效应进行了分析.在6年11个不同遗传背景条件下的多环境联合分析中定位了11个QTL具有加性效应,其加性(A)贡献率和AE互作贡献率都是微效的.联合分析同时定位到20对QTL具有上位效应,并发现上位QTL的2种作用模式,一种是同一连锁群上2个QTL间的上位性互作,另一种是不同连锁群上2个QTL间的上位性互作.鉴定出9个具有加性效应的QTL能在多个环境条件下被检测到,17对具有上位性效应的QTL能在多个环境条件下被检测到,部分QTL的上位性效应解释的表型变异大于5%.这些在不同环境或不同遗传背景下检测到的QTL,可作为大豆荚数相关性状改良的候选标记,用于分子标记辅助选择或图位克隆.  相似文献   

5.
水稻穗长上位性效应和QE互作效应的QTL遗传研究   总被引:9,自引:0,他引:9       下载免费PDF全文
利用基于混合模型的QTL定位方法研究了由籼稻品种IR64和粳稻品种Azucena杂交衍生的DH群体在四个环境中穗长的QTL上位性效应和环境互作效应。结果表明上位性可能是数量性状的重要遗传基础,并揭示了上位性的几个重要特点。在本研究中,所有的QTL中只有两个没有参与上位性效应的形成,在参与上位性效应的QTL中,64.7%的QTL还具有本身的加性效应。因此传统方法对QTL加性效应的估算会由于上位性的影响而有偏。其它35.3%的QTL没有本身的加性效应,却参与了上位性互作,这些位点可能通过诱发和修饰其它位点而起作用。上位性的特点还包括,经常发现一个QTL与多个QTL发生互作;大效应的QTL也参与上位性互作;上位性互作易受环境影响。QTL与环境的互作效应比QTL的主效应更多次地被检测到,表明数量性状基因的表达显著地受到环境的调控。  相似文献   

6.
研究不同环境条件下玉米叶片保绿度性状的遗传主效应及其与环境互作效应;采用朱军提出的基因型×环境互作效应的加性-显性-母体效应遗传模型(ADM模型)分析方法;结果表明玉米叶片保绿度的遗传除了受制于基因的加性效应(VA)、母体效应(VD)遗传主效应外,还会明显受到显性效应×环境互作效应(VDE)的影响.组配杂交组合时根据各亲本的遗传效应预测值,选用遗传主效应表现良好以及在不同环境下互作效应表现正向较为稳定的优良亲本做母本,提高选择效果;自交系沈137具有较高的正向加性效应和母体效应,是选育保绿性玉米较好材料.  相似文献   

7.
水稻茎秆抗倒性的遗传及基因型×环境互作效应研究   总被引:15,自引:0,他引:15  
采用包括基因型×环境互作效应在内的加性-显性-加性×加性上位性遗传模型,分析了不同环境下水稻茎秆抗倒性的遗传特点.结果表明,茎秆抗倒性均受到基因加性、显性、加性×加性上位性及其与环境互作效应的显著影响,其中以显性效应及其与环境互作效应为主.除了茎粗的普通狭义遗传率达40.6%外,其他性状的普通狭义遗传率较低.遗传效应预测结果表明,亲本IR66158-37和IR65600-85有使后代降低秆长、增加茎粗、增大秆型指数、提高茎基抗折力和抗倒指数的遗传效应,明恢63在提高茎基抗折力和抗倒指数上也有明显的正效应,认为这3个品种是超高产新株型育种的优良亲本材料.  相似文献   

8.
采用朱军提出的包括基因型×环境互作效应的加性-显性-母体遗传模型(ADM模型)分析方法,研究玉米穗高系数性状遗传主效应及其与环境互作遗传效应.结果表明玉米穗高系数受加性效应、显性效应、母体效应遗传体系共同控制,同时还受显性×环境互作效应、母体×环境互作效应等不同遗传控制体系基因型×环境互作效应显著影响.对穗高系数性状的选择效果受环境影响较大,宜在较晚世代进行选择.育种中根据亲本穗高系数在不同环境中遗传效应预测值组配杂交组合,提高穗高系数育种效率.  相似文献   

9.
豌豆数量性状的基因效应分析   总被引:1,自引:0,他引:1  
本文对2个豌豆组合的P_1、P_2、F_1、F_2、B_1、B_2和F_3七个世代群体的资料用加性-显性模型和加性-显性-上位性模型估算了12个数量性状的基因效应。结果表明;加性效应是所研究性状的一个重要遗传分量,对不同分析模型表现稳定。显性效应对性状遗传的控制组合间变化较大,对不同分析模型较不稳定。营养生长期日数、百粒重具显著的上位性效应。显性×显性互作比加性×加性和加性×显性互作更为显著。直接采用加性-显性-上位性模型分析性状世代平均数基因效果更好。  相似文献   

10.
采用包括基因型×环境互作效应的加性-显性遗传模型(AD模型),分析了水稻籼粳杂交不同选育阶段衍生系产量相关性状的遗传表现规律。结果表明,所测定各产量相关性状中普遍存在着遗传主效应,且也普遍存在基因型×环境互作效应。其中,衍生一代的播抽天数和千粒重性状以加性效应为主,其余7个性状以显性效应为主;衍生二代的单株谷重、结实率和千粒重性状以显性效应为主,其余6个性状则以加性效应为主;衍生四代的单株谷重、结实率、株高和穗长性状以显性效应为主,其余5个性状以加性效应为主。基因型×环境互作分析表明,除衍生一代的单株谷重、单株有效穗数、每穗实粒数性状和衍生二代的播抽天数、单株有效穗数、每穗总粒数性状以及衍生四代的单株有效穗数、每穗总粒数和每穗实粒数性状没有检测到加性×环境互作效应外,其余性状均存在加性×环境互作效应。此外,不同衍生世代各产量相关性状均存在着显性×环境互作效应。  相似文献   

11.
水稻(Oryza sativa L.)分蘖数和株高的遗传分析   总被引:6,自引:0,他引:6       下载免费PDF全文
水稻分蘖数和株高是两个重要的农艺性状.为剖解它们的遗传结构,本研究用一套来源于籼粳组合IR64×Azucena的DH群体对这两个性状进行了QTL定位分析.表型数据来源于两个生长季节,采用基于混合线性模型的方法分析.结果表明,分蘖数主要由普通遗传因素和互作遗传因素控制(呈现61.7%的普通遗传率和17.2%的互作遗传率),共有19个QTLs与分蘖数有关,其中9个和6对QTLs分别具有单位点的遗传效应和2位点的互作效应,QTL1-8和QTL 1-12的上位性效应由于在春季的贡献率达21.6%,因而认为是一对主效.株高主要由普通遗传因素控制,普通遗传率为92.6%,共受到15个QTLs的影响,其中8个QTLs具有加性效应,1个QTL具有加性与环境的互作效应,4对上位性QTLs具有加性与加性互作效应.QTL 1-15被认为是主效QTL,而其余的是微效QTLs.两个性状表型之间存在显著的负向部分相关,然而,性状相关的遗传基础仍需做进一步的探讨.  相似文献   

12.
采用朱军包括基因型×环境互作效应的加性.显性.母体遗传模型(ADM模型)分析方法,研究玉米果穗出籽率性状遗传主效应及其与环境互作遗传效应.结果表明:玉米果穗出籽率主要受显性效应遗传体系控制,其次受加性效应遗传效应控制,同时还受加性×环境互作效应、显性×环境互作效应、母体×环境互作效应等不同遗传控制体系基因型×环境互作效应显著影响.对果穗出籽率性状的选择效果受环境影响较大,宜在较晚世代进行选择.育种中根据亲本果穗出籽率在不同环境中遗传效应预测值组配杂交组合,育成适应不同地区或某一特定地区的新品种,提高育种效率.  相似文献   

13.
以由综3×豫87-1衍生的一套包含223个家系的RIL群体为材料,通过3个地点的表型鉴定,借助由1 243个SNP标记构建的遗传连锁图谱对玉米叶高点长、叶长、叶宽和叶面积进行QTL定位及上位性效应分析。结果表明,4个叶型性状共检测到10个显著的QTL,这些QTL与环境的互作均未达到显著水平。在这些QTL中,调控叶高点长的q Lf5-1,q Lf8-1和调控叶长的q LL8-1,分别解释表型变异的7.20%,6.06%和6.39%,说明这3个主效QTL是调控叶型性状的重要位点。上位性效应分析共检测到6对位点间互作,互作效应为2.30%~7.39%,属于非显著QTL位点对互作,其中2对位点互作的上位性效应与环境互作效应显著,说明上位性互作效应在叶型性状的遗传中占有一定的比例,同时也受环境的影响。  相似文献   

14.
不同氮磷钾处理大豆苗期主根长和侧根数的QTL定位分析   总被引:5,自引:2,他引:3  
【目的】主根长和侧根数是重要的根系性状。通过不同氮磷钾处理,发掘大豆苗期主根长和侧根数的基因资源、了解其遗传机制,定位其主效QTL,分析QTL间的上位性和环境互作效应,对生产提供理论指导。【方法】用以栽培大豆晋豆23为母本、山西农家品种灰布支黑豆(ZDD02315)为父本所衍生的447个RIL作为供试群体,取亲本及447个家系各30粒种子,用灭菌纸包裹后,2015年和2016年分别放置于CK(模拟种植不施肥)、NPK(模拟大田正常配施氮磷钾肥)和1.5NPK(模拟高肥田块)3种生长环境下进行水培试验,每组试验设置3次重复,环境温度20—28℃,幼苗长到V2期,对幼苗期相关根部性状数据进行测量。分别采用Win QTLCart 2.5和QTLNETwork 2.1 2种遗传模型检测QTL,分析QTL间的上位性和环境互作效应。【结果】基于复合区间作图(CIM)共检测到24个影响主根长和侧根数的QTL,分布于第2、3、5、6、7、8、9、10、11、12、13、14、16、17共14条染色体中,单个QTL的贡献率介于8.52%—43.62%,QTL主要表现为加性效应。基于混合线性模型(MCIM)检测到影响主根长和侧根数的QTL各1个,2个QTL均表现出加性效应和环境互作效应。另有2对主根长和2对侧根数均检测出加性×加性上位性互作QTL,主根长和侧根数各有1对表现出主效QTL与非主效QTL加性×加性上位性互作,各有1对表现出非主效QTL与非主效QTL加性×加性上位性互作,2对主根长互作QTL分别解释了1.53%和1.95%的表型变异率,2对侧根数互作QTL分别解释了2.47%和1.13%的表型变异率。2个QTL能在2种分析方法中同时检测到,9个QTL能在3种环境下同时检测到。第6染色体在2015年NPK、1.5NPK和2016年1.5NPK 3个环境下均检测到主根长QTL,第5染色体在2015年NPK和1.5NPK、2016年CK 3个环境下、第17染色体在2015年CK和NPK、2016年NPK 3个环境下均检测到侧根数QTL。【结论】苗期大豆主根长和侧根数对氮磷钾的吸收影响较少,生产中尽可能减少氮磷钾使用量。不同浓度氮磷钾处理苗期主根长和侧根数参数间既有共同的控制基因,也有各自独特的控制基因,多数QTL不能在多个环境下重复检测到,控制其表达的遗传机制较为复杂。加性效应、加性与环境互作和加性×加性上位性互作效应在主根长和侧根数的形成和遗传中发挥着重要作用。主根长和侧根数各有1个QTL能在2种分析方法中同时检测到,Satt442-Satt296和Satt521-GMABABR是共位标记区间。  相似文献   

15.
【目的】定位大豆粒形性状的主效QTL、环境互作和QTL间上位性。【方法】以栽培大豆晋豆23为母本,半野生大豆灰布支黑豆(ZDD2315)为父本所衍生的447个RIL构建的SSR遗传图谱及混合线性模型分析方法,对3年大豆粒形性状进行主效QTL、环境互作和QTL间上位性检测。【结果】共检测到7个与粒长、粒宽、粒厚以及长宽比、长厚比和宽厚比相关的QTL,分别位于D2、C2、J_2和O连锁群上,其中粒长、长厚比和宽厚比均表现为遗传正效应,说明增加其等位基因来源于母本晋豆23。同时,检测到3对影响粒宽和宽厚比的加性×加性上位性互作效应及其与环境互作的QTL。【结论】主效QTL对粒形性状遗传产生的影响最大,上位性次之,环境互作最小,说明加性效应、加性×加性上位性互作是大豆粒形性状的重要遗传基础。  相似文献   

16.
利用3个粳稻BT型不育系和6个粳型恢复系,配制不完全双列杂交组合,采用包括基因型×环境互作效应的加性-显性-上位性遗传模型,分析不同发育时期剑叶SPAD值的遗传效应。结果表明:各亲本在不同的发育时期剑叶SPAD值存在着显著差异;同一亲本在不同环境条件下剑叶SPAD值间也存在着差异;剑叶SPAD值的发育在不同阶段主要由基因的显性、加性×加性上位性及其与环境互作效应控制。  相似文献   

17.
杂义稻外观品质性状的遗传控制   总被引:2,自引:1,他引:2  
采用双列杂交设计,研究不育系和恢复系(各5个)均为优质背景下,杂交稻外观品质性状的遗传,结果表明:杂种稻米外观品质主要受遗传控制,遗传效应可解释表型方差的64%以上,且遗传效应均以加性效应为主.其中,透明度母体加性效应(VAm)占绝对优势;米粒长、长宽比、垩白率和垩白度则以种子直接(胚乳)加性效应(VA)为主.与遗传效应相比,基因型×环境互作效应则小得多.其中,垩白率、垩白度、透明度3性状的互作方差(VGE)占表型方差比重较大,分别达到35.1%、31.3%和27.1%.因此,这些性状对环境较敏感,但不同基因型的敏感程度不同.  相似文献   

18.
 【目的】分析稻米垩白率加性效应、上位性效应及其环境互作效应,探讨稻米垩白率的遗传特点和不同群体检测QTL的效率。【方法】利用由粳稻品种越光和籼稻品种Kasalath杂交衍生的BIL群体和以越光为背景、Kasalath为供体的CSSL群体,对2005年和2006年南京的稻米垩白率QTL及其互作效应进行了分析。【结果】 CSSL群体检测到5个垩白率QTL和2对具有上位性效应的QTL;BIL群体检测到3个QTL和4对具有上位性效应的QTL。其中,qPGWC-6a在2个群体中重复出现,1对具有上位性效应的QTL在CSSL群体中2年均被检测到,在BIL群体中,所有QTL与环境存在显著互作(P<0.01)。在第3和4染色体上检测到2个新的垩白率QTL。【结论】上位性效应和加性效应在垩白率遗传中同样重要。垩白率QTL和具有上位性效应的QTL与环境的互作普遍存在,但效应小于相应的加性效应和上位性效应。利用不同群体分析垩白率QTL,有利于全面揭示稻米垩白率的遗传互作网络。  相似文献   

19.
玉米温热杂交种穗部性状基因效应分析   总被引:1,自引:0,他引:1  
采用6个世代平均值分析的方法,对温带与热带、亚热带自交系间3个杂交组合的穗长、穗粗、穗行数、行粒数和穗粒重进行了遗传研究.结果表明:温带与热带自交系间杂交种5个穗部性状的遗传变异中,加性效应、显性效应起主导作用,两者合计占总遗传变异的74 4%~93 5%.上位效应普遍存在,平均上位效应占总遗传变异的6 5%~25 6%,5个穗部性状的遗传均不符合加性-显性模型,符合加性-显性-上位模型.所考察的性状按超亲优势大小依次为:穗粒重、行粒数、穗长、穗粗和穗行数.各性状基因效应分析表明,在温热杂交种的遗传中,加性效应、显性效应均是正向效应,加性×加性互作多为正值,加性×显性、显性×显性多呈负向效应,但显性×显性互作在穗粒重的遗传中呈正向效应.  相似文献   

20.
利用由小穗小粒型水稻Milyang 46和大穗大粒型FJCD建立的一个包含130个家系F10的重组自交系,测定福建省武夷山和莆田环境下籽粒灌浆期功能叶性状,并进行QTL定位及环境互作分析.结果表明,2种环境下共检测到35个加性QTL,位于1、2、5、6、7、11、12号染色体上,表型变异贡献率为0.66%-56.75%;检测到12个位点存在显著的加性×环境互作效应,位于1、2、6、11号染色体上,表型变异贡献率为1.45%-12.05%;莆田环境下,检测到7对加加上位性QTL位点,表型变异贡献率为0-15.64%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号