首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Field experiments were conducted during summer (2013/2014) and winter (2014) in two different soil types to evaluate the effect of biochar and P fertilizer application on growth, yield, and water use efficiency of chickpea. Soil types include Rhodic Ferralsols (clay) in Thohoyandou and Leptic Cambisols (loamy sand) in Nelspruit, South Africa. Treatments consisted of a factorial combination of four biochar levels (0, 5, 10 and 20 t ha?1) and two phosphorus fertilizer levels (0 and 90 kg ha?1) arranged in a randomized complete block design and replicated three times. Biochar application at 5 t ha?1 significantly increased biomass, grain yield and water use efficiency of biomass production (WUEb) in the clay soil compared to 10 and 20 t ha?1. However, the increase was attributed to the addition of P fertilizer. Biochar application had no effect on yield components in the loamy sand soil, but P fertilizer addition increased number of seeds/pod in the loamy sand soil and number of pods/plant in the clay soil. Biochar and P fertilizer application on growth and yield of chickpea varied in soil types and seasons, as the effect was more prominent in the clay soil than the loamy sand soil during the summer sowing.  相似文献   

2.
This study evaluated the effect of biochar and phosphorus fertilizer application on selected soil physical and chemical properties in two contrasting soil types: Rhodic Ferralsols (clay) in Thohoyandou and Leptic Cambisols (loamy sand) in Nelspruit, South Africa. Field experiments were conducted in summer and winter. Treatments consisted of a factorial combination of four biochar levels (0, 5, 10 and 20 t ha?1) and two phosphorus fertilizer levels (0 and 90 kg ha?1) arranged in a randomized complete block design with three replicates. Chickpea was the test crop. Soil bulk density, aggregate stability, porosity, total C, total N, C:N ratio, K and Mg were determined. Biochar (10 t ha?1) and phosphorus increased bulk density and decreased porosity at 0–5 and 15–20 cm soil depth on a loamy sand soil in both seasons. The interaction between biochar and phosphorus increased total C and total N on a clay soil in the summer sowing. However, in the loamy sand soil, biochar (10 t ha?1) increased total C, C:N ratio, K and Mg in the summer sowing. The effect of biochar was more evident in the loamy sand soil than the clay soil suggesting that the influence of biochar may be soil-specific.  相似文献   

3.
To study the influence of potassium (K) fertilizer rate on soil test K values, crop yield, and K-leaching in sandy soils, four long-term fertilizer experiments (0–60–120–180 kg K ha?1 a?1) were initiated in 1988 in northern Germany on farmers fields. Clay content of the plow layer was about 4%, and organic matter between 2% and 5%. Plant available soil K was estimated with the double lactate (DL) method. Small grain cereals (rye and barley) did not respond to K fertilization in the 7-year period even though the soil test value of the K-0 plots decreased from ca. 90 to ca. 30 mg KDL kg?1 within 3 years. This value remained almost constant thereafter. Crop removal (including straw) of 75 kg K ha?1 a?1 was therefore apparently supplied from nonexchangeable K fractions. Compared to the optimum, no K application reduced the yield of potato by up to 21%, and that of white sugar yield up to 10%. Maximum potato yield was obtained by annually applying 60 kg K ha?1 which resulted in a test value of 60 mg KDL kg?1 soil. Maximum potato yield was also obtained at 40 mg KDL kg?1 soil, however, with a single application of 200 kg K ha?1. Similar results were obtained with sugar beet. This indicates that for maximum yield, even for K demanding crops, it is not necessary to maintain KDL values above 40 mg K kg?1 soil throughout the entire crop rotation. Soil test values increased roughly proportional to the K fertilizer level. About 120 kg fertilizer K ha?1 a?1, markedly more than crop K removal, was required to maintain the initial KDL of 90 mg kg?1. The K concentration of the soil solution in the top soil measured after harvest was increased exponentially by K fertilizer level and so was K leaching from the plow layer into the rooted subsoil. The leached quantity increased from 22 kg K ha?1 a?1 in the plot without K application to 42.79 and 133 kg Kha?1 a?1 in plots supplied with 60, 120 and 180 kg K ha?1 a?1 respectively. Soil test values around 100 mg KDL kg?1 on sandy soils, as often found in the plow layer of farmers fields, lead to K leaching below the root zone that may exceed the critical K concentration of 12 mg K T?1 for drinking water.  相似文献   

4.
A field experiment was conducted on an Alfisol (kandic paleustalf) in Abeokuta, Southwestern Nigeria, for two seasons to assess the influence of inorganic and organic fertilizers on nitrogen (N), phosphorus (P), potassium (K), nutrient uptake and maize yield. The treatments consisted of three rates of organic fertilizer 0, 5 and 10 t ha?1 in the form of poultry manure and NPK fertilizer (20:10:10) applied at 0 and 120 kg ha?1. Maize (Zea mays) was used as the test crop. The results showed that the combined application of 10 t ha?1 poultry manure and 120 kg ha?1 NPK fertilizer enhanced the uptake of N, P and K better than other treatment combinations. Application of 10 t ha?1 poultry manure alone gave the highest grain yield, which was 67.02% higher than the control in the first season. Complementary application of 5 t ha?1 poultry manure with 120 kg ha?1 NPK 20–10-10 was recommended for grain yield.  相似文献   

5.
This study investigates the effect of conjoint use of bio-organics (biofertilizers + crop residues + FYM) and chemical fertilizers on yield, physical–chemical and microbial properties of soil in a ‘French bean–cauliflower’-based cropping system of mid hills of the north-western Himalayan Region (NWHR) of India. Conjoint bio-organics at varied levels of NPK chemical fertilizers increased yield of ‘cauliflower’ over corresponding single application. Incorporation of crop residues with 75% of the recommended NPK application resulted in the highest yield (19 t ha?1). Conjoint use of bio-organics produced a yield (15.65 t ha?1), which was statistically on a par with 75% of the recommended NPK application alone. This indicated a saving of 75% NPK chemical fertilizers. In the case of ‘French bean’, the effect was non-significant. The results also showed significant higher soil available N (351.3 kg ha?1) under 75% NPK + biofertilizers, whereas the highest soil available K (268.3 kg ha?1) was recorded under 75% NPK + crop residues. Lowest bulk density (1.03 Mg m?3), highest water holding capacity (36.5%), soil organic matter (10.6 g kg?1), bacterial (4.13 × 107 cfu g?1) and fungal (6.3 × 107 cfu g?1) counts were recorded under sole application of bio-organics. According to our study, we concluded that the combination of NPK fertilizers and bio-organics increased yield except French bean, soil available N, K and saved chemical fertilizers under ‘French bean–cauliflower’-based cropping system.  相似文献   

6.
Abstract. Three successive crops of winter wheat were grown on a sandy loam to test the residual effect of long‐term annual incorporation of spring barley straw at rates of 0, 4, 8 and 12 t ha?1, and ryegrass catch crops with or without additions of pig slurry. Soil receiving 4, 8 and 12 t ha?1 of straw annually for 18 years contained 12, 21 and 30% more carbon (C), respectively, than soil with straw removal, and soil C and nitrogen (N) contents increased linearly with straw rate. The soil retained 14% of the straw C and 37% of the straw N. Ryegrass catch‐cropping for 10 years also increased soil C and N concentrations, whereas the effect of pig slurry was insignificant. Grain yield in the first wheat crop showed an average dry matter (DM) increase of 0.7 t ha?1 after treatment with 8 and 12 t straw ha?1. In the two subsequent wheat crops, grain yield increased by 0.2–0.3 t DM ha?1 after 8 and 12 t straw ha?1. No grain yield increases were found after 4 t straw ha?1 in any of the three years. Previous ryegrass catch crops increased yields of wheat grain, but effects in the third wheat crop were significant only where ryegrass had been combined with pig slurry. Straw incorporation increased the N offtake in the first wheat crop. In the second crop, only 8 and 12 t straw ha?1 improved wheat N offtake, while the N offtake in the third wheat crop was unaffected. Ryegrass catch crops increased N offtake in the first and second wheat crop. Again, a positive effect in the third crop was seen only when ryegrass was combined with slurry. Long‐term, annual incorporation of straw and ryegrass catch crops provided a clear and relatively persistent increase in soil organic matter levels, whereas the positive effects on the yield of subsequent wheat crops were modest and transient.  相似文献   

7.
Organic agricultural systems rely on organic amendments to achieve crop fertility requirements, and weed control must be achieved without synthetic herbicides. Our objective was to determine the crop yield and soil quality as affected by a transition from grass to dryland organic agriculture in the Central Great Plains of North America. This study evaluated three beef feedlot compost(BFC)treatments in 2010–2015 following biennial application rates: 0(control), 22.9, and 108.7 t ha~(-1) on two dryland organic cropping systems: a wheat(Triticum aestivum)-fallow(WF) rotation harvested for grain and a triticale(Triticosecale)/pea(Pisum sativum)-fallow(T/P-F) rotation harvested for forage. The triticale + pea biomass responded positively to the 108.7-t ha~(-1) BFC treatment,but not the 22.9-t ha~(-1) BFC treatment. The wheat biomass was not affected by BFC addition, but biomass N content increased.Beef feedlot compost input did not increase wheat grain yields, but had a positive effect on wheat grain Zn content. Soil total C and N contents increased with the rate of 108.7 t ha~(-1) BFC after three applications, but not with 22.9 t ha~(-1) BFC. Soil enzyme activities associated with N and C cycling responded positively to the 108.7-t ha~(-1) BFC treatment. Saturated salts were high in the soil receiving 108.7 t ha~(-1) of BFC, but did not affect crop yields. These results showed that BFC was effective in enhancing forage yields, wheat grain quality, and soil C and N, as well as specific microbial enzymes important for nutrient cycling. However, the large rates of BFC necessary to elicit these positive responses did not increase grain yields, and resulted in an excessive buildup of soil P.  相似文献   

8.
A two-year field study was conducted to determine the effect of two zinc (Zn) levels [0 and 10 kg zinc sulfate (ZnSO4) ha?1] in respect with four potassium (K) levels (0, 20, 40 and 60 kg K2O ha?1) on growth, yield and quality of forage sorghum. The soil of the experimental field was loamy sand (Inceptisol), carrying 70, 08, 77, and 0.51 mg nitrogen (N), phosphorus (P), K, and Zn kg?1 soil, respectively. Increasing K levels significantly improved most of the growth, yield, and quality attributes gradually irrespective of the Zn levels. Zinc applied at 10 kg ZnSO4 ha?1 proved significantly better than no zinc application at various K application rates. The benefit of zinc application increased progressively with increasing K rates for most of the parameters studied, indicating significant response of the crop to positive K × Zn interaction in plants in respect with K and Zn application to the soil. Accordingly, 60 kg K2O ha?1 applied with10 kg ZnSO4 ha?1 boosted most of the attributes maximally. It resulted in about 20–40% increase in growth attributes, 25% increase in fresh matter yield, 36–38% increase in dry matter yield, and 38% increase in protein yield compared to the comparable K level applied without zinc. It also enhanced N uptake by 38%, P uptake by 5–19%, K uptake by 40–42%, and Zn uptake by 114–144%. Across the K rates, application of 10 kg ZnSO4 surpassed no zinc application by 30–35% in N uptake, by 8–15% in P uptake, by 33–36% in K uptake, by 120–140% in Zn uptake, by 19–21% in fresh matter yield, by 29–31% in dry matter yield, and by 30–34% in protein yield.  相似文献   

9.
Field experiments were conducted to assess the effect of nutrients management practices on yield and rainwater use efficiency of green gram (Vigna radiata), and soil fertility under moist sub-humid Alfisols at Phulbani, India, during 2005–2008. Ten treatment combinations of lime @ 10% and 20% of lime requirement (LR) @ 8.3 t ha?1, farmyard manure (FYM) @ 5 t ha?1, green leaf manure @ 5 t ha?1, and nitrogen, phosphorus, and potassium (N–P–K) (20–40–20 kg ha?1) were tested. The analysis of variance indicated that treatments differed significantly from each other in influencing yield and rainwater use efficiency. Application of lime @ 20% LR + FYM @ 5 t/ha + 40 kg P + 20 kg K ha?1 was superior with maximum mean yield of 531 kg ha?1, while lime @ 10% LR + FYM @ 5 t ha?1 + 40 kg P + 20 kg K ha?1 was the second best with 405 kg ha?1 and maintained maximum soil fertility of nutrients. The superior treatment gave maximum sustainability yield index of 67.5%, rainwater use efficiency of 0.49 kg ha?1 mm?1, improved soil pH, electrical conductivity, and soil nutrients over years.  相似文献   

10.
Intensive vegetable crop systems are rapidly developing, with consequences for greenhouse gas (GHGs) emissions, nitrogen leaching and soil carbon. We undertook a field trial to explore the effect of biochar application (0, 10, 20 and 40 t ha−1) on these factors in lettuce, water spinach and ice plant rotation. Our results show that the 20 and 40 t ha−1 soil treatments resulted in the SOC content being 26.3% and 29.8% higher than the control (0 t ha−1), respectively, with significant differences among all treatments (p < .05). Biochar application caused N2O emissions to decrease during the lettuce and water spinach seasons, by 1.5%–33.6% and 12.4%–40.5%, respectively, compared the control, with the 20 t ha−1 application rate resulting in the lowest N2O emissions. Biochar also decreased the dissolved nitrogen (DN) concentration in leachate by 9.8%–36.2%, following a 7.3%–19.9% reduction in dissolved nitrogen in the soil. Similarly, biochar decreased the nitrate (NO3) concentrations in leachate by 3.9%–30.2%, following a 3.8%–16.7% reduction in the soil nitrate level. Overall, straw biochar applied at rate of 20 t ha−1 produced the lowest N2O emissions and N leaching, while, increasing soil carbon.  相似文献   

11.
ABSTRACT

Field experiments were conducted during the 2017 and 2018 cropping seasons, to evaluate the effects of biochar (B) and poultry manure (PM) on soil physical and chemical properties, leaf nutrient concentrations, growth, mineral composition and corm and cormel yield of cocoyam. The experiment each year consisted of 4 × 2 factorial combinations of B (0, 10, 20 and 30 t ha?1) and PM (0 and 7.5 t ha?1). Results of the study indicated that in both years, the application of B and PM alone, and in combination, improved soil physical and chemical properties, leaf nutrient concentrations, growth, mineral composition and corm and cormel yield of cocoyam. There was a significant interaction effect of B and PM (B x PM) which was adduced to the ability of the B to increase PM-use efficiency and promote better use of the nutrients in the PM. It was found that combination of 30 t ha?1 B and 7.5 t ha?1 PM (B30+ PM7.5) gave the highest corm and cormel yield of cocoyam compared with other treatments. The combination of 30 t ha?1 B and 7.5 t ha?1 PM (B30+ PM7.5) exhibited the highest impact and is therefore recommended for soil sustainability and cocoyam productivity on sandy soil.  相似文献   

12.
A greenhouse experiment was conducted in the Department of Soil Science and Agricultural Chemistry, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi (U.P.), India, during kharif 2013 to find out the effect of biochar and sewage sludge (SS) on growth, yield, and micronutrient uptake in rice crop. Nine treatments were employed using six different doses of biochar (2.5, 5.0, 7.5 10, 15, and 20 t ha?1) amended with a fixed dose of SS (30 t ha?1) and 50% recommended dose of nitrogen (50% RDN), i.e., 60 kg ha?1. Other three treatments were absolute control (no fertilizers), 100% recommended dose of fertilizers (100% RDF) which was 120:60:60 kg ha?1 as nitrogen (N): phosphorus pentoxide (P2O5):dipotassium oxide (K2O), and 30 t ha?1SS + 50% RDN. Experimental results showed a significant increase in yield of rice crop with increasing levels of biochar along with SS. Application of biochar at 20 t ha?1 along with 30 t ha?1SS increased grain yield to the extent of 2.5 times over absolute control (no fertilizers) and 8.5% over control (100% RDF). The uptake of iron (Fe), copper (Cu), zinc (Zn), and manganese (Mn) (micronutrients) increased significantly with graded doses of biochar application from 2.5 to 20 t ha?1 in the soil. The maximum micronutrient uptake and grain yield of rice were found in T9 where 30 t ha?1SS along with 20 t ha?1 biochar was applied with only 50% RDN. The maximum availability of micronutrients in soil was found with 30 t ha?1 of SS + 50% RDN (T3) followed by conjoint application of 20 t ha?1 of biochar and 30 t ha?1 SS + 50% RDN (T9).  相似文献   

13.
ABSTRACT

Utilizing the proper techniques of plant residue composting can play a significant role in reducing the adverse environmental impacts of chemical fertilizers. Herein the effects of commercial poultry manure (CPM) and composted pistachio residues (CPR) on nutrient availability and saffron daughter corms behavior in a calcareous soil were evaluated as a greenhouse experiment based on completely randomized design arranged in factorial with three replicates. In this study, CPM rates (0, 3, 6, and 9 t ha?1) and CPR levels (0, 20, 40, and 60 t ha?1) were assigned as the first and the second experimental factors, respectively. From the results, CPM or CPR application caused a significant increase in small (≤5 g), mid (5.1–10 g) and large-sized (10.1–15 g) daughter corms number. The highest N (P) concentration in small, mid and large-sized daughter corms was recorded when 9 t ha?1 CPM was applied along with 60 t ha?1 CPR. Soil organic carbon content increased with increasing CPM or CPR levels. The same trend was also observed for soil available N, P, K, and electrical conductivity. By contrast, CPM or CPR levels caused a significant reduction in soil pH. According to the results, pistachio compost can be considered as an eco-friendly alternative to chemical fertilizers to improve soil fertility in saffron farms.  相似文献   

14.
The provision of farmers with proper and balanced fertilizer recommendations is becoming increasingly important, for reasons of crop productivity, food security, and sustainability. Phosphorus (P) response trials with wheat were conducted on Nitisols at 14 sites in the central Ethiopian highlands during the 2010 and 2011 cropping seasons. The treatments, comprising six levels of P fertilizer (0, 10, 20, 30, 40, and 50 kg P ha?1), were arranged in a randomized complete block design with three replicates. Based on a yield difference between the control and the P treatments, 90% of sites responded to P fertilizer. Application of P fertilizer increased wheat grain yield, up to 30% more than the control. Extractable soil P concentrations (Bray 2, 0–15 cm deep) 3 weeks after planting significantly responded to P fertilizer rate. The critical P concentration (for 90% relative yield) was 13.5 mg kg?1. Most sites tested had Bray 2 P values <10 mg kg?1. In the absence of a soil test, a recommendation of 40 kg P ha?1, resulting in the best response overall, could be made for the first year of application. We also recommend that to prevent a potential loss of wheat yield, a maintenance application of at least 5–12 kg P ha?1 be applied every year, irrespective of the calculated recommended rate, in order to replace P exported from the field in produce. Further field trials are required to determine interactions between P response and the effects of climate, soil properties, and other management practices.  相似文献   

15.
A field experiment was conducted during 2006–2007 at Hyderabad, India on sulfur-deficient alfic ustochrept soil on aromatic crop palmarosa [Cymbopogon martinii (Roxb.) Wats. var. motia Burk.] with five rates of sulfur (S) application (0, 10, 20, 30, and 40 kg ha?1). Four harvests were performed between August 2006 and August 2007 at 90-day intervals. A fifth harvest was taken in November 2007 to study the residual effect of S. Five constituents accounting for 87.4–98.7% of the essential oil were identified by gas chromatography-flame ionization detector (GC-FID) and gas chromatography mass spectroscopy (GC-MS) analyses. The results revealed that 40 kg S ha?1 produced the highest total (total of four harvests) biomass yield (71.5 t ha?1), and total essential oil yield (382.3 kg ha?1). The highest contents of essential oil components cis-β-ocimene (2.5%), linalool (2.9%), geraniol (84.9%), geranyl acetate (9.8%), and geranyl hexanoate (2.6%) were observed in 40 kg S ha?1 treatment. Sulfur exhibited no residual effect, therefore application is recommended to each harvest.  相似文献   

16.
Abstract

During the last century, concerns about nitrate presence in the groundwater have tremendously increased worldwide, mainly because of its detrimental consequences on environment and human health. There are different factors contributing their past in nitrate pollution, farm manure is given due consideration. Knowing above facts, a field study was performed to check the effect of different farm yard manure (FYM) levels with urea on nitrate distribution in the soil profile and yield of wheat crop. The experiment was set out in a randomized complete block design, consisted of application of nitrogen at 125?kg ha?1 from urea, 80?kg ha?1 of N from urea +10 tons FYM ha?1 and 20 tons FYM ha?1 with three replications. Wheat (cultivar S7ehar-2006) was sown as test crop. Soil samples were examined to measure the nitrate concentration from four different depths (0–25, 25–50, 50–75, and 75–100?cm) after harvesting. Results showed that the straw yield, total biomass, spike length, and number of grains per spike and 1000-grain weight were significantly influenced by fertilizer strategies. All manure treatments significantly affected the infiltration rate and concentration of nitrate at different depths of the soil profile. Farm yard manure showed greater nitrate concentration up to 50?cm depth as compared to alone urea and combined application, while at the depth of 100?cm, combined application of urea and FYM showed a minimum concentration of nitrates than alone application of either urea or FYM.  相似文献   

17.
ABSTRACT

Animal manure is used in crop production to improve crop yield and soil properties. The impact of cattle manure applied in one year on yield and soil properties in the subsequent years has not been extensively studied. This work evaluated the effect of manure application on winter wheat grain yield (Triticum aestivum L.), soil organic carbon (SOC), and soil pH. Cattle manure was applied once every four years at a rate of 267 kg N ha?1. Grain yield and soil samples (0–15 cm) were collected annually from the Magruder Plots, Oklahoma. Soil samples were analyzed using a glass electrode (pH) and LECO dry combustion analyzer (SOC). The highest yield (2.8 Mg ha?1) occurred in the second year after manure application. Yield in the second year exceeded yield in the first year by 66%. Yields in the third and fourth year were similar to yields in the other years. No changes in soil pH and SOC were observed in each of the four years that constituted the manure application cycle. Cattle manure (267 kg N ha?1) could be applied once to serve a four-year period without major yield differences while also improving soil pH and SOC when compared to the check.  相似文献   

18.
A long-term experiment was conducted at the Central Research Institute for Dryland Agriculture for 13 years to evaluate the effect of low tillage cum cheaper conjunctive nutrient management practices in terms of productivity, soil fertility, and nitrogen chemical pools of soil under sorghum–mung bean system in Alfisol soils. The results of the study clearly revealed that sorghum and mung bean grain yield as influenced by low tillage and conjunctive nutrient management practices varied from 764 to 1792 and 603 to 1008 kg ha?1 with an average yield of 1458 and 805 kg ha?1 over a period of 13 years, respectively. Of the tillage practices, conventional tillage (CT) maintained 11.0% higher yields (1534 kg ha?1) over the minimum tillage (MT) (1382 kg ha?1) practice. Among the conjunctive nutrient management treatments, the application of 2 t Gliricidia loppings + 20 kg nitrogen (N) through urea to sorghum crop recorded significantly highest grain yield of 1712 kg ha?1 followed by application of 4 t compost + 20 kg N through urea (1650 kg ha?1) as well as 40 kg N through urea alone (1594 kg ha?1). Similar to sorghum, in case of mung bean also, CT exhibited a significant influence on mung bean grain yields (888 kg ha?1) which was 6.7% higher compared to MT (832 kg ha?1). Among all the conjunctive nutrient management treatments, 2 t compost + 10 kg N through urea and 2 t compost + 1 t Gliricidia loppings performed significantly well and recorded similar mung bean grain yields of 960 kg ha?1 followed by 1 t Gliricidia loppings + 10 kg N through urea (930 kg ha?1). The soil nitrogen chemical fractions (SNCFs) were also found to be significantly influenced by tillage and conjunctive nutrient management treatments. Further, a significant correlation of SNCF with total soil nitrogen was observed. In the correlation study, it was also observed that N fraction dynamically played an important role in enhancing the availability pool of N in soil and significantly influenced the yield of sorghum grain and mung bean.  相似文献   

19.
Soil salinity is a major limiting factor for crop production in arid and semi-arid regions of northwest China. Flue gas desulfurization gypsum (FGDG) is valuable waste resource which can be used to improve saline soil. Monolith lysimeter leaching experiment was conducted with FGDG in heavily saline-sodic soil of northwest China. The four FGDG treatments with nine replicates for each treatment were applied when the FGDG rate was 0, 15, 30, and 60 t ha?1, respectively. Undisturbed sodic-saline soil was carefully collected in the 40-cm deep soil column. The results indicated that improvement effect on the depth of 0–10 cm soil layer was the best when the rate of FGDG was 60 t ha?1. It can reduce pH by 1.85, exchangeable sodium percentage (ESP) by 44%, and exchangeable Na+ by 7.37 cmol/kg in top soil layer. The values of the above soil parameters fell in the normal range due to FGDG treatment. At the same time, FGDG application reduced soil bulk density and increased saturated hydraulic conductivity. But from the maize growth, the emergence rate, plant height, shoot, and root weight were the best when the FGDG rate was 30 t ha?1. The results also showed that the FGDG application increased soil electrical conductivity value. Therefore, it is quite necessary to move saline ions into the deep soil layer through leaching process. Although effect of FGDG treatment of 60 t ha?1 on top soil was the best, considering the improvement effects of entire soil profile, we recommend that the optimum rate of FGDG was 30 t ha?1.  相似文献   

20.
Abstract

An experiment was conducted to determine the effects of palm oil mill effluent (POME) application on soil chemical properties. The POME was incorporated into the top 0–30 cm of Batang Merbau soil, an Ultisol. POME was applied at 0, 5, 10, 20, and 40 t ha‐1, both in the presence and absence of 2 t ground magnesian limestone (GML). A succeeding crops of maize and groundnut were planted. The results of the experiment showed that POME application up to the rate of 40 t ha‐1 did not significantly change the topsoil pH and exchangeable calcium (Ca), magnesium (Mg), and aluminum (Al). The addition of POME improved the soil fertility, which resulted in an increase of maize yield. The Ca and Mg from the POME accumulated in the topsoil, being held by the negative charge present on the exchange complex. The beneficial effects of POME and/or GML application lasted for about 3 years. The study indicated that application of POME together with GML is a good agronomic option to alleviate soil acidity in Ultisol for maize production.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号