首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 203 毫秒
1.
中国辽宁省杂草稻遗传多样性及群体分化研究   总被引:17,自引:0,他引:17  
杂草稻是指在稻田间或周边作为杂草类型而伴随栽培稻生长的水稻植株, 现已严重发生于中国辽宁省。2003—2005年对中国辽宁稻区的杂草稻进行了初步的考察、收集和整理, 对其植物学特性进行了初步研究;利用收集到的部分杂草稻、栽培稻和野生稻, 采用SSR分子标记方法对其遗传多样性和群体分化进行了初步研究。发现杂草稻植物学特性变异较大。SSR分子标记结果表明, 中国辽宁杂草稻具有较高的遗传多样性, 30对SSR引物中有26对在杂草稻中扩增出多态产物, 多态性位点所占比例为86.67%, Shannon多样性指数平均为0.762。杂草稻群体的基因分化系数(GST)平均为0.843, 杂草稻群体间的遗传分化较大, 遗传差异明显。中国辽宁杂草稻与当地粳型栽培稻血缘关系很近, 与籼稻和野生稻的遗传关系较远, 很可能起源于当地栽培稻品种, 是栽培稻种个体间自然杂交、回复突变等产生的退化类型,远距离种子调运促进了它的进一步扩散。  相似文献   

2.
贵州省花生地方品种的遗传多样性   总被引:3,自引:0,他引:3  
为进一步了解贵州花生地方品种的遗传多样性,合理、高效利用花生资源,用50对SSR引物评价了贵州不同地理来源的68份花生地方品种,结果多态性较好的41对引物共扩增出79个等位基因,平均每个引物1.93个;多态性信息量(PIC)变幅为0.045(PM43)~0.951(PM169);Shannon信息指数变幅为0.2518(PM79)~0.6926(PM188),平均0.5268;Nei遗传多样性指数变幅为0.1699(PM79)~0.4995(PM188),平均0.3556。采用类平均法对欧氏距离聚类分析表明,在遗传距离为0.94时将68个花生地方品种分成2个大类,同一地理来源、同一粒型的地方品种的亲缘关系并不是最近的,表明地方品种间亲缘关系与地理来源关系不大。说明贵州花生地方品种具有丰富遗传多样性。  相似文献   

3.
不同地理来源旱稻种质资源的遗传多样性分析   总被引:10,自引:0,他引:10  
用38对SSR引物对144份不同地理来源的旱稻种质资源进行遗传多样性分析。结果表明,共检测到137个等位变异,平均每对引物检测到3.6个,等位变异范围2~9。Nei基因多样性指数(He)在0.440(RM162)~0.854(RM335)之间,平均0.598。旱稻种质资源亚种间SSR多样性差异明显,籼稻的等位基因数目和Nei基因多样性指数(Na = 3.5,He = 0.558)明显高于粳稻(Na = 3.2,He = 0.415)。Nei基因多样性指数以亚洲最高,非洲最低,亚洲其他(He = 0.594)>中国(He = 0.593)>南美(He = 0.545)>非洲(He = 0.512)。AMOVA分析表明,旱稻种质资源的遗传变异主要来自亚种内(占总变异的76.3%),亚种间遗传分化极显著。系统聚类能较好地区分籼粳亚种,但不能区分地理组。旱稻种质资源丰富的遗传多样性为水稻节水抗旱品种的选育提供了条件。  相似文献   

4.
海南普通野生稻琼海居群与三亚居群的遗传分化   总被引:5,自引:0,他引:5  
普通野生稻(OryzarufipogonGriff.)是栽培稻的近缘祖先,蕴藏着丰富的优异基因,是宝贵的水稻遗传资源。普通野生稻主要分布在我国的南方地区,海南岛是我国普通野生稻的主要分布区之一,野生稻的遗传多样性曾经非常丰富。三亚是海南岛典型的热带地区,是普通野生稻主要的分布区。最近在海南琼海发现一个原生境普通野生稻居群,尚不清楚海南普通野生稻琼海居群与三亚居群之间的遗传关系。本研究采用37个SSR标记从SSR座位的多态率、SSR座位的基因杂合性、两居群间的遗传相似性和遗传距离以及两居群间的遗传分化等四方面,对海南普通野生稻琼海居群与三亚居群进行了遗传分析,旨在为海南普通野生稻的深入研究提供基础。结果表明SSR座位在两群体中存在较高的遗传变异,且其在普通野生稻三亚居群的遗传变异高于在普通野生稻琼海居群的遗传变异。SSR座位在琼海居群中的多态率为81.0811%,在三亚居群中的多态率为91.8919%;观察杂合性、理论杂合性、非偏性杂合性在三亚居群中的平均值为0.5651、0.4449、0.4661,高于在琼海居群中的相应平均值(0.4097、0.2057、0.2670)。根据Nei遗传相似性和遗传距离普通野生稻琼海居群与三亚居群间的遗传相似性为0.6385,遗传距离为0.4486。FST检验表明,两群体之间存在着中等程度的遗传分化(FST=0.3909),表明这两个普通野生稻居群内存在着60.91%的遗传变异。  相似文献   

5.
利用中国农业行业标准(NY/T 1433-2014)推荐的48对SSR引物,对81个高原常规粳稻推广品种进行遗传多样性分析。结果表明:37对SSR引物在81个品种间具有多态性,共检测到139个等位基因(分子量变异范围为89~288 bp),每对引物检测到的等位基因数(Na)为2~10个,平均3.76个。Nei基因多样性指数(He)为0.025~0.769,平均为0.438。SSR多态信息量(PIC)分布范围为0.024~0.727,平均为0.416。遗传相似系数变幅为0.42~1.0,平均为0.65。2007-2016年育成的品种遗传多样性低于2007年前育成的品种,两个时期育成的品种有15个SSR位点的等位基因存在差异。聚类分析表明,遗传相似系数为0.62时,81个品种划分为4个类群,其中第Ⅰ类、第Ⅱ类和第Ⅲ类分别包括4个、5个和12个品种,第Ⅳ类包括60个品种,占供试品种数的74.1%。表明大多数品种间遗传距离近,遗传基础较窄。在今后的水稻育种中,应加强有利基因发掘、引进和创新利用,以拓宽高原粳稻的遗传基础。  相似文献   

6.
野生稻与亚洲栽培稻的遗传多样性   总被引:4,自引:0,他引:4  
为评价野生稻与亚洲栽培稻的遗传多样性及其变异关系,56对SSR引物被用于研究广泛地理分布的55份普通野生稻(其中32份O. rufipogon和23份O. nivara)和25份亚洲栽培稻(14份indica和11份japonica)样本。298个多态性位点被检出,占总扩增等位点的98.68%。野生稻多态性位点的百分比(平均达91%)及Nei’s遗传多样性值(h)明显高于亚洲栽培稻,表明普通野生稻比亚洲栽培稻具更丰富的遗传多样性。UPGMA聚类分析显示野生稻的两个类群(O. rufipogon和O. nivara)关系密切,但在遗传上存在明显的分化,支持其作为两个独立物种的分类观点。许多普通野生稻中籼粳分化尽管不很明显,然而亚洲栽培稻的籼粳亚种分化是明显的。亚洲栽培稻与多年生普通野生稻(O. rufipogon)关系更为密切,符合异源起源的遗传分化模式。  相似文献   

7.
贵州旱稻种质资源的SSR遗传多样性分析   总被引:4,自引:0,他引:4  
本研究利用24对水稻微卫星(SSR)标记对源自贵州部分县乡种植以及早期基因库收集的112份地方旱稻材料的遗传多样性进行分析,结果共检出187个等位基因,每个位点的等位基因变幅为4~13个,平均Nei's基因多样性指数为0.6431,平均香农指数为1.3669。籼粳亚种均具有较高的遗传多样性,前者稍高于后者,但差异不明显。黔西南州拥有最多的种质,存在丰富的遗传变异,是贵州旱稻种质资源遗传多样性分布中心。分子方差分析表明,旱稻种质总变异的88%是由各地区内的群体间差异造成,地区间和各个群体内的遗传变异较小,均为6%。不同地区旱稻种质的遗传分化程度不一,变幅为2%~18%。聚类分析将供试旱稻材料较为明显地分为籼粳两个类群,而地理分组不明显。  相似文献   

8.
《种子》2021,(3)
利用分布于水稻12条染色体的56对SSR标记对来自贵州省内的147份地方红米水稻种质进行遗传相似性和遗传多样性研究。共检测到147个等位基因,品种间不同位点的等位基因数(Na)变幅为2~5个,平均2.642 9个;有效等位基因数(Ne)变幅为1.034 6~3.978 8个,平均1.758 5个,有效等位基因所占比例为66.5%;Nei’s基因多样性指数(He)变幅为0.033 4~0.748 7,平均为0.354 9;Shannon信息指数(I)平均为0.604 6,变幅为0.086 1~1.471 4;多态性信息含量(PIC)平均为0.369 4,变幅为0.040 0~0.748 7。UPGMA聚类分析结果显示,在遗传相似系数为0.55的水平上,可将供试材料聚为两大类,其中第Ⅰ类涵盖的品种有140个,占供试材料总数的95.24%,但在所检测的位点中没有基因型完全相同的品种。结果表明,贵州地方红米品种的遗传多样性水平较低,遗传基础较狭窄,应加强种质交流,拓宽贵州地方红米种质遗传基础。  相似文献   

9.
为明确海南山栏稻品种的籼粳分化特性与遗传变异规律,利用34个籼粳特异InDel分子标记和24个SSR分子标记对22个海南山栏稻品种的籼粳特性与遗传变异进行分析。InDel分子标记鉴定结果表明,供试品种粳型基因频率变幅在0.68~0.83,以粳型品种为主,占到总品种的63.6%,未发现籼型或偏籼型品种。海拔梯度分析表明,海南山栏稻中粳型品种分布范围更为广泛,具有更强的环境适应能力。遗传变异分析表明,在供试群体中共检测到191个等位基因,其中稀有等位基因(基因频率≤0.05)数为86个,占到总等位基因数的45.03%。在供试的3个地理来源中,琼中县的遗传多样性最为丰富。  相似文献   

10.
采用农业行业标准( NY/T 1433 - 2007)中推荐的24对水稻SSR引物,构建了贵州省2011年水稻区域试验中晚组参试品种(组合)的DNA指纹图谱.结果显示,共检测出107个等位基因,平均4.458个;平均PIC值为0.728;Shannon-Wiener指数平均为1.433,变幅0.415( RM 19)~1.848( RM 336).参试品种间遗传相似系数为0.56~0.99.SSR检测结果表明,贵州省2011年水稻区试品种的遗传多样性相对狭窄.  相似文献   

11.
不同地理来源水稻品种的SSR分子标记遗传相似性分析   总被引:4,自引:1,他引:3  
为了评价云南水稻品种与国内外水稻品种间的遗传相似性,利用48个SSR分子标记对90个来自9个不同国家的水稻品种进行遗传相似性分析,结果共检测到269个等位基因(Na),平均每个SSR标记检测到5.604个,变幅为3~10;共检测到159.775个有效等位基因(Ne),平均为3.329,变幅为1.578~6.090;每个SSR标记的多态性信息含量(PIC)变幅为0.366~0.836,平均为0.661。90个水稻品种间的遗传相似系数(GS)变幅为0.021~0.875,平均为0.328。90个品种在相似系数0.212处分为籼、粳两亚种类群;聚类树形图能划分品种的地理来源;亚种内,粳型品种较籼型品种的遗传相似度高。云南粳稻育成品种的遗传相似性较高,云南水稻地方品种的遗传多样性较高,应加强对云南水稻地方品种的有效保护和籼粳分化等研究。  相似文献   

12.
高坡红米的SSR遗传多样性分析   总被引:2,自引:1,他引:1  
利用145对SSR引物,对22份高坡红米材料及典型的籼粳稻品种93-11和日本晴进行遗传多样性分析,发现有13个标记具有多态性,共检测出57个等位基因变异,每对引物可检测2~10个等位变异,平均为4.3846个,平均Nei基因多样性指数(He)为0.521,范围为0.285 4(RM 18)~0.7674(RM 5414).用UPCMA聚类进行分析,在相似系数为0.52处可将高坡红米品种分为两大类,即籼稻和粳稻;PCO三维空间图揭示,所有供试材料在图中的分布与UPGMA聚类结果完全吻合,两种分析方法相互得到了印证.  相似文献   

13.
在前文研究已检出与农艺品质性状显著关联的SSR位点的基础上, 本文进一步对与性状关联位点的等位变异作解析, 通过将携带某等位变异的所有材料表型均值与携带无效等位基因(null allele)材料表型均值做比较, 估计等位变异的潜在表型效应增量(减量), 进一步利用该信息估计位点增效(减效)等位变异的平均效应, 鉴别出一批农艺品质性状优异位点、等位变异及携带优异等位变异的载体材料。发现在栽培及野生种质中检出的优异等位变异有同、有异、有互补性。发现关联位点正、负效应等位变异均值间有差异, 可根据育种目标性状选择要求, 选取适合的位点及相应等位变异。同一标记位点可与多性状关联, 其等位变异在不同性状间各有其表型效应的方向和大小; 等位变异在相关性状效应上方向、大小的异同解释了性状间正、负相关的遗传原因。关联作图得到的信息可以弥补家系连锁法QTL定位信息的不足, 并直接利用等位变异信息进行亲本选拔、组合选配及后代等位条带辅助选择以提高育种成效。  相似文献   

14.
A major emphasis in breeding for iron toxicity tolerance in rice is to identify differences that are associated with resistance and harness them for genetic improvement. In this study, thirty accessions, including IRRI gene bank accessions, two varieties from Brazil, 8 cultivars from West Africa and 10 cultivars from Uganda were analyzed for sensitivity to iron toxicity, and genetic diversity using morphological and SSR markers. Two genotypes, IR61612-313-16-2-2-1 and Suakoko 8 showed significantly high resistance with an average score of ≤ 3.5 on 1–9 scale. The SRR markers were highly informative and showed mean polymorphism information content (pic) of 0.68. The PIC values revealed that RM10793, RM3412, RM333, RM562, RM13628, RM310, RM5749, and RM154 could be the best markers for genetic diversity estimation of these rice cultivars. Diversity at the gene level showed an average of 4.61 alleles ranging from 2 to 12 per locus. Mean gene diversity (H) value for all SSR loci for the 30 genotypes evaluated was 0.69 but was decreased to 0.53 when analysis was performed on Ugandan accessions. The low genetic diversity found among the Ugandan accessions is the evidence of a narrow genetic base, and such a scenario has a potential vulnerability for resistance break down. A low correlation was detected between the observed molecular and morphological datasets. This means that a combination of morphological traits and SSR analysis would be required when assessing genetic variation under iron toxic conditions, and could be a practical strategy for breeders when planning crosses. A distinction between the resistant and susceptible accessions in both phenotyping and SSR datasets suggests the presence of unique alleles that could be harnessed for improvement of rice against iron toxicity.  相似文献   

15.
The availability of an array of molecular marker systems allowed comparing the efficiency of two of these marker systems to estimate the relationships among various taxa. The objective of this study was to assess the genetic diversity among 40 cultivated varieties and five wild relatives of rice, Oryza sativa L. involving simple sequence repeat (SSR) randomly amplified polymorphic DNA (RAPD) markers. The accessions were evaluated for polymorphisms after amplification with 36 decamer primers and 38 SSR primer pairs. A total of 499 RAPD markers were produced among the 40 cultivated varieties and five wild relatives with a polymorphism percentage of 90.0. Out of 38 SSR primer pairs used, only one locus viz., RM115 was monomorphic. The average Polymorphism Information Content (PIC) value was 0.578 and it ranged from a low of zero (RM 115) to a high of 0.890 (RM 202). The Mantel matrix correspondence test was used to compare the similarity matrices and the correlation coefficient was 0. 582. The test indicated that clusters produced based on RAPD and SSR markers were not conserved since matrix correlation value was 0.582 as against the minimum required value of 0.800. The two marker systems contrasted most notably in pair-by-pair comparisons of relationships. SSR analysis resulted in a more definitive separation of clusters of genotypes indicating a higher level of efficiency of SSR markers for the accurate determination of relationships between accessions that are too close to be accurately differentiated by RAPD markers. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

16.
中国豌豆地方品种SSR标记遗传多样性分析   总被引:20,自引:4,他引:16  
利用21对豌豆多态性SSR引物, 对来自全国春、秋播区19省区市的1 221份豌豆地方品种进行遗传多样性分析, 共扩增出104条多态性带, 每对引物平均扩增出4.95个等位变异, 其中有效等位变异占62.52%。省份间SSR等位变异分布均匀, 但是省份间有效等位变异数、Shannon’s信息指数(I)差异明显, 省籍资源群间遗传多样性差异显著。遗传多样性以内蒙古资源群最高, 甘肃、四川、云南和西藏等资源群其次, 辽宁资源群最低。PCA三维空间聚类图揭示, 我国豌豆地方品种资源分化成3个基因库, 基因库I主要由春播区的内蒙古、陕西资源构成, 基因库II主要由秋播区最北端的河南资源构成, 基因库III主要由除上述省份之外的其他省区市的资源构成。UPGMA聚类分析表明, 不同省份资源群间的遗传距离变化范围为5.159~27.586, 中国豌豆地方资源据此聚类成2个组群8个亚组群, 与3个基因库的聚类结果相呼应。聚类结果显示, 我国豌豆地方品种资源群间遗传距离与其来源地生态环境相关联。  相似文献   

17.
淀粉是构成和影响水稻产量和品质的最主要因素;ADP-葡萄糖焦磷酸化酶(AGPase)基因是影响淀粉合成的关键酶基因之一。本研究用编码AGPase小亚基基因(AGPsma)序列的特异引物(序列为F:5’-TACGCTATGCTCTTGAAAC-3’;R:5’-TATCTTCCCAGTAACCATCA-3’)对普通野生稻(元江)、粳稻(榆密15)、籼稻(93-11)及籼粳交品系(南34)进行PCR扩增、克隆、测序和序列对比。又用该引物对来源于13个国家的15份AA基因组和5份CCDD基因组的共20份野生稻及205份包括40份籼稻和165份粳稻的云南地方品种和改良品种(系)进行PCR检测。在以上4个不同类型水稻材料该引物上扩增出184bp和215bp的2个片段均为AGPase小亚基基因的序列。在该序列的109bp处,元江普通野生稻和榆密15为T,而93-11和南34为C;籼粳交品系南34在121~151bp区间缺失31个碱基。所有的225份供试材料可分为3类。第一类具有215bp大小的条带,包括了全部的野生稻材料和196份籼粳材料。其中籼稻数占籼稻样本总数的95%,籼稻地方品种占籼稻地方品种总数的75%;粳稻数占粳稻样本总数的83.6%,粳稻地方品种占粳稻地方品种总数的60%。第二类具有184bp的条带,包括28个籼粳材料。第三类同时具有215bp和184bp的片段,此类只有1个父母本具不同片段的滇型杂交粳稻品种。结果表明AGPsma序列在野生稻中可能尚未出现分化,但在籼稻、粳稻和地方老品种及改良品种中都出现了遗传分化。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号