首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
选择不同季节的4个N2O高排放通量日(2012年8月28日和12月27日、2013年3月14日和6月14日),利用静态暗箱-气相色谱法对设施菜地土壤N2O排放通量进行连续24h原位观测,以探讨其日变化特征,并确定1d内的最佳观测时间。结果表明,设施菜地施肥后(2012年12月27日除外)N2O排放通量呈明显的单峰型日变化规律,排放峰值一般出现在14:00左右,比气温峰值时间滞后约2h。同茬作物基肥后第13天与追肥后第2天相比,前者N2O日排放通量峰值和日均排放通量分别较后者高3.4~12.9倍和6.8~7.0倍。相关分析表明,4个典型日内,仅2012年12月27日的N2O排放通量与气温、3cm地温和10cm地温无显著相关,其它日均呈显著正相关。说明观测日土壤温度处于N2O形成适宜范围内,且气温日较差较大时,温度才是影响N2O排放通量日变化的主要因素。对24h内N2O排放通量的矫正分析结果表明,2012年8月28日和12月27日、2013年3月14日和6月14日分别在18:00-21:00、10:00-次日6:00、21:00、16:00-18:00的观测值,可以代表当天的 N2O 排放通量。若在其它时段采样,应进行有效的矫正处理,否则会导致对典型日N2O排放的估计偏高13.4%~240%或偏低13.1%~64.5%。  相似文献   

2.
【目的】为了长期监测土壤释放N2O的通量和同位素变化规律,了解产生N2O的微生物过程,提高对N2O排放量和排放系数估计的准确性,需要对N2O的日变化规律做深入研究,以便获得具有代表性的取样时间点及密闭时间。【方法】采用田间原位试验对华北平原的莴苣菜地进行了N2O排放监测,选取N2O排放高峰期即施肥灌溉后5~6 d为监测时间段,采用静态气体箱收集土壤释放的N2O气体,结合气相色谱和质谱技术测定N2O的含量及其同位素值(δ15N-N2O,δ18O-N2O和SP)。试验设2种取样间隔,即2 h和10 min,分别对N2O日变化规律和密闭时间进行研究。【结果】 1)在莴苣菜地N2O排放高峰期内,N2O通量日变化范围为34.65~131.45 μg/(m2·h),最大和最小的通量分别发生在13: 00和次日5: 00,9: 00的N2O通量为83.66 μg/(m2·h),与日通量平均值82.81 μg/(m2·h)相接近。N2O通量产生日变化的原因与土壤温度有关,相关分析表明,N2O通量与地下5 cm处土壤温度呈显著正相关(R2=0.82, P<0.01),而与土壤充水孔隙度(WFPS)无显著相关性。2)24 h内,δ15Nbulk-N2O和δ18O-N2O随着时间呈现先降低后增加的变化趋势,变化范围分别为-31.22‰~-11.09‰和-7.45‰~-0.68‰; SP值随时间呈现先增加后降低的变化趋势,变化范围为16.13‰~26.41‰。N2O各个同位素值随时间的变化表明产生N2O的微生物过程随之变化,但SP值在9: 00~17: 00较稳定,变化范围为23.26‰~26.21‰,极显著高于其他时刻(P<0.01),表明硝化作用在这一时间段内对N2O的产生起主导作用。3)扣箱40 min后, N2O含量、 δ15N-N2O和SP值都达到稳定状态,因此选取40 min作为单次观测N2O含量和同位素变化的密闭时间。4)24 h内N2O通量加权SP值为22.54‰。根据前人总结的规律,本研究中N2O主要由细菌硝化作用产生,且估计60.92%的N2O来自于细菌硝化作用, 39.08%的N2O来自于反硝化作用。【结论】华北平原莴苣菜地的N2O通量和同位素值具有较大的日变化,综合N2O通量和同位素值,建议选取9: 00作为观测莴苣菜地N2O排放通量和同位素特征值变化规律的时刻,建议静态气体箱密闭时间为40 min。  相似文献   

3.
水肥管理对鄱阳湖流域稻田温室气体排放的影响   总被引:2,自引:0,他引:2  
为探明水肥管理模式对稻田温室气体(CH_4,CO_2和N_2O)的影响规律,以鄱阳湖流域赣抚平原灌区稻田为研究对象,考虑间歇灌溉(W1)和淹灌(W0)2种灌溉模式,不施氮(N0)、减量施氮(N1,135 kg/hm~2)和常规施氮(N2,180 kg/hm~2)3种施氮水平,采用静态箱-气相色谱法测定气体排放量,结合产量计算温室气体排放强度。结果表明:稻田CH_4和CO_2排放通量全天内表现为单峰模式,CH_4日排放峰值在14:00—15:00,CO_2排放峰值提前约1~2 h,而N_2O排放通量全天内则表现为上午、傍晚和深夜的三峰模式。08:00—11:00内3种气体校正系数和综合值均比较接近1,是进行田间观测的最佳时段。稻田CH_4排放通量在生育前期迅速增长达到峰值,中后期相对平缓并伴有1~2个小峰值。间歇灌溉CH_4排放通量较少。不同水肥处理下CO_2排放的峰值出现次数一致,主要在分蘖前期、乳熟期和黄熟期。2种灌溉模式的CO_2排放规律一致,但间歇灌溉下CO_2排放量更多。稻田N_2O的排放整体水平呈现较低状态,各处理的N_2O排放峰值出现在抽穗开花期末。稻田温室气体排放引起的增温潜势受灌溉模式的影响极显著。与W0相比,W1在N0、N1、N2水平下分别降低增温潜势36.1%、33.9%和23.2%(P0.05)。地温和气温是重要的环境影响因子,CH_4和CO_2对地温的敏感性高于气温,9月典型日的温度敏感系数更高。W1N1处理的温室气体排放强度最低,从减排增产角度为鄱阳湖流域推荐的稻田水肥管理模式。  相似文献   

4.
通过田间试验,应用静态箱-气相色谱法测定了土壤-冬小麦系统以及土壤的呼吸速率和N2O排放通量,研究了UV—B辐射增强对土壤-冬小麦系统、土壤的呼吸速率和N2O排放日变化的影响。结果表明,土壤-冬小麦系统和土壤的呼吸速率存在着明显的日变化规律,UV—B辐射增强处理并没有改变其日变化规律,但对呼吸速率有抑制作用。在日温差较大的晴天,土壤-冬小麦系统和土壤的N2O排放通量也呈规律性日变化,UV—B辐射增强处理没有改变其日变化规律。在拔节至抽穗期,UV—B辐射增强对土壤-冬小麦系统的日均呼吸速率、N2O排放通量和土壤的日均N2O排放通量均没有显著影响,但显著降低了土壤的日均呼吸速率;在开花期,UV—B辐射增强对土壤-冬小麦系统和土壤的日均呼吸速率、N2O排放通量均没有显著影响;在灌浆期,UV—B辐射增强显著降低了土壤-冬小麦系统的日均呼吸速率、N2O排放通量和土壤的日均N2O排放通量,但对土壤的日均呼吸速率没有显著影响。  相似文献   

5.
温度对旱田土壤N2O排放的影响研究   总被引:9,自引:0,他引:9  
以南方亚热带代表性旱田土壤—贵州玉米 -油菜轮作田、大豆 -冬小麦轮作田和休耕地为研究对象 ,同步观测了整个轮作期土壤N2 O排放通量和温度的季节变化。同时 ,采用DNDC模型定量探讨了未来气温变化对土壤N2 O排放的潜在影响。结果表明 ,温度是土壤N2 O排放通量规律性日变化的最主要控制因素 ;除大豆地外 ,其他作物生长季节和休耕地的N2 O排放通量季节变化与温度之间均存在一定程度的正相关性 ,其中冬春季休耕地的N2 O排放通量与温度间存在弱指数函数关系。模型检验结果表明 ,除大豆地外 ,其余试验地的N2 O排放通量均随年均气温升高而升高 ,在冬春季 ,土壤N2 O排放通量对气温变化的敏感性强于夏秋季 ,尤其以冬春季休耕地受气温变化的影响最为显著。  相似文献   

6.
氧化亚氮(N2O)是重要的农业源温室气体,菜地土壤施肥量高、施肥次数多,且肥水同期,是重要的N2O排放源。采用室内培养实验,测定在70%田间持水量条件下菜地土壤施用铵态氮肥后3周内N2O排放动态,利用不同气体抑制剂(低浓度乙炔、纯氧、纯氦、纯氧+乙炔)对N2O排放过程抑制效果各不相同的特点,经合理组合计算得出自养硝化、硝化细菌的反硝化、生物反硝化等主要过程对土壤N2O排放的相对贡献及其动态,以探索菜地土壤施用铵态氮肥后土壤N2O排放的来源及动态。结果表明,(1)在70%田间持水量条件下,菜地土壤施用铵态氮肥后2d内(48h内)的N2O排放通量最高,为314.4ng·g-1·d-1,到第4天时N2O排放通量已迅速降至前两天的1/6,且随培养时间的延长其排放通量不断降低。(2)自养硝化作用是菜地施用铵态氮肥后N2O排放的主要来源,施肥培养后2周内的贡献率在50%以上,2周后其贡献率降至40%左右。(3)硝化细菌的反硝化作用对N2O排放的贡献主要在施铵氮后2d内,其贡献率达44%,之后其贡献率一直保持在14%~27%。反硝化作用对N2O排放的贡献随着土壤中铵态氮含量的下降和硝态氮含量的升高而逐渐从开始时不到1%增至30%,但由于施肥培养2周后N2O的排放通量绝对数值很低(仅为施肥后2d内排放高峰的1/20),故其对N2O排放的贡献有限。土壤N2O排放通量及其来源与土壤中铵态氮和硝态氮含量的动态变化密切相关,施用铵态氮肥后土壤短期内呈现酸化趋势。因此,合理控制硝化作用是有效控制菜地土壤N2O排放的关键措施。  相似文献   

7.
不同农业措施下冬小麦田N2O排放通量的特征   总被引:3,自引:0,他引:3  
利用静态自动箱连续观测系统对冬小麦农田翻耕(对照)、秸秆覆盖、免耕、秸秆深施和有机肥5种农业措施条件下N2O排放通量进行了监测。结果表明,各处理中N2O高排放通量均在12:00—17:00,低排放通量在0:00—3:00;冬小麦孕穗期N2O排放通量与气温和土壤5cm处温度显著相关;拔节期的水肥同期会导致15~20d的N2O排放高峰。不同农业措施N2O排放量大小顺序是有机肥〉免耕〉秸秆覆盖、秸秆深施和对照,差异极显著,而秸秆覆盖、秸秆深施和对照三种措施之间N2O排放量差异不明显。研究结果对估算不同农业措施下冬小麦田N。O的排放量有一定的参考价值。  相似文献   

8.
小麦-玉米轮作田与菜地N2O排放的对比研究   总被引:6,自引:0,他引:6  
于亚军  高美荣  朱波 《土壤学报》2012,49(1):96-103
应用静态箱/气相色谱法对旱地小麦-玉米轮作田和种菜历史超过20a的菜地进行了N2O排放的定位观测,分析了旱地和菜地生态系统N2O排放特征的差异,及施氮、土壤温度、土壤湿度和作物参与对两种农田系统N2O排放的不同影响。结果表明,不施氮情况下,旱地和菜地N2O排放通量分别为17.8±5.6和50.7±13.3μg m-2h-1,菜地N2O排放通量是旱地农田的3.1倍。在施氮(N 150 kg hm-2)情况下,菜地N2O排放系数较旱地高39.0%。粮食作物参与和蔬菜作物参与对增加各自农田生态系统N2O排放量的贡献无明显差异。旱地和菜地不同作物季N2O排放量的差异主要是由于作物生育期长短不同造成单位时间施肥强度存在差异。所以,根据作物生育期特点调节施肥量可能会减少农田生态系统N2O排放量,并且由于菜地各蔬菜生育期长短的差异更大,因此,菜地若能实现精量施肥,其N2O减排的潜力可能大于旱地农田。  相似文献   

9.
通过对已有文献资料的调研和整理,分析了1990--2008年间有关中国农田N2O排放通量田间原位观测的分布特征。结果表明,1990--2008年间中国农田N2O排放通量原位观测研究呈不断发展趋势,2002年后进入快速增加期。通量原位观测位点的空间分布不平衡,主要集中在长江中下游、华北和西南地区,东北、西北、华南地区观测位点较少;农田N2O排放通量原位观测在作物类型间差异明显,对稻田的研究占到数据组总数的36%,其次为小麦和玉米田,分别占24%和21%,紫云英田仅为0.2%。针对农田N2O排放通量原位观测研究的现状,建议今后需进一步关注西北和东北典型农田生态系统N2O排放观测研究;在测定大宗作物系统N2O排放的基础上,重点加强典型菜地N2O通量的原位观测;强调温室气体CO2、CH4和N2O的同步观测与同位素示踪等技术相结合,以寻求农业增产、增效与温室气体减排的系统机制与实现途径。  相似文献   

10.
不同水肥处理对设施菜地N2O排放的影响   总被引:2,自引:1,他引:1  
设施菜地是N2O排放的重要来源。本文通过田间试验对北京地区不同水肥处理的设施有机大白菜进行了全生长季N2O排放监测,以期为设施菜地N2O减排提供数据支撑。试验为灌溉和施氮量的双因素设计,分别为高灌溉量下的常规施氮(高氮 HN1)、 优化施氮(低氮 HN2)和不施氮(HCK)以及低灌溉量下的常规施氮(LN1)、 优化施氮(LN2)和不施氮(LCK)处理。结果显示,不同灌溉量对大白菜产量影响不显著,但常规施氮处理均显著高于优化和不施氮处理。试验初期,土壤N2O排放通量较高,随后逐渐降低; 到第30 d,各施氮处理已累积释放了生育期N2O排放总量的80%以上; 灌水对N2O排放的影响显著,试验期间灌溉三次后均出现排放高峰,且高灌溉量下各处理N2O的排放通量均高于低灌溉处理。常规施氮N2O排放通量高于优化施氮处理,并均显著高于不施氮处理。各施氮处理的N2O排放系数介于0.29%~0.39%之间。  相似文献   

11.
节水灌溉对稻田N2O季节排放特征的影响   总被引:4,自引:1,他引:3  
为了揭示节水灌溉对技术对稻田N2O排放的影响,采用静态暗箱-气相色谱法对稻田N2O排放进行了田间原位观测,分析了节水灌溉对稻田N2O季节排放特征的影响。结果表明,水稻全生育期节水灌溉稻田N2O平均排放通量为41.84 μg/(m2 ?h),较淹水灌溉稻田N2O平均排放通量增加了33.3%;节水灌溉稻田N2O排放总量为119.86 mg/m2,比淹水灌溉稻田显著增加了17.8%;节水灌溉稻田N2O排放通量呈现明显的季节变化规律,有两次较大的排放峰值,峰值主要出现在施肥后1周左右;节水灌溉稻田土壤的每次脱水过程均不同程度地加剧了N2O排放,复水后N2O排放通量有增有减但变幅不大,而淹水灌溉稻田在黄熟期落干阶段N2O排放出现反弹。由此可见,不同灌溉模式下的稻田土壤水分状况决定了N2O季节排放的差异,与淹水灌溉相比,控制灌溉显著增加了稻田N2O季节排放量。  相似文献   

12.
菜地土壤CO2与N2O排放特征及其规律   总被引:2,自引:0,他引:2  
为了解不同集约化类型菜地土壤CO2和N2O排放特征及影响因子,选取京郊20年露地老菜地(OV20)、3年菜地种植历史的露地新菜地(OV3)、3年大棚菜地(GV3),以及相邻的当地典型粮田玉米地(Maize)4个类型地块,研究了春黄瓜生育期间土壤CO2和N2O排放特征及影响因子。结果表明:1)春黄瓜生育期间的土壤CO2排放通量主要受土壤5 cm处温度(指数关系)和土壤水分(对数关系或二次抛物线关系)影响;期间玉米地土壤CO2平均排放通量为(346.8±56.5)mg.m-2.h-1,20年露地菜地、3年露地菜地有机肥处理、3年露地菜地配施处理、3年大棚菜地的土壤CO2平均排放通量分别是玉米地的1.38、1.21、1.39和1.56倍。2)土壤N2O排放通量与施肥活动密切相关,排放高峰都出现在氮肥施用后,并受土壤温度和水分的影响。基肥后土壤温度低(15~20℃),排放峰出现在第5 d,排放峰持续时间(长达20 d)与施肥量相关;追肥后土壤温度高(>20℃),排放高峰发生早(追肥后第3 d),但因追肥用量低,因此持续时间短(仅一周)。3)黄瓜生长期内玉米地N2O累积排放量为N(1.95±0.10)kg.hm-2,20年老菜地、3年大棚菜地和3年新菜地N2O累积排放量分别是同期大田玉米地的1.67、1.95和1.99倍。4)本实验中春黄瓜生长季菜地土壤化肥氮N2O排放系数在1.86%~4.71%之间,显著高于IPCC旱地排放缺省值1%。其中,新菜地排放系数高于老菜地,设施菜地排放系数高于露地菜地;但有机肥氮的N2O排放系数则远远低于化肥氮的排放系数,仅为0.11%。  相似文献   

13.
温度对旱田土壤N2O排放的影响研究   总被引:13,自引:1,他引:13  
以南方亚热带代表性旱田土壤-贵州玉米-油菜轮作田、大豆-冬小麦轮作田和休耕地为研究对象,同步观测了整轮作期土壤N2O排放通量和温度的季节变化。同时,采用DNDC模型定量探讨了未来气温变化对土壤N2O排放的潜在影响。结果表明,温度是土壤N2O排放通量规律性日变化的最主要控制因素;除大豆地外,其他作物生长季节和休耕地的N2O排放通量季节变化与温度之间均存在一定程度的正相关性,其中冬季休耕地的N2O排放通量与温度间存在弱指数函数关系。模型检验结果表明,除大豆地外,其余试验地的N2O排放通量均随年均气温升高而升高,在冬春季,土壤N2O排放通量对气温变化的敏感性强于夏秋季,尤其以冬春季休耕地受体气温变化的影响最为显著。  相似文献   

14.
不同氮水平下黄瓜-番茄日光温室栽培土壤N_2O排放特征   总被引:7,自引:3,他引:4  
为探讨日光温室黄瓜—番茄种植体系内N2O排放动态变化及其对不同氮水平的响应规律,采用密闭静态箱法,研究了常规氮量(黄瓜季1 200 kg/hm2,番茄季900 kg/hm2)、比常规氮量减25%(黄瓜季900 kg/hm2,番茄季675 kg/hm2)、减50%(黄瓜季600 kg/hm2,番茄季450 kg/hm2)以及不施氮对日光温室土壤N2O排放的影响。结果表明,温度是影响日光温室土壤N2O排放强度的重要因素,4-10月(平均气温为27.4℃)的N2O排放通量最高达818.4μg/(m2·h);而2-3月(平均气温15.1℃)以及11-12月(平均气温14.7℃)期间的N2O排放通量最高仅为464.5μg/(m2·h),比4-10月的N2O排放峰值降低了43.2%。N2O排放峰值在氮肥追施后5 d内出现,N2O排放量集中在氮肥施用后7 d内,可占整个监测期(271 d)排放量的64.7%~67.8%。施氮因增加了土壤硝态氮含量而引起N2O排放爆发式增长,0~10 cm土壤硝态氮含量与N2O排放量呈指数函数关系(P0.01)。日光温室黄瓜—番茄种植体系内的N2O排放量为0.99~9.92 kg/hm2,其中75.6%~90.0%由施氮造成。与常规氮用量相比,氮减量25%和50%处理的N2O排放量分别降低了40.4%和59.3%,总产量却增加4.9%和7.4%。综上所述,合理减少氮用量不仅可显著降低日光温室土壤N2O排放,而且不会引起产量的降低。该研究为日光温室蔬菜生产构建科学合理的施氮技术及估算中国设施农田温室气体排放量提供参考。  相似文献   

15.
为探究石河子灌区、新湖总场灌区、莫索湾灌区之间土壤温室气体排放的差异性,通过长期的野外观测及样品采集,采用静态箱—气相色谱法,于2019年棉花出苗期、花铃期、吐絮期对玛纳斯河流域石河子灌区、新湖总场灌区、莫索湾灌区棉田土壤温室气体进行日观测,应用统计学方法,并结合土壤温度、含水量、pH、有机碳、铵态氮、硝态氮等因素分析。结果表明:(1)土壤CO2和N2O具有明显的季节变化和日变化,土壤CO2和N2O排放通量的峰值出现在花铃期,分别为527.160,1.713 mg/(m2·h)。同时,CO2排放通量日变化峰值出现在13:00,N2O排放通量日变化峰值出现在17:00,表现为单峰曲线。2种土壤温室气体在生育期内的排放通量在不同灌区之间有所差异,呈现出新湖总场灌区>莫索湾灌区>石河子灌区。(2)土壤CO2和N2O排放通量受温度影响更为显著,土壤CO2和N  相似文献   

16.
有机无机肥料配合施用对设施菜田土壤N2O排放的影响   总被引:11,自引:3,他引:8  
采用静态箱气相色谱法研究了有机无机肥料配合施用对设施菜田土壤N2O排放的影响。结果表明: 1)设施芹菜和番茄施基肥后57 d(灌溉后13 d)出现土壤N2O排放通量峰值,追肥后(施肥与灌溉同步)1 d出现土壤N2O排放通量峰值; 芹菜季和番茄季施用基肥后20 d内N2O排放量分别占当季总排放量的40%65%左右,是土壤N2O主要排放期。2)施用基肥后至定植灌水前各处理土壤N2O排放量逐渐降低,灌水后N2O排放通量迅速上升。各处理土壤N2O排放通量与土壤含水量之间呈显著相关,相关系数在0.43~0.72之间。3)土壤N2O排放主要发生在番茄季,番茄生育期各处理土壤N2O总排放量是芹菜生育期的3.1倍; 各处理土壤N2O排放通量与5 cm土层温度之间总体上呈显著相关,相关系数在0.40~0.58之间。4)设施菜田大幅减施化肥的有机无机肥配合施用模式可显著降低土壤N2O排放量和肥料损失率,芹菜季和番茄季土壤N2O排放量较习惯施肥处理分别降低66.3%和85.1%,肥料损失率分别降低45.2%和74.9%。5)等氮量投入时,施用秸秆较施用猪粪可有效降低土壤N2O排放,芹菜季和番茄季分别降低43.4%和74.2%。  相似文献   

17.
不同施肥量对设施菜地N2O排放通量的影响   总被引:10,自引:6,他引:4  
为明确北京地区设施菜地的N2O排放特征,寻求既能减少N2O排放又使蔬菜增产或保持原有产量的切实有效措施,该研究采用静态箱/气相色谱法对北京地区设施菜地的黄瓜进行了全生长季N2O排放通量的观测,并分析了不同施肥量对N2O排放量、蔬菜产量和经济效益的影响。结果如下:土壤N2O排放通量的季节变化有明显的时间变异性,试验初期受基肥的影响,N2O排放量较大,随着时间的推移,土壤N2O排放量有所减少并保持稳定;试验后期由于追肥,出现一次排放高峰,且持续时间较长。各处理土壤N2O排放总量的次序是:T4(常规施肥量+鸡粪)>T3(3/4常规施肥量+鸡粪)>T1(1/4常规施肥量+鸡粪)>T2(1/2常规施肥量+鸡粪)>Tn(鸡粪)>T0(无肥处理),各处理之间N2O排放量差异达到极显著水平。综合考虑施肥量、N2O排放量和黄瓜产量,研究认为T3(3/4常规施肥量+鸡粪)的施肥量比较合理,可以为合理施肥、降低农民生产成本以及估算中国农田温室气体排放量和编制温室气体排放清单提供 依据。  相似文献   

18.
为控制短期贮存畜禽粪便的温室气体排放,该文研究了塑料薄膜覆盖对肉牛粪便短期贮存过程中温室气体排放量的影响。试验采用静态箱-气相色谱法观测了秋季(日均22.87℃)肉牛粪便自然露天堆放(对照组)和塑料薄膜覆盖堆放(覆盖组)时温室气体的排放通量。结果表明:秋季覆盖塑料薄膜贮存粪便可使N2O和CO2的日均排放通量分别降低94.85%(P0.01)和88.85%(P0.01),并在试验前期(0~9 d)使CH4的日均排放通量降低了43.37%(P0.05),但随后的10~30 d,覆盖组粪便CH4的日均排放通量极显著高于对照组(P0.01)。结论:当环境温度在17.23~30.35℃时,覆盖塑料薄膜可以降低堆放贮存(0~30 d)粪便N2O和CO2的排放通量以及堆放初期(0~9 d)CH4的排放通量。因此,塑料薄膜覆盖贮存法可显著降低粪便堆放初期的温室气体排放。  相似文献   

19.
下辽河平原大豆田CO2和N2O排放通量及相关影响因素研究   总被引:1,自引:0,他引:1  
王重阳  郑靖  顾江新  史奕  陈欣 《土壤》2006,38(6):708-711
采用静态箱/气相色谱(GC)法测定了2004年及2005年大豆田CO2和N2O排放通量。结果表明:在2年的观测期内,大豆田的CO2和N2O排放均具有明显的季节变化规律。在2个生长季的观测中,CO2和N2O的排放通量分别呈现出相似的变化趋势。大豆田在休闲期内基本没有CO2排放,冻融期有少量的N2O排放。分析相关影响因素得知,土壤温度和土壤水分是影响大豆田释放CO2和N2O的重要因素。大豆植株对于N2O的排放具有不可忽视的作用。2年观测中常规处理的N2O通量总量分别是无作物处理的2.28倍和1.80倍。  相似文献   

20.
长期秸秆还田对设施菜田土壤反硝化特征和N2O排放的影响   总被引:2,自引:0,他引:2  
基于2004年2月-2010年9月温室菜田长期定位试验,通过室内培养和田间同步,利用静态箱法和硅胶管法分别检测土壤表层N2O通量和剖面N2O浓度的变化,以研究高碳氮比的小麦秸秆施用对设施菜田土壤反硝化过程及N2O排放的影响.结果表明,(1)与对照处理(CK)相比,添加秸秆处理(ST)显著提高0-20cm土层土壤反硝化量,促进N2O还原,增加N2产生量,显著降低追肥灌溉后表层土壤N2O的排放峰值和土壤底层50cm处N2O浓度峰值,但对20-80cm土层土壤的反硝化特征影响较少.(2)秸秆还田有利于降低设施菜田NO;淋洗风险,秸秆的深施是进一步降低菜田NO3-淋洗的有效途径,有利于土壤底层N2O的再次还原.因此,设施菜田中添加小麦秸秆并深施有利于降低N2O排放和减少NO3-的淋洗.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号