首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 65 毫秒
1.
优化施氮下稻-麦轮作体系土壤N2O排放研究   总被引:6,自引:1,他引:5  
采用了静态箱法研究优化施氮下湖北稻-麦轮作体系农田N2O排放特征。结果表明,农田N2O排放量随施氮量增加而增加。N2O排放通量峰值大约发生在施氮后的第3~7 d。小麦季土壤N2O排放量范围为N2O 2.43~4.84 kg/hm2,肥料氮通过N2O排放的损失率为0.54%~0.74%。水稻季土壤N2O排放量为N2O 0.89~2.45 kg/hm2,肥料氮通过N2O排放的损失率为0.39%~0.47%。小麦季和水稻季施氮后0~15 d N2O排放量占当季总排放量的百分比分别为62.79%~66.72%和87.97%~93.14%。与习惯施氮相比,基于作物阶段氮素吸收增加追肥比例和施氮次数的优化施氮能有效减少土壤N2O排放。  相似文献   

2.
优化施氮下稻-麦轮作体系土壤N_2O排放研究   总被引:2,自引:2,他引:0  
采用了静态箱法研究优化施氮下湖北稻-麦轮作体系农田N2O排放特征。结果表明,农田N2O排放量随施氮量增加而增加。N2O排放通量峰值大约发生在施氮后的第37~d。小麦季土壤N2O排放量范围为N2O 2.43~4.84kg/hm2,肥料氮通过N2O排放的损失率为0.54%0~.74%。水稻季土壤N2O排放量为N2O 0.892~.45 kg/hm2,肥料氮通过N2O排放的损失率为0.39%0~.47%。小麦季和水稻季施氮后01~5 d N2O排放量占当季总排放量的百分比分别为62.79%6~6.72%和87.97%9~3.14%。与习惯施氮相比,基于作物阶段氮素吸收增加追肥比例和施氮次数的优化施氮能有效减少土壤N2O排放。  相似文献   

3.
保护地土壤N2O排放通量特征研究   总被引:4,自引:1,他引:3  
为研究保护地土壤N2O排放通量特征,于2009年8~12月,在河北辛集不施氮(N0)、当地习惯施氮(N900)及减量施氮(N675)处理下的秋冬季番茄保护地土壤上使用静态箱采集、气相色谱仪检测的方法测定了土壤N2O排放通量。得到以下研究结果:灌溉施肥后,各处理N2O平均排放通量与表层土壤硝态氮含量呈极显著正相关关系。灌溉施肥后7 d内是施氮处理土壤N2O主要排放期,其排放量占当季总排放量的55.9%~59.8%;高峰值一般出现在第3~5 d,此时的土壤含水量对硝化、反硝化作用都较适宜。8~10月份由于温度较高,N2O排放通量明显高于较冷的11~12月。8~10月份施氮是影响保护地土壤N2O排放的主导因素,减少施氮量显著降低了N2O排放量;之后温度是主导因素,此时N2O排放量受追施氮量的影响较小。经估算,保护地秋冬季番茄不同施氮处理N2O总排放量的大小顺序为:N900(N 5.304 kg/hm2)N675(N 3.616 kg/hm2) N0(N 0.563 kg/hm2),差异显著,减量施氮比习惯施氮处理降低了31.8%的N2O排放量;N675和N900处理的N2O排放系数分别为0.45和0.53。  相似文献   

4.
有机无机肥料配合施用对设施菜田土壤N2O排放的影响   总被引:11,自引:3,他引:8  
采用静态箱气相色谱法研究了有机无机肥料配合施用对设施菜田土壤N2O排放的影响。结果表明: 1)设施芹菜和番茄施基肥后57 d(灌溉后13 d)出现土壤N2O排放通量峰值,追肥后(施肥与灌溉同步)1 d出现土壤N2O排放通量峰值; 芹菜季和番茄季施用基肥后20 d内N2O排放量分别占当季总排放量的40%65%左右,是土壤N2O主要排放期。2)施用基肥后至定植灌水前各处理土壤N2O排放量逐渐降低,灌水后N2O排放通量迅速上升。各处理土壤N2O排放通量与土壤含水量之间呈显著相关,相关系数在0.43~0.72之间。3)土壤N2O排放主要发生在番茄季,番茄生育期各处理土壤N2O总排放量是芹菜生育期的3.1倍; 各处理土壤N2O排放通量与5 cm土层温度之间总体上呈显著相关,相关系数在0.40~0.58之间。4)设施菜田大幅减施化肥的有机无机肥配合施用模式可显著降低土壤N2O排放量和肥料损失率,芹菜季和番茄季土壤N2O排放量较习惯施肥处理分别降低66.3%和85.1%,肥料损失率分别降低45.2%和74.9%。5)等氮量投入时,施用秸秆较施用猪粪可有效降低土壤N2O排放,芹菜季和番茄季分别降低43.4%和74.2%。  相似文献   

5.
综合产量和土壤N2O排放的马铃薯施氮量分析   总被引:4,自引:3,他引:1  
施氮可提高作物产量,但同时也增加温室气体N_2O的土壤排放量。研究施氮量与产量和土壤N_2O排放的关系,对保障作物产量并兼顾环境效应的农业生产实践具有重要指导意义。该研究设置N0(0)、N1(67.5 kg/hm~2)、N2(125 kg/hm~2)、N3(187.5 kg/hm~2)4个施氮水平,采用静态箱-气相色谱法对土壤N_2O排放进行田间原位测定,研究施氮量对马铃薯产量、土壤N_2O排放的影响,分析综合产量与土壤N_2O排放的合理施氮量。结果表明:施氮显著增加马铃薯产量和土壤N_2O累积排放量,较不施氮(N0)处理,N1、N2和N3处理马铃薯产量增加78.5%、93.1%和95.6%;生育期N1、N2和N3处理马铃薯土壤N_2O累积排放量分别是N0处理的2.3、4.4和6.7倍。同时,随施氮量增加,N_2O排放系数、硝态氮强度和单产N_2O排放量均显著增加。在低氮处理(N0、N1)时,土壤N_2O排放通量与土壤温度、湿度显著正相关,而在高氮水平时,土壤N_2O排放通量与土壤硝态氮含量显著正相关。施氮67.5 kg/hm~2可确保研究区马铃薯产量并有效降低土壤N_2O排放。  相似文献   

6.
【目的】控制N2O排放是提高氮肥利用和环境效益的一个重要任务。在滴灌条件下,研究以控释氮肥替代尿素基施减少设施土壤N2O排放的机制,并探讨减少氮肥投入的可能性。【方法】在大棚内布设小区试验,供试番茄品种为‘盛世辉煌’,氮肥40%基施,60%分3次随水滴灌追施。试验以不施氮肥为对照 (CK),设:常规化肥用量 (基施尿素,总N量440 kg/hm2,U);常规化肥用量减氮20% (基施尿素,总N量376 kg/hm2,–20%U);控释氮肥常规用量 (基施控释氮肥,总N量440 kg/hm2,CRU);控释氮肥常规用量减氮20% (基施控释氮肥,总N量376 kg/hm2,–20%CRU) 4个处理。施底肥后15天内每天取气体样1次;追肥后每2天取气体样1次,连续取样3次;其余时间间隔5~7天取气体样1次。静态箱–色谱法测定土壤N2O排放通量;在定植后40、80和120天取土样测定土壤理化性质;用实时荧光定量PCR检测相关功能基因数量变化;收获后测产。【结果】控释氮肥与水溶肥配施导致基肥N2O排放峰值出现时间从第8~13天延迟到第28~32天,并且显著降低了其N2O排放峰值,所有处理追水溶肥后均在3~5天出现N2O排放峰值,而控释氮肥与水溶肥配施降低了此阶段N2O排放峰值。相同氮肥施用量条件下,控释氮肥与水溶肥配施显著降低了基肥期土壤N2O排放通量和累积排放量,降低了追肥期土壤N2O排放通量和累积排放量,显著降低了番茄生长季土壤NH4+-N和NO3?-N含量与微生物功能基因AOA amoA、AOB amoA和nirK数量,降低了nirS数量。与U处理相比,CRU处理增加番茄产量和经济效益,生长季土壤N2O累积排放量减少了24.8%,差异显著,同时显著降低了N2O排放强度;与–20%U处理相比,–20%CRU处理增加番茄产量和经济效益,N2O累积排放量减少了22.1%,亦显著降低了N2O排放强度 (P < 0.05)。【结论】在常规用氮量和减氮20%用量下,以缓释氮肥代替尿素基施,不仅可显著增加番茄的产量和效益,还显著推迟了番茄生长初期N2O释放高峰的出现,减少了整个生育期N2O的排放强度和累积排放量。其主要原因在于缓释氮肥有效控制了土壤中NH4+-N和NO3?-N含量的变化,进而减少了与硝化和反硝化相关的微生物数量。在使用缓释肥做基肥时,适当减少氮肥投入不会降低番茄的产量。  相似文献   

7.
适宜施氮量降低京郊小麦-玉米农田N2O排放系数增加产量   总被引:5,自引:3,他引:2  
为明确京郊地区小麦-玉米轮作农田的N_2O排放特征,寻求既能减少N_2O排放又保证粮食产量的切实有效措施,以京郊地区冬小麦-夏玉米轮作农田为研究对象,运用静态箱法对8个施氮水平的农田N_2O交换通量进行了连续一年对比研究,每季作物施肥量分别为N0(0 kg/hm~2),N1(50 kg/hm~2),N2(100 kg/hm~2),N3(150 kg/hm~2),N4(200 kg/hm~2),N5(250 kg/hm~2),N6(300 kg/hm~2),和N7(400 kg/hm~2)。在N0-N7施氮量条件下冬小麦季N_2O排放量为0.08~0.52 kg/hm~2;夏玉米季0.26~3.70 kg/hm~2。整个轮作周期,小麦季各处理N_2O排放损失率为0.05%~0.13%;玉米季0.78%~1.02%。在京郊地区冬小麦-夏玉米轮作体系中夏玉米季氮肥施入农田土壤后,土壤N_2O排放通量高于小麦季。京郊农田土壤N_2O排放通量表现出明显的季节性和日变化规律。综合考虑本试验条件下施肥量、N_2O排放量和京郊地区潮土农田小麦-玉米产量,研究认为该轮作体系中每季作物的施肥量为N4(200 kg/hm~2)比较合理,可为合理施肥及估算中国农田温室气体排放量提供参考。  相似文献   

8.
不同施氮量对冬小麦田氮去向和气态损失的影响   总被引:10,自引:1,他引:9  
该文研究氮肥对冬小麦田肥料氮素去向和气态损失的影响。通过布置田间微区试验,采用15N微区示踪技术和密闭室间歇通气法、密闭式静态箱法田间原位监测冬小麦氮肥的去向和气态损失。随着施氮量的增加,冬小麦产量和地上部吸氮量增加,但当施氮量高于150 kg/hm2时,产量出现降低的趋势,地上部吸氮比例也以土壤氮为主转变为肥料氮为主。4个施氮处理N75、N150、N225和N300的0-100 cm的土壤氮残留分别为32.6,26.8,34.7,40.6 kg/hm2。冬小麦田间土壤氨挥发排放总量随着施氮量的增加而增加,排放量在6.03~13.26kg/hm2之间,占施N量的5.4%~11.4%。N2O排放造成的氮素损失比例为0.08%~0.28%,苗期是冬小麦季N2O排放的主要时期。化肥氮在冬小麦当季作物吸收、土壤残留及损失量分别为37.2%~50.2%,26.7%~40.6%,17.4%~22.2%,且随着施氮量的增加而升高。在本试验条件下,150 kg/hm2是适宜的氮肥用量,产量最高,土壤氮残留最低,气态损失占肥料氮总损失的比例高于75 kg/hm2处理,但差异不显著(p0.05)。因此控制氮肥用量是提高氮肥利用率的一项关键措施。  相似文献   

9.
在河北省高邑县后哨营黄瓜集约化种植区采用小区试验方法,在菜农基施玉米秸秆30 t/hm2(N、P2O5和K2O携入量分别为208.4、62.8和361.6 kg/hm2)基础上,研究不同化肥氮用量对日光温室冬春茬黄瓜产量、抗病性及根层0~40 cm土壤硝态氮含量的影响。结果表明,30 t/hm2玉米秸秆配施450 kg/hm2化肥N模式的黄瓜产量、经济效益、化肥氮农学利用率达最高,分别为169.74 t/hm2、33.05万元/hm2、39.2 kg/kg;较农民习惯施肥节N 61.4%、节P2O532.2%和节K2O 33.9%,增产34.9%、增收40.8%;本试验条件下,基施秸秆30 t/hm2的基础上,配施化肥N的适宜用量为370~450 kg/hm2;采收期适宜黄瓜产量建成的根层(0~40 cm)土壤硝态氮需求农学阈值为N 105.9 kg/hm2。农民习惯施肥量严重超出黄瓜养分需求量,土壤NPK比例失调,黄瓜抗病能力下降,习惯施肥区较化肥N用量450~750 kg/hm2各处理黄瓜采收期病+死株率增加了39.7~49.2个百分点,而且根层土壤硝态氮出现显著积累并存在淋失风险。  相似文献   

10.
农民传统过量肥水供应可能导致土壤氮素和盐分积累,滴灌施肥能在根区精确供应肥水以满足作物需求。为明确膜下滴灌日光温室黄瓜-番茄轮作体系氮素供应对土壤氮残留、电导率及作物产量和根干质量的影响,该研究设计空白(NN)、有机肥对照(MN)、优化供氮(RN)、高量供氮(HN)、传统供氮(CN)5个处理,进行了2008-2010年6季田间试验。结果表明,随着氮素供应量的增加,根层土壤硝态氮和电导率显著增加,CN处理加快并加剧了土壤硝态氮和盐分积累。3个黄瓜-番茄轮作周期,氮素供应RN、HN、CN处理的土壤硝态氮平均分别为176.9、346.6、500.8 kg/hm2,CN处理是RN处理的2.83倍(P0.05)。3a黄瓜季RN、HN、CN处理的土壤硝态氮积累量平均分别为-1.87、-49.61、-3.52 kg/hm2、番茄季分别为74.89、225.23、343.15 kg/hm2,CN处理积累量是RN处理的4.58倍(P0.05)。3个轮作周期后,RN、HN、CN处理比试验前的土壤硝态氮残留增加了219.1、526.9、1 018.9 kg/hm2,平均每个轮作周期增加73.0、175.6、339.6 kg/hm2,CN处理是RN处理的4.65倍(P0.05)。3个轮作季后,NN、MN、RN、HN、CN处理土壤电导率分别为433.8、681.5、824.5、927.5、1 120.0μS/cm,RN、HN、CN处理显著高于MN、NN处理(P0.05)。2008年番茄季、2009黄瓜季、2009番茄季、2010番茄季拉秧后的土壤电导率差异显著,CN处理是RN处理的1.15、1.29、1.40、1.36倍(P0.05),表明RN处理可显著降低土壤次生盐渍化的风险。每个轮作周期的土壤硝态氮、电导率动态变化均存在2个积累时期,分别在7月初-8月初的夏季休闲和9月初-11月中旬的番茄结果期。总之,优化供氮比传统供氮减施氮肥66.7%,显著降低土壤硝态氮残留和土壤电导率,保证黄瓜番茄产量不减,将为日光温室黄瓜番茄轮作体系滴灌施肥制度提供科学依据。  相似文献   

11.
该研究以江西稻田为研究对象,设置了不施氮对照(N0)、减氮40%(N1)、常规施氮(N2)、增氮50%(N3)等4个处理,采用静态箱-气相色谱法研究了稻田温室气体(N_2O、CH4、CO_2)的排放通量和速率,并计算了温室气体排放强度及全球增温潜势。结果表明:在晚稻栽培过程中,N_2O和CO_2的排放通量均出现3次峰值,且都表现为增施氮肥处理高于其他处理,而CH4排放通量仅出现一次峰值;N0、N1、N2的N_2O和CO_2的总排放量无显著差异(P0.05),但N3处理下的N_2O和CO_2的排放量显著高于其他处理(P0.05);与对照比,N1、N2和N3的CH4总排放量分别提高了58.70%、69.63%、96.15%,净增温潜势分别增加了22.34%、25.34%、52.92%;N3的温室气体排放强度最高,达1.12kg/kg,显著高于N1和N2。  相似文献   

12.
基于氮收支平衡的河套灌区春小麦农田灌溉和施氮策略   总被引:4,自引:4,他引:0  
针对中国黄河中上游河套灌区不合理灌溉和施肥造成的土壤氮素流失严重及氮收支不平衡等问题,该研究于2019-2021年开展田间试验,探讨不同灌溉和施肥策略对土壤氮损失、作物氮吸收及氮收支的影响。试验设置了3个灌溉水平(高水I1:450 mm,中水I2:315 mm,低水I3:180 mm)和2个施氮水平(高氮N1:340 kg/hm2,低氮N3:170 kg/hm2),此外,2020和2021年在中等灌溉水平I2下补充了中等施氮水平(250 kg/hm2,N2),对不同处理的土壤氮损失、作物氮吸收及氮收支等指标进行了对比分析。结果表明,肥料氮是农田氮输入的主要来源,其次是灌溉水、大气沉降和非豆科作物固定。作物吸氮占土壤氮输出的比例最大,其次是NO3--N淋失、NH3挥发和N2O排放。对于氮输入而言,其值随着灌水量和施氮量的减少而降低。对于土壤氮输出而言,减少灌水量和施氮量可显著降低土壤总氮损失量,但过低的灌水量和施氮量将导致小麦吸氮量的降低。传统的N1施氮处理可导致土壤氮素盈余,而施氮量降低50%的N3处理则导致土壤氮素大量亏缺。对照处理(I1N1)的土壤氮损失量最高,该处理氮损失占土壤氮输出的比例高达23%~41%,其中NO3--N淋失和NH3挥发占总氮损失的95%以上。与对照处理相比,I2N2处理可减少21%~29%的氮损失,且作物吸氮几乎未受到影响。同时,该处理土壤氮素处于轻度亏缺状态,其亏缺量为28~50 kg/hm2,占总施氮量的11%~20%。若在收获后将4~8 t/hm2的小麦秸秆还田,则可保持麦田土壤的氮收支平衡。因此,通过改善灌溉和施肥策略并配合适当的秸秆还田可以有效缓解河套灌区春小麦农田的氮损失且实现土壤氮平衡,该研究可为干旱半干旱地区春小麦农田可持续生产和氮污染物减排提供科学依据。  相似文献   

13.
A study has been made on the solubility of humus in various salt solutions in different soil types. The locality, humus content, exchangeable ealcium content, and base exchange values of soils used are shown in Table 1.  相似文献   

14.
日光温室蔬菜的氮素平衡及施肥调控潜力分析   总被引:8,自引:4,他引:4  
以寿光日光温室番茄为研究对象,通过2年4个生长季的试验,分析整个生产体系中氮素的平衡及0―180 cm土层硝态氮动态,并对氮素优化管理条件下日光温室番茄的生产力、氮素盈余与损失特征进行了研究。结果表明,与传统施氮管理相比,综合利用灌溉水带入氮素和根层土壤无机氮的优化氮素管理技术能够保证番茄产量,同时减少73%的氮肥施用,但节肥主要集中在春茬作物生长后期及秋茬作物生长前期。自休闲至番茄第一次追肥前土壤硝态氮的大量积累与频繁灌溉导致了整个生产体系氮素大量损失,建议通过种植填闲作物或者施用高C/N比作物秸秆等可能的方法来控制土壤氮素转化,减少该时期的氮素损失。  相似文献   

15.
杨凌地区大棚土壤硝态氮累积效应研究   总被引:7,自引:0,他引:7  
通过调查不同棚龄大棚土壤硝态氮含量的变化,研究了杨凌大棚蔬菜生产中的土壤硝态氮累积特性,结果显示:大棚蔬菜土壤硝态氮含量显著高于露天菜地和拱棚土壤,反映出过高的氮肥投入,各棚龄土壤均表现出明显的硝态氮表土累积。随着棚龄的增加土壤硝态氮及总盐含量呈增加趋势,土壤pH值则表现为逐渐下降,不合理的施肥将导致短龄大棚土壤硝态氮及总盐含量急剧上升而超过长龄大棚土壤;在番茄生长周期内随生育期延长硝态氮在土壤中累积量逐渐增大,但总盐含量变化并不明显。硝态氮在土壤中的迁移,导致土壤底层硝态氮也大量累积。  相似文献   

16.
氮素对温室番茄果实发育及其氮吸收量的影响   总被引:4,自引:1,他引:3  
李海平  郭荣  李灵芝  曹阳 《核农学报》2010,24(2):365-369
为了探索华北地区连栋温室栽培条件下番茄水培适宜的氮素管理方法,试验设4个处理:N5(扭送素浓度5mmol/L)、N10、N15和N30。其他营养元素的浓度是根据华南农业大学番茄营养液配方配制。比较不同处理间番茄每克鲜果实形成干物质的量、果实鲜重与其直径的关系、植株积累的生物量、产量和氮吸收量等。试验结果表明,在一定范围内,随营养液中氮素浓度越大,果实中每克鲜物质形成的干物质越多。处理N5、N10和N15中,每克鲜果实形成的干物质量分别是0.0733g、0.0804g和0.1316g。继续增加营养液中氮素浓度,每克鲜果实形成的干物质量却降低了,处理N30仅为0.0913g。其他几个指标显示相同的趋势。4个处理中植株的总干重依次为189.1、293.9、734.1和488.2g/m2。产量依次为3.68、6.55、15.50和11.01kg/m2。果实每克干物质的氮吸收量分别是0.0231g、0.0237g、0.0242g和0.0235g。果实鲜重与其直径成幂指数关系,氮素浓度对果实鲜重与其直径的关系影响不大。因此,番茄水培适宜的氮素浓度为15mmol/L。  相似文献   

17.
18.
研究并总结香港温室气体排放特征和气候行动的有益经验,可为全国其他地区的减排行动提供科学依据。利用脱钩指数和LMDI因素分解模型分析了1992—2015年香港温室气体排放变化特征、结构特征和主要影响因素。结果表明:(1)研究期内香港温室气体排放和能源消费已初步实现达峰,峰值均出现在2014年;2015年碳强度比2005年降低了40.82%,已实现2030年目标;(2)香港碳排放与经济发展为非常理想的强脱钩状态;(3)能源消费碳排放对香港碳排放总量起的是减排作用,非能源消费碳排放起的是增排作用;能源强度、能源消费碳排放系数和碳强度这3个驱动因素的累积影响对香港起了积极的减排作用,能源强度因素贡献最大;人均GDP、人口、能源结构和碳排放结构因素的累积影响对香港一直起增排作用,人均GDP和人口因素的累积增排贡献最大,高耗能的发电行业能源消费比例和碳排放比例居高不下是能源结构和碳排放结构因素起增排作用的重要原因。清洁发电、节约用电是未来香港气候行动的工作重点。  相似文献   

19.
通过设施菜地小区试验,研究有机氮与无机氮不同比例配合施用对土壤次生盐渍化的改良效果以及对番茄产量、品质的影响。结果表明:有机氮与无机氮配合施用可以明显降低土壤中全盐含量与电导率,显著降低了土壤中硝态氮的过量积累,尤其有机氮与无机氮比例为2∶1时,效果最好;同时有机氮与无机氮配合施用,达到改善土壤有机质平衡及调控的作用,有机质从16. 8 g/kg增加到21. 7 g/kg;有机氮、无机氮2∶1配施可以明显降低番茄中硝酸盐的含量,显著提高番茄中可溶性总糖和还原型Vc的含量,达到提高番茄产量和提升果实品质的效果。从改良设施土壤次生盐渍化和优质施肥管理两方面综合考虑,建议设施大棚采用有机氮与无机氮配合施用,土壤全盐含量3. 54 g/kg条件下以有机氮与无机氮2∶1配施有机肥与化肥效果最佳。  相似文献   

20.
水氮调控对设施土壤有机氮组分、全氮和矿质氮的影响   总被引:2,自引:0,他引:2  
为探讨水氮调控对设施土壤有机氮组分、全氮和矿质氮的影响,通过膜下滴灌设施番茄田间定位试验,采用灌水下限(W_1、W_2、W_3)和施氮量(N_1、N_2、N_3)的两因素三水平随机区组设计,研究水氮调控对休耕期0—30cm土层土壤有机氮组分、全氮和矿质氮的影响。结果表明,不同水氮调控下,设施土壤有机氮主要是以酸解态氮为主,总体表现酸解态氮大于非酸解态氮含量。土壤有机氮组分在酸解态氮和非酸解态氮中分配比例差异明显。土壤有机氮各组分含量及占全氮比例的大小顺序为氨基酸氮/氨态氮未知氮氨基糖氮。除氨基糖氮,其余酸解态氮各组分和酸解总氮含量及其占全氮比例均随着土层深度的增加而降低,不同土层含量差异显著(P0.05)。土壤全氮、矿质氮和总有机氮含量随土层深度的增加也呈降低趋势,且含量差异达到极显著水平(P0.01)。除氨基糖氮,全氮与其他有机氮各组分、酸解总氮间均达到极显著正相关(P0.01);矿质氮仅与酸解氨态氮及酸解总氮的影响达到极显著(P0.01)和显著正相关(P0.05)。灌水下限、施氮量及水氮交互对设施土壤全氮、矿质氮和总有机氮及有机氮组分影响均达到极显著水平(P0.01)。因此,设施土壤氮素含量的变化与水氮管理模式紧密相关。氨态氮和氨基酸氮是设施土壤中最主要的有机氮形态,是土壤活性氮中的主要组分,亦是土壤供氮潜力的表征。考虑土壤供氮潜力,灌水下限35kPa、施氮量300kg/hm~2为该设施生产下最优的水氮管理措施。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号