首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 194 毫秒
1.
小麦抗纹枯病和赤霉病QTL定位研究   总被引:6,自引:0,他引:6       下载免费PDF全文
为给小麦抗病育种中分子标记的辅助选择提供依据,利用苏麦3号/白免3号重组自交系群体,对小麦赤霉病、纹枯病抗性QTL进行分子定位,证实了苏麦3号3BS染色体上的主效QTL,获得了连锁更紧密的分子标记;在6B、2B、6A、5A、3B染色体上分别检测到抗纹枯病QTL,可分别解释纹枯病抗性表型变异的9%~13%.相关分子标记可进一步用于标记辅助选择育种.  相似文献   

2.
为给小麦穗部性状标记辅助选择提供可供选择的分子标记,并进一步对小麦穗部相关性状QTL进行精细定位及相关基因克隆,利用普通小麦Heyne×Lakin杂交F2代单粒传获得的145个F6代重组自交系(recombinant inbred line,RIL)群体,构建了含有2 210个标记(2 068个SNP标记和142个SSR标记)的总长度为2 139.35cM的遗传连锁图谱,并利用该图谱对小麦穗部性状(穗长、小穗数、穗密度)进行了QTL分析。结果表明,共检测出16个加性QTL,其中,与穗长相关的QTL有6个,分布在2A、2D、3B、4D、5A和7D染色体上,可解释表型变异7.58%~15.94%;与小穗数相关的QTL有4个,分布在1A、4A和7D染色体上,可解释表型变异7.28%~14.78%;与穗密度相关的QTL有6个,位于4D、5A和6B染色体上,可解释表型变异5.60%~20.06%。  相似文献   

3.
为了发掘影响小麦旗叶相关性状的QTL,以小麦骨干亲本周8425B与优良品种小偃81构建的包含102个家系的重组自交系(Recombinant inbred line,RIL)为材料,采用小麦90KSNP基因芯片技术和SSR标记对其进行分子标记检测,构建含有全基因组SNP和SSR标记的高密度遗传图谱,并在4个环境下对小麦旗叶相关性状QTL进行检测。结果表明,所构建图谱含有6 949对多态性标记,其中,SNP标记6 910对,SSR标记39对,覆盖染色体总长度4 839.9cM,标记间平均距离0.7cM;A、B和D染色体组分别有2 085、4 677和187对标记,分别占总标记数的30.0%、67.5%和2.7%,标记间平均距离分别为1.0、0.6和0.8cM。采用完备复合区间作图法共检测到22个旗叶性状加性效应QTL,10个旗叶长QTL分布于2A、3B、4B、5A、6B和7B染色体上,解释表型变异7.900%~24.098%,除Qfll2A-1能在2个环境中检测到外,其余均为单环境QTL;4个旗叶宽QTL分布于2A、3A和5B染色体上,解释表型变异9.080%~16.540%,其中,Qflw2A-1在3个环境中均能检测到,解释表型变异12.483%~16.540%,为1个稳定的主效QTL;8个旗叶面积QTL分布于2A、3B、4B、5A、6B和7A染色体上,解释表型变异9.310%~30.498%,其中,3个QTL位于5A染色体上。此外,鉴定出3个分布于2A、5A和6B染色体上的QTL富集区段。  相似文献   

4.
基于SRAP和SSR标记的小麦品质相关性状的QTL定位   总被引:2,自引:0,他引:2  
为了对小麦品质相关性状进行QTL定位,以两个品质性状差异较大的小麦品种西农981和陕麦159构建的169株F2群体和F2:3家系为材料,利用SRAP标记和SSR标记进行遗传图谱构建,并通过完备区间作图法对杨凌及三原两个环境下籽粒的粗蛋白质含量、淀粉含量、湿面筋含量和Zeleny沉降值进行QTL定位。结果表明,在两个环境下共检测到33个与品质性状相关的QTL,其中11个为粗蛋白含量QTL,分布于1A、3A、5A、6A、2B和4B染色体上,可解释表型效应的0.69%~2.48%;7个为淀粉含量QTL,分布于1A、6A、4B和2D染色体上,可解释表型变异的2.94%~6.99%;12个为湿面筋含量QTL,分布于1A、3A、5A、6A、2B、3B和4B染色体上,可解释表型变异的0.58%~2.37%;3个为Zeleny沉降值QTL,分布于3A、1B和3B染色体上,可解释表型变异的2.72%~11.31%。同时,在1A、3A、5A、6A、2B、4B染色体上存在粗蛋白质含量、淀粉含量和湿面筋含量QTL富集区,在后续研究中可重点关注。  相似文献   

5.
赤霉病是最严重的大麦病害之一。由于赤霉病抗性是受多基因控制的数量性状(QTL),并且一些表型性状也影响大麦赤霉病的抗病,如棱数、株高和抽穗期等,所以抗赤霉病大麦品种的选育十分困难。为了明确加拿大六棱大麦中赤霉病抗性以及相关性状的QTLs,本研究在4年中对93个家系的DH作图群体中赤霉病抗性、呕吐毒素(DON)含量、株高、抽穗期和成熟期等相关性状进行调查,并利用分子标记(444个DArT和26个SSR标记)构建的连锁图谱对QTL开展复合区间作图。结果表明,本研究共检测到4个影响赤霉病的QTLs,其中,2个主要的QTLs定位在3H和7H染色体上,它们的加性效应为-3.44和-3.69,分别解释14.1%和17.5%的表型差异,总共解释31.6%的赤霉病抗性差异;另外2个QTLs定位于7H染色体上,但二者同时也与DON含量显著相关。此外,在3H、5H和7H染色体上确定了5个影响株高的QTLs,在2H、4H、5H和7H上确定了4个影响抽穗期的QTLs。同时发现2个赤霉病抗性QTLs和1个DON累积QTL与控制株高的QTLs聚集重叠,1个赤霉病抗性QTL和抽穗期QTLs重叠。这些与赤霉病抗性、株高及抽穗期等农艺性状紧密连锁的分子标记可进一步用于有效提高抗赤霉病大麦品种的选育效率。  相似文献   

6.
为了明确小麦籽粒性状的遗传控制基础,以γ射线诱变结合花药培养创制的大粒、高蛋白小麦新种质H307及生产上主栽品种郑麦9023创建的含有310个株系的重组自交系为实验材料,利用QTL-ICIMapping V3.3软件构建了包含133对SSR标记的遗传连锁图谱,对千粒重、粒长、粒宽、籽粒面积、周长、粗蛋白和淀粉含量进行QTL分析,结果在两年环境条件下共检测到47个加性QTL和10个QTL富集区,其中6个千粒重QTL,分别位于1D、2B、3D、6D和7A染色体上,单个QTL可解释4.54%~13.14%的表型变异;31个粒形QTL,位于1B、1D、2B、3B、3D、5A、5D、6B、6D、7A和7D染色体上,单个QTL可解释2.90%~15.86%的表型变异;10个粗蛋白和淀粉含量QTL,分别位于1A、1B、4B和6A染色体上,单个QTL可解释3.64%~12.19%的表型变异。2B染色体上检测到1个贡献率较大且能稳定表达的重要染色体区段,该区段包含控制小麦千粒重、粒长、粒宽、籽粒面积和周长的10个QTL。1BL染色体上检测到1个控制籽粒粗蛋白含量的微效QTL,对表型的贡献率为3.64%,与连锁分子标记gwm818的遗传距离为0.22cM,该位点是一个不同于前人研究结果的新位点。  相似文献   

7.
小麦籽粒特性与籽粒产量和品质密切相关。本研究以波兰小麦(Tiriticum polonicum L.)×普通小麦(Triticum aestivum L.)品系"中13"杂交组合衍生的99个F8重组自交系(Recombinant inbred lines,RIL)群体为材料,利用SSR分子标记构建连锁遗传图谱。根据两年实验数据,利用复合区间作图法对粒重、粒长和粒宽3个籽粒特性相关性状进行了QTL定位分析,共检测到12个与籽粒特性相关的加性QTL位点。其中,3个粒重QTL,1个位于1A染色体上,另外2个都在2A染色体上,单个QTL可解释表型变异的13.35%~20.04%;5个粒长QTL,其中2个位于2A染色体上,其余3个分别位于3A、5A和2B染色体上,单个QTL可解释表型变异的8.53%~21.03%;4个粒宽QTL,分别位于1A、2A、3B和5B染色体上,单个QTL可解释表型变异的9.76%~40.79%。在2A染色体上共检测到5个籽粒特性相关性状的QTL,表明2A染色体与籽粒特性关系密切。  相似文献   

8.
为了发掘更多控制小麦旗叶大小及穗部相关性状的QTL,以兰考906和小偃81创制的133个F6~F7重组自交系为试验材料,在6个环境下利用SSR标记对旗叶大小及穗部相关性状进行QTL定位。结果表明,有202对SSR标记被用于构建遗传连锁图谱,图谱覆盖小麦21条染色体,全长1 678.93cM,标记间平均距离8.30cM。采用完备区间作图法共检测到30个QTL,分布在1B、2A、3D、4A、4B、4D、5D、6A、6B、6D和7D染色体上。其中,旗叶宽QTL有7个,穗长QTL有9个,小穗数QTL有5个,穗粒数QTL有5个,小穗着生密度QTL有4个,不同环境下单个QTL可解释的表型变异率为4.94%~23.14%,有14个QTL的表型贡献率大于10%,有8个QTL可在2个或2个以上环境中被检测到。其中,Qflw-4A在3个环境中被检测到,贡献率为10.13%~20.77%,是控制旗叶宽的稳定主效QTL;Qsl-4D.2在4个环境中被检测到,贡献率为12.58%~23.14%,是控制穗长的稳定主效QTL;Qker-5D在2个环境中被检测到,贡献率为11.44%~14.32%,是控制穗粒数的稳定主效QTL。这3个稳定主效QTL可作为改良叶宽和增加穗粒数的功能QTL作进一步研究。  相似文献   

9.
小麦产量性状的QTL分析   总被引:14,自引:2,他引:14  
为寻找更多与小麦产量性状相关的数量性状位点(QTL),利用江苏地方品种望水白与墨西哥小麦品种Alondra杂交构建的重组自交系群体(104个家系),在3个试验环境下进行了单株有效穗数、主穗粒数、单穗粒数和千粒重4个性状的QTL分析,结果在5A染色体上检测到与单株有效穗数相关、可以解释10.3%~18.8%表型变异的QTL1个;检测到与主穗粒数相关的QTL8个,分别位于染色体1B、1D、3B、4A、5D、6B上和连锁群4上(未知具体染色体归属),单个QTL可以解释9.9%~19.9%的表型变异;检测到与单穗粒数相关的QTL11个,分别位于染色体1B、1D、2A、2B、3B、4A、5D、6B和7A上,单个QTL可解释7.5%~43.4%的表型变异;检测到与千粒重相关的QTL5个,分别位于2A、2B、3B、4D和7A染色体上,单个QTL可解释9.6%~25.7%的表型变异。获得的QTL可以用于分子标记辅助育种。  相似文献   

10.
为分析大麦黄花叶病抗性基因的位置和效应,以高抗大麦品种扬农啤5号和感病大麦品种日引3号构建的253个RIL群体及亲本为材料,利用在双亲间具有多态性的108对SSR分子标记构建遗传群体连锁图谱,结合大麦黄花叶病抗性表型数据,采用QTL IciMapping 4.0软件进行大麦黄花叶病抗性QTL分析。结果表明,在大麦染色体1H、2H、5H和7H共检测到6个与大麦黄花叶病抗性相关的QTL,这6个QTL对大麦黄花叶病抗性的贡献率为4.39%~14.92%。其中,位于2H染色体的QTL qRYM-2Hb在3年9个时期均能检测到,介于标记区间GBM1309~EBmac0415,可解释5.70%~14.92%的表型变异,与已定位的 Rym16~(Hb)的位置相近,可能是 Rym16~(Hb)的等位基因;位于2H染色体的QTL qRYM-2Ha在2年3个时期均能检测到,介于标记区间EBmac0640~Bmag0744,可解释5.00%~10.88%的表型变异,可能是1个新的抗性位点;其他4个抗性QTL均仅在1年1个时期检测到,是否真实存在尚需进一步验证。同时,所有QTL的加性效应均为负值,表明定位的6个大麦黄花叶病抗性基因均来自母本扬农啤5号。  相似文献   

11.
为了发掘新的穗部性状和株高QTL,利用扬麦17与扬麦18杂交后代206个单株组成的F2群体,构建了一个由141个SSR标记组成的全长1005.1cM的遗传图谱。该图谱包括26个连锁群,覆盖15条染色体,标记间平均距离为7.03cM。结合F2和F2:3群体的表型数据,对穗部性状和株高进行QTL分析,利用复合区间作图法检测出15个QTL,分布在2B、2D、4B、5A、5B和7A染色体上,其中4个QTL能够同时在两个世代被检测到,表型变异解释率为1.93%~20.78%,穗长QTLQSl-YY-2D、QSl-YY-5A和株高QTLQPh-YY-4B的贡献率超过10%。根据6VS特异性标记鉴定和表型调查结果,推测扬麦18的6VS上携带有增加穗长和穗粒数的基因,且为部分显性。2B染色体上总小穗数和5B染色体上穗粒数、穗基部结实粒数的QTL增效等位基因及2D、4B染色体上降低株高的QTL增效等位基因均来自扬麦18,表明该品种可作为具有高产潜力的小麦育种材料加以利用。  相似文献   

12.
小麦穗部性状特别是穗顶部、基部结实性对穗粒数的建成及产量具有重要影响。为给QTL精细定位、基因克隆及穗部性状分子标记的开发和辅助选择奠定基础,本研究以扬麦17与宁麦18杂交获得的310个F2群体及其衍生的F2:3家系为材料,构建了一个由215个SSR标记组成的全长为1 717 cM的遗传连锁图谱,共覆盖19条染色体(1D和6A未涉及),标记间平均距离为7.99 cM,并对6个穗部性状进行QTL定位。利用复合区间作图法共检测出22个QTL,分布在1A、1B、2B、2D、3B、3D、4B、5A、5B和7A染色体上。其中,穗顶部结实粒数QTL有7个,穗基部结实粒数QTL有2个,穗长QTL有5个,总小穗数QTL有3个,不育小穗数QTL有2个,穗粒数QTL有3个,表型贡献率为2.56%~13.66%。控制穗顶部和基部结实粒数QTL的增效基因来源于宁麦18,表明该品种可作为具有高产潜力的小麦育种材料加以利用。  相似文献   

13.
为明确抗填料霉病地方小麦品种贵协3号的赤霉病抗性遗传基础,利用感赤霉病品种绵麦96-5及其构建的含有196个株系的双单倍体(doubled haploid,DH)群体为材料,于2018和2019年分别在江苏南京和四川绵阳对赤霉病严重度进行调查,并利用55K DArT基因芯片技术构建的遗传图谱进行QTL定位。结果表明,所构建的遗传图谱覆盖小麦全基因组,图谱全长15 195.8 cM,平均图距10.6 cM。利用复合区间作图法共检测到3个抗赤霉病QTL(QTL-FHB.GX-2BQTL-FHB.GX-5BQTL-FHB.GX-7A),分布在2B、5B和7A染色体上,抗性等位基因均来自于抗病亲本贵协3号,可解释1.2%~1.5%的表型变异,说明贵协3号的赤霉病抗性是多个微效基因/QTLs的累加效应。  相似文献   

14.
小麦抽穗期QTL及其与环境的互作   总被引:3,自引:0,他引:3  
为筛选稳定表达的小麦抽穗期QTL用于辅助选择,以旱选10号×鲁麦14的DH群体为试材,在四种环境下对抽穗期进行QTL。结果表明,该DH群体抽穗期呈连续性分布,表现为多基因控制的数量性状。四种环境下共检测到6个抽穗期加性QTLs,分别位于1B、1D、4D、6B、7B、7D染色体上,LOD值为3.13~10.88,贡献率在1.57%~6.72%之间,其中QHd-1D-1和QHd-7B与环境具有互作效应。共检测到10对上位性QTL位点,互作效应值为-0.39~0.423,表型贡献率在1.39%~4.86%之间,其中4对上位性位点与环境具有互作效应。  相似文献   

15.
为给黄淮麦区小麦抗赤霉病育种提供新的抗性资源,以偃展1号/内乡188小麦重组自交系群体为材料,在田间充分发病的情况下,进行连续两年小麦赤霉病抗性鉴定,并通过复合区间作图,分析群体小麦赤霉病抗性的加性QTL、上位性互作及与环境的互作效应。结果表明,两年间亲本偃展1号、内乡188赤霉病抗性差异显著,群体间赤霉病病情指数变幅分别为0.16~0.70和0.26~0.90。对两年赤霉病抗性鉴定结果进行联合分析,检测到5个加性抗性QTL,1对上位性互作QTL,分别解释表型变异的32.39%和3.05%,环境互作很小(1.88%)。在5个加性QTL中,QFHB.caas-5D和QFHB.caas-4D对变异的解释率较大。群体199个家系中,共筛选到19个赤霉病抗性较好且稳定的家系。上述结果对于加快我国黄淮麦区小麦赤霉病抗性育种具有重要的意义。  相似文献   

16.
为给选育籽粒灌浆快、粒重高的小麦新品种提供材料与技术支撑,以扬麦16、镇麦168、扬麦20和扬麦22为亲本构建获得的158个RIL群体为材料,利用小麦15K SNP芯片构建遗传连锁图谱,对小麦籽粒灌浆速率相关性状进行QTL定位。结果表明,应用完备区间作图法共检测到11个QTL,其中检测到5个与灌浆速率相关的新的QTL,分别位于3AL、4DL(2)、6AL和 7AL上,可解释3.4%~9.3%的表型变异;检测到3个与千粒重相关的QTL,分别位于4AL(2)和4DS上,可解释3.9%~9.2%的表型变异;首次检测到3个与籽粒灌浆持续时间相关的QTL,分别位于3AL和4DL(2)上,可解释2.7%~7.5%的表型变异。扬麦16提供与灌浆速率和千粒重相关QTL的增效基因,累加了定位到的全部籽粒灌浆快和粒重高的位点;扬麦22提供与籽粒灌浆持续时间相关QTL的增效基因。扬麦16和扬麦22可用作选育早熟、大粒小麦新品种的亲本材料。  相似文献   

17.
三个小麦赤霉病抗源的抗性QTL定位   总被引:7,自引:1,他引:7       下载免费PDF全文
为寻找小麦赤霉病抗性基因及可用于分子标记辅助育种的抗性连锁标记.对中国的三个小麦赤霉病抗源苏麦3号、望水白和宁894037进行了抗性QTL的定位研究。SSR、AFLP分析与QTL分析结果表明,尽管三个抗源的来源和遗传背景并不同,但均在3B染色体短臂上发现抗性主效QTL,不同遗传群体所获得的QTL位点所处的染色体区段略有差异,位于QTL两翼的SSR标记也有所不同。苏麦3号的赤霉病抗性主效QTL位于3B染色体上的标记区间Xgwm533~Xgwm493内;宁894037的抗性位点分布于3B和6B染色体上。分别定位于标记Xgwm493~Xbarcl33和Xgwm644-Xgwm518之间;望水白的抗性主效QTL也位于3B染色体上.定位于标记Xgwm493~Xbarc147之间。微效QTL由于遗传群体的不同,分别住于1B、3B和2A染色体上。研究还表明,寻找抗性QTL在3B染色体以外的新抗源十分必要。  相似文献   

18.
为了解控制小麦穗颈长的遗传位点,以西藏半野生小麦Q1028与郑麦9023(ZM9023)杂交后所构建的重组自交系(RIL)群体为材料,于2011、2012、2013和2014年分别在四川农业大学温江试验田种植,对其穗颈长进行遗传分析。结果表明,群体内穗颈长呈正态分布,符合数量遗传的特点。在四年环境中,总共检测到4个控制穗颈长的QTL位点,分布于3A、5A和6B染色体上,贡献率为7.55%~11.44%。位于6B染色上wPt-669607~wPt-5480标记之间的QTL位点在三年环境中被稳定检测到。同时,四年环境下穗颈长与株高都呈显著正相关(P0.01),而仅在一年环境中与穗长呈显著正相关(P0.01),与小穗数、穗粒数、穗粒重、千粒重、粒长和粒宽无显著相关性(P0.05)。本研究鉴定的QTL为分子标记辅助选育穗茎长度适中的小麦品系及其进一步的精细定位奠定了基础。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号