首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
以乙基纤维素(EC)、甲基丙烯酸四氢糠基酯(THFMA)和甲基丙烯酸月桂酯(LMA)为原料,通过"从主链接枝"的原子转移自由基聚合(ATRP)法制备了基于纤维素-糠醛-油脂的全生物质基热塑性弹性体材料EC-g-P(LNA-co-THFMA),采用FT-IR、~1H NMR、GPC、DSC和应力-应变测试对制备的接枝共聚物进行结构表征和性能分析,并初步探讨了THFMA/LMA投料比对接枝共聚物性能的影响。DSC测试表明:当n(THFMA)∶n(LMA)为200∶100~400∶100时,乙基纤维素接枝共聚物的玻璃化转变温度(Tg)在13~27℃;机械性能研究发现,随着投料中THFMA比例的增加,拉伸强度由5.1 MPa逐渐增加到13.7 MPa;通过与具有相同THFMA/LMA组成的线性共聚物P(LMA-co-THFMA)相比,EC的引入使得拉伸强度提高了3.7倍;在制备的EC基接枝共聚物投料中EC质量分数为0.91%~1.42%,这表明少量EC的引入便可极大地改善接枝共聚物的机械性能。  相似文献   

2.
以脱脂棉为原料制备纳米纤维素(CNCs),并通过表面引发原子转移自由基聚合法(SI-ATRP),在牺牲引发剂2-溴代异丁酸乙酯(EBiBr)存在的条件下,将甲基丙烯酸月桂酯(LMA)和甲基丙烯酸四氢糠基酯(THFMA)接枝到CNCs的表面,制备了CNCs增强的复合热塑性弹性体材料(CTPEs),并通过FT-IR、1H NMR和GPC证明成功制备了CTPEs。采用DSC和拉伸试验机对CTPEs的热力学性能和机械性能进行分析,DSC测试表明:随着THFMA含量的增加,CTPEs的玻璃化温度(Tg)由-0.04℃逐渐增加到22.58℃,CTPEs的拉伸强度由0.14 MPa增加到6.17 MPa。此外,通过比较具有相同THFMA/LMA单体投料比的CTPE-3与线性共聚物P(LMA-coTHFMA)的机械性能发现:CTPEs的拉伸强度较P(LMA-co-THFMA)提高了3倍,表明接枝后的CNCs可以实现CTPEs力学性能的增强。  相似文献   

3.
为提高木质素的功能性,利用2-溴代异丁酰溴改性木质素制备木质素基引发剂,然后采用原子转移自由基聚合(ATRP)法将亲水单体甲基丙烯酸羟乙酯(HEMA)、乙酸乙烯酯(VAC)和丙烯酸(AA)分别接枝到木质素上,合成亲水性木质素基接枝共聚物。对接枝聚合物进行接触角测试和红外光谱分析,结果表明:接枝单体甲基丙烯酸羟乙酯时,木质素接枝聚合物亲水效果最佳;木质素接枝前后接触角分别为45°、21.6°,接枝后木质素亲水性能提高。红外光谱分析显示,木质素接枝甲基丙烯酸羟乙酯(Lignin-g-PHEMA)共聚物中具有HEMA的特征峰,表明单体甲基丙烯酸羟乙酯成功接枝到木质素分子上。  相似文献   

4.
在氯化锂/N,N-二甲基乙酰胺(LiCl/DMAc)体系中,利用2-溴代异丁酰溴与纤维素的直接酯化反应首先合成了具有不同引发点数量的ATRP大分子引发剂(cell-Br);然后以CuBr/PMDETA为催化体系,cell-Br为引发剂,将2-甲基丙烯酸羟乙酯通过原子转移自由基聚合ATRP法接枝到纤维素的大分子骨架上合成纤维素-甲基丙烯酸羟乙酯接枝共聚物(cellulose-g-PHEMA)。通过FT-IR,1H NMR,GPC和TGA对cell-Br和cellulose-g-PHEMA的结构和性能进行分析,并利用动态光散射(DLS),原子力显微镜(AFM),透射电镜(TEM)观察了cellulose-g-PHEMA的微观形貌,结果表明cellulose-g-PHEMA易于组装成直径约180 nm的球形胶束。  相似文献   

5.
以纤维素为原料,离子液体为反应介质,首先制备了纤维素氯乙酸酯大分子引发剂,然后以甲基丙烯酸甲酯(MMA)为单体,纤维素氯乙酸酯/Cu Br/2,2-联吡啶为引发体系,进行了原子转移自由基聚合反应,合成了纤维素接枝甲基丙烯酸甲酯聚合物(cellulose-g-PMMA)。利用傅里叶变换红外光谱、X射线衍射、热重分析等对cellulose-g-PMMA的结构与性能进行了表征。纤维素的结晶度57.90%,cellulose-g-PMMA的结晶度降至38.39%。利用原子力显微镜观察到cellulose-g-PMMA在溶剂丙酮中的平均粒径在40~70 nm左右。利用透射电镜观察到该聚合物胶束呈圆球状分布,粒径在200 nm左右,具有内核-外壳结构。以阿司匹林作为模型药物负载于聚合物胶束内,探讨了纤维素改性程度对药物释放率的影响。在37℃时,接枝反应3 h得到的cellulose-g-PMMA作为药物载体释放药物72 h后,释药率可达88.9%,具有较好释药效果。  相似文献   

6.
以火麻仁油(HO)为原料,制备合成了一种新型的含羧基和乙烯基的火麻仁油基可双重交联树脂基单体(MA-AEHO),并采用傅里叶变换红外光谱(FT-IR)和核磁共振氢谱(~1H NMR)对单体结构进行了表征。将MA-AEHO通过不同的交联聚合工艺,制备得到了2种单交联聚合物(1和2)及2种双重交联聚合物(3和4),并对4种聚合物的性能进行对比测试。机械性能测试表明:聚合物1~4的拉伸强度分别为9.21、14.73、32.05和33.25MPa,断裂伸长率分别为56.21%、9.97%、4.56%和3.18%,相比于单交联体系而言,双重交联体系的聚合物(3和4)的拉伸强度均显著提高,断裂伸长率有所下降;动态热机械分析表明:相比于单交联聚合物,双重交联聚合物(3和4)具有高储能模量(32.00和41.29MPa)和玻璃化转变温度(58.08和91.44℃)。热重分析结果表明:4种交联聚合物均具有良好的热稳定性,材料的初始热分解温度均在300℃以上。  相似文献   

7.
目前,溶液浇铸法制备纳米纤维素/聚乳酸复合材料,常将纳米纤维素直接加入聚乳酸,导致制备的复合材料各项机械性能普遍降低。为了改善其机械性能,笔者采用聚乙二醇2000作为塑化剂处理纳米纤维素,制备聚乳酸/纳米纤维素/聚乙二醇三相复合材料。通过对复合材料的微观形貌观测,力学性能分析和热稳定性分析来确定聚乙二醇的影响机制。试验结果表明,添加2%~4%聚乙二醇2000的三相复合材料的拉伸强度、撕裂强度与断裂伸长率得到了提高,材料的热稳定性相对纯聚乳酸发生了下降。而随着聚乙二醇含量逐渐增加至8%,材料的拉伸强度、撕裂强度与断裂伸长率都出现了降低,而其热稳定性回升,复合材料的玻璃化转化温度(TG)大约提升了5~6℃。同时,研究发现保持一定的聚乙二醇/纳米纤维素添加比例可获得分散均匀、性能优良的复合材料,团聚现象明显减少。综上,经过一定量的聚乙二醇2000表面改性可促进纳米纤维素在聚乳酸中的均匀分散,从而增强复合材料的综合机械性能。  相似文献   

8.
以木薯淀粉为主要原料,通过氧化改性使其分子结构发生变化,再与醋酸乙烯酯、丙烯酸丁酯和N-羟甲基丙烯酸酰胺等单体发生接枝共聚反应,制备一种低成本高性能的快速固化乳液胶黏剂,制备的接枝共聚乳液胶黏剂各项性能指标满足国家标准要求。研究了氧化木薯淀粉制备工艺和改性淀粉接枝共聚醋丙乳液工艺,通过试验表明,使用改性淀粉接枝共聚乳液压制的杨木板材,其干/湿状剪切强度均高于行业标准要求,同时在相同工艺条件下使用醋丙乳液压制的杨木板材,接枝共聚效果明显。采用傅里叶红外光谱仪和差示扫描量热仪对制备的接枝共聚乳液的聚合情况和玻璃化转变温度进行分析,结果表明:改性淀粉醋丙乳液在1 735 cm-1处出现酯基CO的强振动吸收峰,在3 483 cm-1处出现了明显的丙烯酰胺中的N—H伸缩振动峰,且在1 155和1078 cm-1等处出现明显的淀粉特征峰,说明该共聚物既有聚合单体特征峰和淀粉特征峰,又有共聚后出现的酯基特征峰,表明木薯淀粉经过氧化改性后与各单体之间发生聚合反应,且接枝共聚乳液的最低成膜温度为18.04℃,表明接枝共聚后的乳液可在常温下快速固化。  相似文献   

9.
采用液相混合法制备了纳米纤维增强苯乙烯-丁二烯-丙烯腈(ABS)复合材料,研究了纳米纤维素晶须(NCW)含量对复合材料性能影响。SEM测试表明,添加少量的NCW即会对复合材料的断裂面形态造成明显影响。热重分析发现,NCW的加入会降低复合材料的热稳定性。当NCW含量为10%时,复合材料热分解温度下降20%。红外光谱(FTIR)测试表明,在复合材料中纳米纤维素间的自由羟基和氢键数量明显下降。拉伸性能和动态机械性能测试表明,NCW含量为5%时复合材料的性能增加明显,拉伸强度上升11%,模量上升19%。研究结果表明,采用液相混合法制备纳米纤维素晶须/ABS复合材料时,丙酮溶液和ABS中存在的—CN对改善复合材料的界面相容性尤为关键。  相似文献   

10.
丙烯酸改性松香(2-甲基丙烯酰氧基乙基)酯的合成和表征   总被引:3,自引:1,他引:2  
以丙烯酸改性松香(AR)为原料,先与草酰氯反应合成丙烯酸改性松香酰氯(AR-C l),然后与甲基丙烯酸-2-羟基乙基酯进行酯化反应合成了丙烯酸改性松香(2-甲基丙烯酰氧基乙基)酯(AR-2-HEMA),并分别采用FT-IR、GC-MS、13C NMR和差示扫描量热仪(DSC)对其结构和性能进行表征。研究结果表明,丙烯酸改性松香(2-甲基丙烯酰氧基乙基)酯主要由丙烯海松酸(2-甲基丙烯酰氧基乙基)酯(37.88%)和树脂酸(2-甲基丙烯酰氧基乙基)酯(52.48%)组成。丙烯海松酸(2-甲基丙烯酰氧基乙基)酯两种异构体质量分数分别为31.79%和6.09%。所制备的丙烯酸改性松香(2-甲基丙烯酰氧基乙基)酯在引发剂的存在下可以发生聚合反应。  相似文献   

11.
以末端带氨基的甲氧基聚乙二醇(mPEG-NH_2)、十四胺、5-氨基-1-戊醇、1,4-丁二醇二丙烯酸酯和1,3-戊二胺为原料,采用一锅法合成了一种两亲共聚物聚乙二醇-聚β-氨基酯(mPEG-PBAE),通过FT-IR、GPC、芘荧光探针对聚合物的结构、相对分子质量和临界胶束浓度(CCMC)进行了表征;以漆酚为药物模型分子,采用透析法制备了漆酚/两亲共聚物胶束,采用TEM和DLS对载药胶束的粒径、Zeta电位、形貌进行了表征,考察了载药胶束的pH响应性、体外释药性和体外抗肿瘤活性。研究结果表明:两亲共聚物mPEG-PBAE已经成功合成,重均相对分子质量为11 445,与设计的理论相对分子质量相差不大,聚合物的CCMC值为18.25 mg/L;制备得到的漆酚/两亲共聚物胶束的包封率为82.29%,载药量为23.21%,外观呈规则球形结构,大小均一,平均粒径为160.1 nm,Zeta电位值为33.6 mV,其在pH值为5.0的缓冲溶液中粒径增大明显高于pH值为6.5和7.4的缓冲溶液,具有明显的pH响应性;当pH值为5.0、6.5和7.4时,72 h内累计释药率分别为98.7%、61.6%和31.5%;载药胶束对HepG2和A549肿瘤细胞的半数抑制浓度(IC50)分别为1.38和0.87 mg/L,体外抗肿瘤活性明显优于游离漆酚。  相似文献   

12.
首先对银杏叶聚戊烯醇含量测定的方法及方法学进行了考察,结果表明:采用高效液相色谱,以C18为色谱柱,以异丙醇/甲醇(体积比32∶18)为流动相,在210 nm下测定聚戊烯醇具有较高的精密度(RSD为0.89%)、较好的稳定性(RSD为3.26%),平均加标回收率为97.4%(RSD为1.75%)。然后通过正己烷提取、皂化、乙醇和丙酮脱蜡,以及硅胶柱层析(V(乙醚)∶V(正己烷)=3∶97)获得纯度为98.6%的聚戊烯醇。在此基础上,对高纯度聚戊烯醇末端羟基进行亲水改性,先与邻苯二甲酰亚胺进行光延反应(mitsunobu反应),再与水合肼进行还原反应,合成了氨基聚戊烯醇,并通过红外和核磁共振氢谱对其结构进行了表征,确认了氨基聚戊烯醇的成功合成。  相似文献   

13.
以新型的脱氢枞酸(2-甲基丙烯酰氧基异丙醇基)酯(DAGMA)为单体,聚乙烯吡咯烷酮(PVP)为分散稳定剂,偶氮二异丁腈(AIBN)为引发剂,异丙醇/水为反应分散介质,采用分散聚合法制备了单分散的聚脱氢枞酸(甲基丙烯酰氧基-β-羟基丙基)酯(PDAGMA)微球。研究了分散剂用量、单体质量分数、反应温度对PDAGMA聚合物微球粒径大小及分布的影响,并用交联剂进行交联,初步探索了其吸附性能。采用FT-IR、~1H NMR、GPC、SEM和TGA对聚合物微球的结构及微球的形貌和尺寸进行表征。研究结果表明:DAGMA单体在醇/水介质中能够发生聚合反应,且GPC测得聚合物的相对分子质量约为55 000;聚合物微球粒径随着PVP用量的增大而减小,随着单体质量分数增大聚合物微球平均粒径先减小后增大,并且反应温度升高粒径增大,分散聚合得到的聚合物微球PDI最低为1.014,粒径为1.37μm;交联后松香基聚合物热稳定性提高,并且对芦丁的吸附量为12.3 mg/g。  相似文献   

14.
在12%的漂白紫胶溶液中加入精制漆蜡乳液制备漆蜡复配涂膜保鲜剂,测试了其抑菌性能,并用于柑桔的涂膜保鲜。通过考察复配涂膜保鲜剂的稳定性,得到漆蜡复配涂膜保鲜剂的主要制备条件为:紫胶12%,漆蜡加入量1%~3%,搅拌速度900 r/min,分散时间15 min。抑菌性能测试结果表明:当复配液中漆蜡加入量为2%时,复配涂膜液对金黄色葡萄球菌、枯草芽孢杆菌和表皮葡萄球菌的抑菌性能最佳,抑菌率分别为24.3%、26.5%和25.2%,且较单一紫胶溶液抑菌率(17.3%、16.3%和15.5%)分别提高了40.5%、62.6%和62.6%。该复配保鲜剂对柑橘具有明显的保鲜效果,有效地延长了果实的贮藏保鲜期,经复配涂膜保鲜剂处理的柑橘室温储藏20天,其腐烂指数仅1.0%,储藏60天后,其腐烂指数为10.0%,较空白对照组(38.4%)和紫胶涂膜处理组(18.6%)分别降低了28.4和8.6个百分点,差异极显著(P<0.01)。  相似文献   

15.
以异海松酸为原料,采用先酰氯化后与水合肼反应的方法,制备得到异海松酸酰肼,然后再与不同取代基的糠醛发生反应,制备得到5种异海松酸糠醛类酰腙化合物:异海松酸基(糠醛)酰腙(4a)、异海松酸基(5-甲基糠醛)酰腙(4b)、异海松酸基(5-羟甲基糠醛)酰腙(4c)、异海松酸基(5-溴-2-糠醛)酰腙(4d)和异海松酸基(5-(4-溴苯基)糠醛)酰腙(4e),并采用FT-IR、1 H NMR、13 C NMR和MS对产物结构进行了确证。生物活性测定结果表明:目标化合物对肺炎链球菌、肺炎克雷伯氏菌、大肠杆菌、表皮葡萄球菌和金黄色葡萄球菌这5种菌种均具有一定的抑制活性,其中4a对肺炎克雷伯氏菌具有很好的抑菌活性,最低抑菌浓度为1.95 mg/L,化合物4c对肺炎链球菌具有非常好的抑菌活性,最低抑菌浓度仅为0.98 mg/L。当异海松酸糠醛类酰腙化合物的浓度为100μmol/L时,化合物4d对人体肝癌(Hep G2)、乳腺癌(MDA-MB-231)、前列腺癌(PC-3)和宫颈癌(Hela)这4种人体肿瘤细胞均具有较高的抑制率,其抑制率分别为75.17%、82.33%、78.52%和80.97%;化合物4e对人体肝癌(Hep G2)的抑制率高达93.68%,说明其对人体肝癌细胞具有很强的抑制活性。  相似文献   

16.
为了获得性能优良、成本低廉的二维炭材料,选择木质素磺酸钠为碳源、硼酸作为模板剂,经溶液混合、高温炭化和沸水回流等过程制得木质素基炭纳米片,当m(硼酸)∶m(木质素磺酸钠)为1∶1、5∶1和10∶1时,分别标记为SLB-1、SLB-5和SLB-10。通过扫描电镜(SEM)和透射电镜(TEM)等手段分析了炭纳米片的微观形貌,采用X射线衍射(XRD)、X射线光电子能谱(XPS)和激光拉曼光谱等手段检测了炭纳米片的晶体结构、元素组成和表面性质,通过循环伏安(CV)、恒电流充放电(GCD)和交流阻抗(EIS)等方法检测了炭纳米片的电化学性能,结果表明:SLB-5具有完好的二维片层结构,通过调整硼酸与木质素磺酸钠的质量比,可以有效调控炭纳米片的厚度。SLB-5具有一定的石墨化程度,模板剂被完全去除,含氧元素高达16.63%,同时,SLB-5炭纳米片厚度达到纳米级,电流密度为1 A/g时比电容为350.79 F/g,电流密度增加到10 A/g时比电容仍可以保持79.95%,循环5 000次后比电容可以保持90%以上。  相似文献   

17.
分别以纤维素、木质素、杉木屑与核桃壳为原料,经过炭化后在Ni的催化作用下于1 400℃下进行了石墨化反应,并以X射线衍射(XRD)、Raman光谱和高分辨率透射电镜(HRTEM)分析了产物的石墨化程度。研究结果表明:纤维素在生物质的石墨化过程中起主要作用,在相同处理条件下,由纤维素得到的产物石墨化程度最高,由木质素得到的产物石墨化程度最低,杉木屑和核桃壳2种生物质原料得到的产物石墨化程度介于纤维素和木质素之间,不同原料石墨化程度的显著差异可能是由于原料结构的差异造成的。同时电导率测试结果表明:20 MPa条件下,由纤维素得到的产物的电导率为54 S/cm,而由木质素得到的产物仅为31 S/cm,与石墨化程度的高低相对应。纤维素/木质素混合物的石墨化程度介于纤维素和木质素之间,两者不同质量比对混合物的石墨化程度影响不大。  相似文献   

18.
以造纸废料木质素磺酸钠和柠檬酸为原料制备了氧化改性木质素磺酸钠/石墨烯复合量子点(HSL/GQDs),利用紫外可见光谱、荧光光谱、红外光谱和透射电镜等研究了复合量子点的荧光性能、结构及其对金属离子的选择性吸附性能,并考察了复合量子点结构与吸附性能之间的关系。研究表明:HSL/GQDs的荧光强度(F_0)是单纯的石墨烯量子点的2倍多,对Fe3+有较好的荧光响应信号,可用于对Fe3+的检测。在10~500μmol/L范围内,加入Fe3+以后的该荧光探针的荧光猝灭强度(F)与Fe3+的浓度有良好的线性关系,线性方程为:F/F_0=0.851 12-0.001 11C(Fe3+),线性系数为0.99。  相似文献   

19.
以肉桂及其同源根皮为原料,采用80%乙醇分别对两者进行回流提取,经系统溶剂法萃取得到两者的石油醚部位、乙酸乙酯部位、正丁醇部位和水部位,并采用滤纸片法研究各极性部位对常见的3种致病菌(金黄色葡萄球菌、大肠杆菌、绿脓杆菌)的抑菌活性。研究结果表明:相同质量的肉桂和根皮提取得到的各极性部位的质量、成分种类及含量均有所差异,其中石油醚部位所含成分大致相同,但主要成分反式肉桂醛、邻甲氧基肉桂醛含量差异较大;两者乙酸乙酯部位、正丁醇部位和水部位分别含有黄酮类,皂苷类和多糖类成分;此外根皮乙酸乙酯部位还含有邻甲氧基肉桂醛、乙酸肉桂酯,根皮水部位含有D-半乳糖。肉桂石油醚部位、根皮石油醚部位、根皮乙酸乙酯部位对3种菌均有一定的抑制作用,当这3个部位的质量浓度均为500 g/L时,对金黄色葡萄球菌、大肠杆菌、绿脓杆菌的抑菌圈直径分别大于(17.62±0.22)、(25.21±2.09)和(12.82±0.30)mm,肉桂乙酸乙酯部位抑菌作用较弱,肉桂和根皮正丁醇部位和水部位对3种供试菌种均无抑制作用。  相似文献   

20.
环氧桐油酸甘油单酯(EGTO)与三(2-羟乙基)异氰尿酸酯(THEIC)发生开环反应合成含氮杂环桐油基多元醇(PTOT),并以PTOT部分取代苯酐聚酯多元醇(PAPP)制备含氮杂环桐油基硬质聚氨酯沫塑料。采用FT-IR、~1H NMR、TG和万能试验机等测试手段对产物的结构和性能进行表征。研究结果表明:通过开环反应可以制备得到羟值为378.42 mg/g,黏度(25℃)为1.84 Pa·s,酸值低于0.8 mg/g,水分低于0.1%的PTOT。随着PTOT替代量的增加,泡沫的极限氧指数(LOI)增大,由19.7%上升至23.0%;而压缩强度和热稳定性呈现下降趋势,由0.85 MPa降至0.59 MPa,初始热分解温度由276.0℃降至273.5℃。添加适量的纤维素能够增强硬质聚氨酯泡沫塑料的压缩性能而保持其阻燃性能和热稳定性不降低。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号