首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract

Though there exists a wide spectrum of sulfur‐oxidizing microorganisms in soils, the oxidation rate of soil‐applied elemental sulfur (S0) is regularly limited because of a restricted population size. An incubation experiment was conducted to determine the effect of repeated S0 applications on different microbial populations, sulphate (SO4 2?)‐S concentration, and soil pH. Elemental sulfur was applied repeatedly at a rate of 15 mg S g?1 soil in a 15‐day interval cycle of 7 times. After each cycle, 7.5 mg lime (CaCO3) g?1 soil was applied to adjust the soil pH to an optimum range. Soil pH and 0.025 M potassium chloride (KCl)–extractable SO4 2?‐S were determined every 3 days. The population of Thiobacillus spp. and aerobic heterotrophic sulfur‐oxidizing bacteria were counted 3 and 15 days after each S0 application. The results showed that the soil pH decreased rapidly from an initial value of 7.6 to 5.3, 15 days after the first S0 application. Lime applications successfully counterbalanced the acidifying effect of S0 oxidation, and soil pH values were maintained in the optimum range with a pH of about 6.4. The 0.025 M KCl–extractable SO4 2?‐S content increased with repeated applications of S0, showing a maximum value of 3,800 mg S kg?1 soil after the sixth S0 application. Thereafter, the SO4 2?‐S concentration decreased significantly. The Thiobacillus spp.count increased consistently with repeated S0 applications. The number of Thiobacillus spp. at the first application of S0 was significantly lower than the count after all other applications. A maximum Thiobacillus spp. count of 1.0 · 108 g?1 soil was observed after the seventh application of S0. The fastest S0 oxidation rate was found after the second application of S0. The population of aerobic heterotrophic sulfur‐oxidizing bacteria increased also with repeated S0 applications, showing a maximum count of 5.0 · 104 g?1 soil after the fourth S0 application. Thereafter, the population declined steadily. Significant relationships between SO4 2?‐S concentration and count of Thiobacillus spp. (R2=0.85, p<0.01) and aerobic heterotrophic sulfur‐oxidizing bacteria (R2=0.63, p<0.01) were found. Based on these results, it may be concluded that repeated S0 applications decrease soil pH, increase Thiobacillus spp. counts, and thus increase extractable SO4 2?‐S concentration in soils. The results further suggest that soils that receive regular S0 applications have a higher Thiobacillus spp. count and thus have conjecturally a higher S0 oxidation potential than soils that have never received S0. This again indicates a priming effect of S0 oxidation by Thiobacillus spp., which needs to be confirmed under field conditions.  相似文献   

2.
Fusarium solani oxidized So to S2O32?; S4O62? and SO42? in culture and when grown in autoclaved soils amended with the element. The intermediates were also oxidized to SO42?, suggesting involvement of the polythionate pathway in fungal S-oxidation. Indigenous F. solani was shown to oxidize S in non-sterile soil.  相似文献   

3.
《Applied soil ecology》2006,31(1-2):11-19
A study was conducted to establish whether the diversity of nematode-trapping fungi in Pb-polluted soils increases or decreases with increasing degree of soil contamination, and whether the fungi from polluted soils exhibit higher tolerance to Pb toxicity than those from unpolluted soils. Five genera containing 28 nematode-trapping fungi were recorded in total from five collection sites highly contaminated by Pb, with the concentration ranging from 306 to 4907 mg kg−1. These fungi fell into seven groups according to their trapping mechanisms. In this area, the most frequent group was the net former of which 16 species were recorded and its occurrence frequency (61.15%) was higher than those of the others. Fungal diversity of NTF was slightly positively correlated with the Pb pollution levels (r = 0.29), which suggested the distribution of nematode-trapping fungi was not restricted by the heavy metal at these sites. The mycelial growth of nematode-trapping fungi which derived from either Pb-polluted soils or from unpolluted soils was completely inhibited by 1.8 mmol of Pb. At the Pb concentration of 1.2 mmol, the inhibition growth rates varied between 18.50 and 22.57% and there was no significant difference in the Pb tolerance of nematode-trapping fungi as to whether the strains derived from Pb pollution soils or unpolluted soils.  相似文献   

4.
Land-use and management practices can affect soil nitrification. However, nitrifying microorganisms responsible for specific nitrification process under different land-use soils remains unknown. Thus, we investigated the relative contribution of bacteria and fungi to specific soil nitrification in different land-use soils (coniferous forest, upland fields planted with corn and rice paddy) in humid subtropical region in China. 15N dilution technique in combination with selective biomass inhibitors and C2H2 inhibition method were used to estimate the relative contribution of bacteria and fungi to heterotrophic nitrification and autotrophic nitrification in the different land-use soils in humid subtropical region. The results showed that autotrophic nitrification was the predominant nitrification process in the two agricultural soils (upland and paddy), while the nitrate production was mainly from heterotrophic nitrification in the acid forest soil. In the upland soils, streptomycin reduced autotrophic nitrification by 94%, whereas cycloheximide had no effect on autotrophic nitrification, indicating that autotrophic nitrification was mainly driven by bacteria. However, the opposite was true in another agricultural soil (paddy), indicating that fungi contributed to the oxidation of NH4+ to NO3?. In the acid forest soil, cycloheximide, but not streptomycin, inhibited heterotrophic nitrification, demonstrating that fungi controlled the heterotrophic nitrification. The conversion of forest to agricultural soils resulted in a shift from fungi-dominated heterotrophic nitrification to bacteria- or fungi-dominated autotrophic nitrification. Our results suggest that land-use and management practices, such as the application of N fertilizer and lime, the long-term waterflooding during rice growth, straw return after harvest, and cultivation could markedly influence the relative contribution of bacteria and fungi to specific soil nitrification processes.  相似文献   

5.
Humic and fulvic acids as indicators of soil and water pollution   总被引:1,自引:0,他引:1  
Humic substances are the major organic components of soil and sediments, but little is known on how they are affected by environmental and industrial pollution. To find out whether such effects could be recognized, a number of analytical characteristics were compared of humic and fulvic acids extracted from unpolluted and polluted soils and sediments. The main differences were that, per unit weight, polluted humic and fulvic acids contained more N, S and H but fewer CO2H groups, and were more aliphatic than unpolluted samples. Unusually high N and S contents of humic materials appear to be the most valid indicators of pollution. Humic acids are preferred to fulvic acids as indicators of pollution because the former are more readily separated and purified.  相似文献   

6.
Characteristics, such as microbial biomass, basal respiration, and functional diversity of the microbial communities, were investigated in paddy soils located in Bandung, West Java Province, Indonesia, that have been heavily polluted by industrial effluents for 31 years. Paddy soil samples (10?C20 cm) were taken from two sites: polluted soils and unpolluted soils (as control sites). The polluted soils contained higher salinity, higher sodicity, higher nutrient contents, and elevated levels of heavy metals (Cr, Mn, Ni, Cu, and Zn) than unpolluted soils. Soil physicochemical properties, such as maximum water holding capacity, exchangeable sodium percentage, sodium adsorption ratio, and swelling factor, in polluted soils were much greater than those in unpolluted soils (P?<?0.05). Changes in the physical and chemical soil properties were reflected by changes in the microbial communities and their activities. BIOLOG analysis indicated that the functional diversity of the microbial community of polluted soils increased and differed from that of unpolluted soils. Likewise, the average rate of color development (average well color development), microbial biomass (measured as DNA concentration), and the soil CO2 respiration were higher in polluted soils. These results indicate that major changes in the chemical and physical properties of paddy soils following the application of industrial wastewater effluents have had lasting impacts on the microbial communities of these soils. Thus, the increased activity, biomass, and functional diversity of the microbial communities in polluted soils with elevated salinity, sodicity, and heavy metal contents may be a key factor in enhancing the bioremediation process of these heavily polluted paddy soils.  相似文献   

7.
This study focuses on fluxes of elements from, and changes in the soil properties of shallow organic material rich soil as a result of changes in precipitation acidity. Intact soil columns including natural vegetation from two areas (one exposed to acidic precipitation and one unpolluted) were used in a lysimeter experiment. The lysimeters were watered with simulated normal rain (pH 5.3) or simulated acidic rain (pH 4.3) for four years. Sulphuric acid and ammonium nitrate were used to regulate the quality of the simulated rain. Significantly more SO4 2? was leached from lysimeters receiving acid rain. Rain acidity had no significant effect on NO3 ? leaching. Significantly more Mg2+ was leached from lysimeters receiving acid rain, but this only applied for the soils from the unpolluted area. Four years of treatment did not cause any significant effect on the soil acidity and the amounts of base cations in the soil. The more acidic rain did, however, cause a significant lower cation exchange capacity. For the soils from the polluted area the acid precipitation did cause a lowering of the exchangeable K+ in the upper 5 cm of the soil. Different quality of the soil organic material indicated by different vegetation types appeared to cause significant differences in the amount of components leached from the soil, but did not cause any difference in response to the different rain qualities.  相似文献   

8.
Ericoid mycorrhizal fungi increase the ability of their host plants to colonize soils polluted with toxic metals, although the underlying mechanisms are not clearly understood. Two mycorrhizal strains of Oidiodendron maius isolated from contaminated soil were previously shown to tolerate high concentrations of toxic metals. We investigated further the biological mechanisms that may explain metal tolerance, focussing on the interactions between insoluble metal species and extracellular fungal metabolites. In particular, we demonstrate that fungal strains derived from polluted and unpolluted soils mobilize insoluble inorganic zinc compounds to different extents. Strains from polluted soils showed in fact little ability to solubilize Zn from both ZnO and Zn3(PO4)2, whereas strains from unpolluted soils showed a higher solubilization potential. This different behaviour was confirmed when the solubilization abilities of a wider range of fungal strains (25 isolates) was examined. Induction of organic acids (malate and citrate) by the metal compounds was at least in part responsible for metal solubilization. Our results suggest that ericoid mycorrhizal strains from polluted and unpolluted soils may interact differently with metal compounds. We speculate that this may reflect specific strategies to maintain homeostasis of essential metals under different soil conditions.  相似文献   

9.
Arbuscular mycorrhizal fungi (AMF) hold a crucial role in ecosystems because they are involved in nutrient cycling between soil and plants. This work aimed at evaluating the impacts that atmospheric pollution by polycyclic aromatic hydrocarbons may have on infectivity of indigenous AMF in soils. Two agricultural soils (Maconcourt, La Bouzule) were exposed for 2?weeks to ambient air (control, C) or to atmospheric phenanthrene (PHE) deposition (180???g?m?3 air). After exposure, soils were divided into a top (0?C1?cm) and a bottom (1?C15?cm) layer fraction. AMF infectivities of soils were determined after 2?weeks of atmospheric exposition using leek (Allium porum) as bioassay plant. Atmospheric PHE was mainly recovered in the top layer of soil (500?C1,350???g?kg?1) of both soils and did not readily diffuse into the depth. Atmospheric contamination led to decreases in AMF infectivities of the top layer in both soils and affected the growth of leeks. Our results not only report evidence that infectivity of indigenous AMF is sensitive to PHE in soils but also emphasize that AMF are primary affected by the soil layer regardless to the pollution level.  相似文献   

10.
The effects of incubation time, vegetation type (represented by a pine plantation, a protected and a periodically burnt eucalypt forest), lime and finely ground pine needles on the transformation of (15NH4)2SO4 and K15NO3 were studied in incubation experiments with a sandy lateritic podzolic soil from south-east Queensland. Microorganisms were counted so as to relate N transformations to particular groups of microorganisms.The heterotrophic miroflora utilized NH+4 as a source of N in preference to NO?3, and autotrophic nitrifiers seemed to be weak competitors for NH+4. Lime caused a slight loss of NO?3 and this was accompanied by an increase in the population of denitrifying bacteria.Lime promoted immobilization of NH+4 by heterotrophic bacteria and subsequent mineralization by nitrifying bacteria, but when pine needles were also added the nitrifiers were suppressed and immobilization by heterotrophic bacteria dominated. Pine needles alone stimulated fungi to immobilize NH+4.While reforestation with exotic pines caused a loss of total-N there was evidence of increased turnover, i.e. more rapid immobilization and nitrification, in pine plantation soils. Prescribed burning also promoted nitrification while reducing total-N.  相似文献   

11.
To investigate the potential of synchrotron‐based X‐ray Absorption Near‐Edge Structure spectroscopy (XANES) at the sulphur (S) K‐edge for a discrimination of adsorbed and precipitated sulphate in soils and soil particles, XANES spectra of ionic sulphate compounds and Al/Fe hydroxy sulphate minerals were compared with spectra of SO42? adsorbed to ferrihydrite, goethite, haematite, gibbsite or allophane. Ionic sulphate and hydroxy sulphate precipitates had broader white‐lines (WL) at 2482.5 eV (full width at half maximum (FWHM) of edge‐normalized spectra, 2.4–4.2 eV; Al hydroxy sulphates, 3.0 eV) than SO42? adsorbed to Al/Fe oxyhydroxides or allophane (FWHM, 1.8–2.4 eV). The ratio of the white‐line (WL) height to the height of the post‐edge feature at 2499 eV (WL/PEF) was larger for SO42? adsorbed to Al/Fe oxyhydroxides or allophane (8.1–11.9) than for Al/Fe hydroxy sulphates and ionic sulphates (3.9–5.7). The WL/PEF ratio of edge‐normalized S K‐edge XANES spectra can be used to distinguish adsorbed from precipitated SO42? in soils and also at microsites of soil particles. The contribution of adsorbed and precipitated SO42? to the total SO42? pool can be roughly quantified. Adsorbed ester sulphate may result in overestimation of precipitated SO42?. The spectra of most soils could be fitted by linear combination fitting (LCF), yielding a similar partitioning between adsorbed and precipitated SO42? as an evaluation of the WL/PEF ratio. The SO42? pool of German forest soils on silicate parent material in most cases was strongly dominated by adsorbed SO42?; however, in three German forest soils subject to elevated atmospheric S deposition, a considerable portion of the SO42? pool was precipitated SO42?, most likely Al hydroxy sulphate. The same is true for Nicaraguan Eutric and Vitric Andosols subject to high volcanogenic S input. In the subsoil of the Vitric Andosol, adsorbed SO42? and Al hydroxy sulphate coexist on a micron scale.  相似文献   

12.
Leaching of Cd and Zn in polluted acid, well‐drained soils is a critical pathway for groundwater pollution. Models predicting future groundwater contamination with these metals have rarely been validated at the field scale. Spodosol profiles (pH 3.2–4.5) were sampled in an unpolluted (reference) field and in a field contaminated with Cd and Zn through atmospheric deposition near a zinc smelter. Average metal concentrations in the upper horizons were 0.2 mg Cd kg?1 and 9 mg Zn kg?1 in the unpolluted field, and 0.8 mg Cd kg?1 and 71 mg Zn kg?1 in the contaminated field. Isotopic dilution was used to measure the labile concentration of Cd and Zn, and the metal transport was modelled using measured sorption parameters that describe the distribution between the labile metal pool (instead of the total metal pool) and the solution phase obtained by centrifugation. Solutions were also collected by wick samplers in two polluted and one unpolluted profile at a depth of 70 cm. Concentrations in these solutions were in the order of 15 µg Cd litre?1 and 0.8 mg Zn litre?1 for the polluted profiles, and 1 µg Cd litre?1 and 0.04 mg Zn litre?1 for the unpolluted profile. The concentrations in these solutions agreed well with those in soil solutions obtained by centrifugation, which supported the use of the local equilibrium assumption (LEA). Present‐day Cd profiles in the polluted field were calculated with the LEA, based on the emission history of the nearby smelter and taking spatial variability into account. Observed and predicted depth profiles agreed reasonably well, but total Cd concentrations in the topsoil were generally underestimated by the model. This may be attributed to the presence of non‐labile Cd in the atmospheric deposition, which was not accounted for in the retrospective modelling. The large concentrations of non‐labile Zn in the topsoil of the polluted field were also indicative that metals in the atmospheric deposition were (partly) in a sparingly soluble form, and that release of these non‐labile metals is a slow process. The presence of non‐labile metals should be taken into account when evaluating metal mobility or predicting their transport.  相似文献   

13.
In a few cases, atmospheric particulate matter characterization was taken into account together with aerobiological monitoring but never in an archive. The aim of this study was to estimate the air quality, by means of both chemical–physical and microbiological studies, at the Ca’ Granda Historical Archive (Milan, Italy) that houses an important collection of documents from the 12th century. Temperature and relative humidity were measured in the rooms. Particulate matter (PM2.5) concentrations were quantified and the chemical composition, in terms of ionic components, elements, and carbonaceous fraction (total, organic, and elemental carbon) determined. The gaseous pollutants NO2, SO2, and O3 and indoor acidity were also measured. Aerobiological monitoring (aerobic heterotrophic bacteria and fungi) was performed as volumes stored in the Archive were composed of organic materials, a potential energy and carbon source. In this paper, we present our findings and propose some guidelines for a better preservation of the documents.  相似文献   

14.
In recent decades, SO4 2- concentrations have increased in groundwater and surface water of freshwater wetlands. For many minerotrophic peatlands, S originating from SO4 2--polluted groundwater and surface water is a more significant source of SO4 2- than the actual atmospheric deposition of S compounds. Lowered groundwater tables in wetlands, as a result of either natural or anthropogenic desiccation, may cause acidification because of concomitant geochemical oxidation processes. The impact of the enhanced availability of reduced S compounds, due to preceding SO4 2- pollution, on these processes was tested in a mesocosm experiment, using soil cores including vegetation from a mesotrophic wet meadow. The soils had been maintained in waterlogged condition for seven months, using two environmentally relevant SO4 2- concentrations (2 and 4 mmol L-1). The groundwater table was reduced in two successive steps: 10 cm below soil surface, and complete desiccation. Control pretreated soils did not show a decrease in soil pH during desiccation, due to adequate buffering by bicarbonate. However, both SO4 2--pretreated groups showed a significant drop in pH (from 6.5 to 4.5) caused by additional sulfide oxidation, leading to high SO4 2- concentrations (10 and 16 mmol L-1, respectively). Cation exchange and acidification-related solubilization processes induced the mobiliztation of base cations and potentially phytotoxic metals like Al. Nutrient concentrations in soil moisture were influenced strongly by SO4 2- pretreatment, showing distinct patterns for P, N and K. Therefore, S polluted groundwater and surface water may severely increase the sensitivity of wetlands to desiccation. The results are discussed in relation to wetland management.  相似文献   

15.
A method for the determination of Ag in soils using atomic absorption spectrometry is described. The method involves the extraction of Ag from soil by boiling with 6 M HC1 followed by separation of the extracted Ag into methylisobutylketone (MIBK) using sodium N, N-diethyldithiocarbamate (DDTC) as a complexing agent. Silver is determined in the MIBK by direct aspiration into a flame atomic absorption spectrophotometer. The detection limit (S/N=2) for this method is 0.0001 mg L?1 for aqueous solution and 0.002 mg kg?1 for soil. The Ag content of even unpolluted soils can be determined by this method. The determination of Ag using this method was shown to be unaffected by the presence of various ions in the soil. The method was able to recover nearly 100% of Ag added to soil and approximately the same amounts of soil Ag were determined using this method as with HF-H2SO4 decomposition. For 3 reference soils of the Canadian Certified Reference Materials Project (CCRMP), the Ag values obtained by this method were the same as the values determined by Ebarvia et al. (1988). The amounts of Ag in the soils sampled in the Ichi River basin and the Ichi River sediments were determined using this method. This area has been polluted by Cd, Cu, Pb, and Zn discharged from the Ikuno Mine and Smelter. The Ag values ranged from 0.27 to 6.89 mg kg?1 which were much higher than the values of the unpolluted soils.  相似文献   

16.
A variety of different methods have been used for the determination of inorganic soil SO42? in the past, which makes it difficult to compare SO42? contents of soils. Sulfate was extracted with the four commonly used extraction solutions 0.5 M NaHCO3, 0.02 M NaH2PO4, 0.1 M NaCl and H2O from A-, Bw- and Bs-horizons of six acid forest soils. 5 g of field moist soil were percolated with a flow rate of 5 ml/h and percolations were repeated as long as SO42? was detectable in the percolate (> 0.5 mg SO4·l?1). NaCl and NaHCO3 extracted highest amounts of total inorganic SO42? in A-horizons, but NaHCO3 caused analytical problems. NaHCO3 and NaH2PO4 yielded highest amounts in B-horizons. With the exception of Bs-horizons more than 70% of the total inorganic SO42? was H2O-soIuble. Thus, if H2O-soluble SO42? is defined as reversibly bound, the greater part of the inorganic SO42? in the investigated acid forest soils was reversibly bound. This SO42? fraction can potentially be released, if SO42? deposition decreases.  相似文献   

17.
Changes of the qualitative and quantitative features of snow and rain during the winter and the vegetation period, respectively, were studied during three years (1997–1999). The sites were located on Che?mova Góra Mt. in the Ojców National Park (South Poland), which is one of the most polluted areas in Poland. Standard methods of measuring bulk precipitation were used according to the ICP Forest Manual. One plot was near the summit part (OPN2), and the other plot was in the lower part close to the foot (OPN5) of the Che?mowa Góra Mt. The total amount of Ca decreased during the study period, while NO3 ? and SO4 ?2 decreased only in the vegetation period. During the winter period the snow carried high amounts of Cl?, NO3 ?, SO4 ?2, Na, Mg, and Ca. A decrease in pH was noticed during the winter periods, whereas an increase in pH was found during the vegetation period. Higher element concentrations were always found in the upper plot compared to the lower situated plot. This indicated that the upper and more exposed parts of the mountains in the Park were under higher pollution stress.  相似文献   

18.
The tall, aerodynamically rough surfaces of forests provide for the efficient exchange of heat and momentum between terrestrial surfaces and the atmosphere. The same properties of forests also provide for large potential rates of deposition of pollutant gases, aerosols and cloud droplets. For some reactive pollutant gases, including SO2, HNO3 and NH3, rates of deposition may be large and substantially larger than onto shorter vegetation and is the cause of the so called "filtering effect" of forest canopies. Pollutant inputs to moorland and forest have been compared using measured ambient concentrations from an unpolluted site in southern Scotland and a more polluted site in south eastern Germany. The inputs of S and N to forest at the Scottish site exceed moorland by 16% and 31% respectively with inputs of 7.3 kg S ha-1 y and 10.6 kg N ha-1 y-1. At the continental site inputs to the forest were 43% and 48% larger than over moorland for S and N deposition with totals of 53.6 kg S ha-1 y-1 and 69.5 kg N ha-1 y-1 respectively. The inputs of acidity to global forests show that in 1985 most of the areas receiving > 1 kg H+ ha-1 y-1 as S are in the temperate latitudes, with 8% of total global forest exceeding this threshold. By 2050, 17% of global forest will be receiving > 1 kg H-1 ha-1 as S and most of the increase is in tropical and sub-tropical countries. Forests throughout the world are also exposed to elevated concentrations of ozone. Taking 60 ppb O3 as a concentration likely to be phytotoxic to sensitive forest species, a global model has been used to simulate the global exposure of forests to potentially phytotoxic O3 concentrations for the years 1860, 1950, 1970, 1990 and 2100. The model shows no exposure to concentrations in excess of 60 ppb in 1860, and of the 6% of global forest exposed to concentrations > 60 ppb in 1950, 75% were in temperate latitudes and 25% in the tropics. By 1990 24% of global forest is exposed to O3 concentrates > 60 ppb, and this increases to almost 50% of global forest by 2100. While the uncertainty in the future pollution climate of global forest is considerable, the likely impact of O3 and acid deposition is even more difficult to assess because of interactions between these pollutants and substantial changes in ambient CO2 concentration, N deposition and climate over the same period, but the effects are unlikely to be beneficial overall.  相似文献   

19.
Using chloride solutions as extractants, 6.4–18.4% of Ag were extracted from polluted Annaka and Fuchu soils, whereas only 0.06–0.08% Ag were extractable using NH4OAc, NH4NO3 or (NH4)2SO4 solution. In the case of unpolluted Konosu and Nagano soils, 28.3–47.0% of Ag were extracted by KCl and 0.7–1.0% of Ag were by NH4OAc. The silver extracted with chloride solution was assumed to be derived from residual fractions.  相似文献   

20.
About 90% of total S in a peat profile from a valley mire was associated with organic matter, and in the anaerobic zone, most of the remaining S could be distilled as H2S (steam-volatile H2S). [35S]SO2?4 was rapidly incorporated into both organic and steam-volatile H2S pools, with preferential labelling of organic matter at the surface of the peat (? 10 cm depth) and of steam-volatile H2S at greater depth (? 10 cm depth). Less than 2% of the steam-volatile H2S could be accounted for as H2S in solution in the pore water, and evidence suggesting FeS as the source of this fraction is presented. Less than 2% of the total S in the profile was present as FeS2 or S°, and S2O2?3 and S4O2?6 could not be detected. Measurements of total S content of the peat and estimates of the age of the deposit indicate a rate of S accumulation of 4.76–6.06 g S m?2yr?1. The results are discussed in the context of the mechanisms of S transformations and uptake by other mire systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号