首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
David  M.B.  Cupples  A.M.  Lawrence  G.B.  Shi  G.  Vogt  K.  Wargo  P.M. 《Water, air, and soil pollution》1998,105(1-2):183-192
The responses of temperate and boreal forest ecosystems to increased nitrogen (N) inputs have been varied, and the responses of soil N pools have been difficult to measure. In this study, fractions and pool sizes of N were determined in the forest floor of red spruce stands at four sites in the northeastern U.S. to evaluate the effect of increased N inputs on forest floor N. Two of the stands received 100 kg N ha-1 yr-1 for three years, one stand received 34 kg N ha-1 yr-1 for six years, and the remaining stand received only ambient N inputs. No differences in total N content or N fractions were measured in samples of the Oie and Oa horizons between treated and control plots in the three sites that received N amendments. The predominant N fraction in these samples was amino acid N (31-45% of total N), followed by hydrolyzable unidentified N (16-31% of total N), acid-soluble N (18-22% of total N), and NH4 + (9-13% of total N). Rates of atmospheric deposition varied greatly among the four stands. Ammonium N and amino acid N concentrations in the Oie horizon were positively related to wet N deposition, with respective r2 values of 0.92 and 0.94 (n = 4, p < 0.05). These relationships were somewhat stronger than that observed between atmospheric wet N deposition and total N content of the forest floor, suggesting that these pools retain atmospherically deposited N. The NH4 + pool may represent atmospherically deposited N that is incorporated into organic matter, whereas the amino acid N pool could result from microbial immobilization of atmospheric N inputs. The response of forest floor N pools to applications of N may be masked, possibly by the large soil N pool, which has been increased by the long-term input of N from atmospheric deposition, thereby overwhelming the short-term treatments.  相似文献   

2.
Experiments were conducted between 2003 and 2008 to examine how N additions influence soil organic C (SOC) and its fractions in forests at different succession stages in the subtropical China. The succession stages included pine forest, pine and broadleaf mixed forest, and old‐growth monsoon evergreen broadleaf forest. Three levels of N (NH4NO3)‐addition treatments comprising control, low‐N (50 kg N ha–1 y–1), and medium‐N (100 kg N ha–1 y–1) were established. An additional treatment of high‐N (150 kg N ha–1 y–1) was established in the broadleaf mixed forest. Soil samples were obtained in July 2008 for analysis. Total organic C (TOC), particulate organic C (POC, > 53 μm), readily oxidizable organic C (ROC), nonreadily oxidizable organic C (NROC), microbial biomass C (MBC), and soil properties were analyzed. Nitrogen addition affected the TOC and its fractions significantly. Labile organic‐C fractions (POC and ROC) in the topsoil (0–10 cm) increased in all the three forests in response to the N‐addition treatments. NROC within the topsoil was higher in the medium‐N and high‐N treatments than in the controls. In the topsoil profiles of the broadleaf forest, N addition decreased MBC and increased TOC, while no significant effect on MBC and TOC occurred in the pine and mixed forests. Overall, elevated N deposition increased the availability of labile organic C (POC and ROC) and the accumulation of NROC within the topsoil irrespective of the forest succession stage, and might enhance the C‐storage capacity of the forest soils.  相似文献   

3.
Long-term and short-term N deposition effects on N2O and NO emissions from forest soils were compared. Long-term NH3 deposition (> 20 years) from a poultry farm to a downwind woodland (decreasing from 73 to 18 kg N ha-1 y-1, 30 to 110 m downwind of the farm) resulted in the re-emission of 6% and 14% of NH3-N deposited as N2O-N and NO-N, respectively. However, when in short-term (2-3 years) field experiments the atmospheric N deposition to mature conifer plantations was raised by fumigation with NH3 to 15 kg N ha-1 y-1 or by acid mist to 48 and 96 kg N ha-1 y-1 the N deposited was immobilised. In the acid mist experiment more than 2 years of acid mist (48 and 96 kg N ha-1 y-1) were required to significantly increase N2O emissions from -0.3 μg N2O-N m-2 h-1 (control) to 0.5 and 5.7 μg N2O-N m-2 h-1, respectively. This suggests, that N deposition simulation studies in soil ecosystems, which have previously not been exposed to high rates of N (by deposition or fertilisation), need to be long-term. Also, measurements of N2O and/or NO may be a non-destructive, quick indicator of the N status of the soil.  相似文献   

4.
Forest soils may become an increasingly important source of N2O, due to disturbances to the forest ecosystem (e.g. fertilization to increase growth, or atmospheric deposition of air-borre nitrogen compounds such as NH3, NO3 and NOx). A lysimeter experiment was used to study the effects of different amounts of N input [0 (control), 30 kg (Medium) and 90 kg (High) N ha?1 y?1 as NH4NO3] on fluxes of N2O, measured by the close chamber method. The estimated annual N2O flux were about 0.4 kg N2O-N ha?1 for control, 0.9 kg N2O-N ha?1 for medium N and 1.8 kg N2O-N ha?1 for high N treatments. The relation between the estimated annual N2O flux and fertilizer dose showed an almost perfect proportionality between fertilizer dose and the increase in N2O flux. This is important, since one crucial question is wether we can extrapolate results from high N-doses to situations with low amounts of N inputs prevailing in forests exposed to moderate input of N. The increase in N2O fluxes from the control to the fertilised treatments corresponds to 1.7% of the annual N input in the medium N treatments and 1.6% of the annual input in the high N treatment.  相似文献   

5.
Studies on N balance due to N inputs and outputs and soil N retention to measure cropping system performance and environmental sustainability are limited due to the complexity of measurements of some parameters. We measured N balance based on N inputs and outputs and soil N retention under dryland agroecosystem affected by cropping system and N fertilization from 2006 to 2011 in the northern Great Plains, USA. Cropping systems were conventional tillage barley (Hordeum vulgaris L.)–fallow (CTB‐F), no‐tillage barley–fallow (NTB‐F), no‐tillage barley–pea (Pisum sativum L.) (NTB‐P), and no‐tillage continuous barley (NTCB). In these cropping systems, N was applied to barley at four rates (0, 40, 80, and 120 kg N ha?1), but not to pea and fallow. Total N input due to N fertilization, pea N fixation, soil N mineralization, atmospheric N deposition, nonsymbiotic N fixation, and crop seed N and total N output due to grain N removal, denitrification, volatilization, N leaching, gaseous N (NOx) emissions, surface runoff, and plant senescence were 28–37% greater with NTB‐P and NTCB than CTB‐F and NTB‐F. Total N input and output also increased with increased N rate. Nitrogen accumulation rate at the 0–120 cm soil depth ranged from –32 kg N ha?1 y?1 for CTB‐F to 40 kg N ha?1 y?1 for NTB‐P and from –22 kg N ha?1 y?1 for N rates of 0 kg N ha?1 to 45 kg N ha?1 y?1 for 120 kg N ha?1. Nitrogen balance ranged from 1 kg N ha?1 y?1 for NTB‐P to 74 kg N ha?1 y?1 for CTB‐F. Because of increased grain N removal but reduced N loss to the environment and N fertilizer requirement as well as efficient N cycling, NTB‐P with 40 kg N ha?1 may enhance agronomic performance and environmental sustainability while reducing N inputs compared to other management practices.  相似文献   

6.
Increasing nitrogen deposition due to human activity might have a serious impact on ecosystem functions such as the nitrogen transformations conducted by microbes. We therefore focused on nitrous oxide (N2O) production as an indicator of soil microbial activity. The rates of N2O emission from the forest floor were measured every two weeks in two forest stands in the central part of Japan: a red pine stand at Kannondai and a deciduous stand at Yasato. Nitrogen deposition rates by throughfall were 30.6 kg N ha?1 y?1 at Kannondai and 15.7 at Yasato. The rates of N2O emission ranged from 0.5 to 14.2 µg N m?2 h?1 (mean 4.5) at Kannondai and from 0.2 to 7.0 µg N m?2 h?1 (mean 2.3) at Yasato. The N2O emission rate showed significant positive relationships with soil temperature and nitrogen deposition during the preceding two weeks. The annual emission rates of N2O were 0.38 kg N ha?1 y?1 at Kannondai and 0.20 at Yasato. As a the annual nitrogen deposition, these rates were 1.23% at Kannondai and 1.27% at Yasato.  相似文献   

7.
Atmospheric deposition of N and S on terrestrial and aquatic ecosystems causes effects induced by eutrophication and acidification. Effects of eutrophication include forest damage, NO3 pollution of groundwater and vegetation changes in forests, heathlands and surface waters due to an excess of N. Effects of acidification include forest damage, groundwater pollution, and loss of fish populations due to Al mobilization. Critical loads (deposition levels) for N and S on terrestrial and aquatic ecosystems in the Netherlands related to these effects have been derived by empirical data and steady-state acidification models. Critical loads of N generally vary between 500 and 1500 mol c ha?1 yr?1 for forests, heathlands and surface waters and between 1500 and 3600 for phreatic groundwaters. Critical loads of total acid (S and N) vary between 300 to 500 mol c ha?1 yr?1 for phreatic groundwaters and surface waters and between 1100 to 1700 mol ha?1 yr?1 for forests. On the basis of the various critical loads a deposition target for total acid of 1400 mol c ha?1 yr?1 has been set in the Netherlands from which the N input should be less than 1000 mol c ha?1 yr?1. This level, to be reached in the year 2010, implies an emission reduction of 80–90% in SO2, NO x and NH3 in the Netherlands and of about 30% in neighboring countries compared to 1980 emissions.  相似文献   

8.
Soil acid phosphomonoesterase activity(APA)plays a vital role in controlling phosphorus(P)cycling and reflecting the current degree of P limitation.Responses of soil APA to elevating nitrogen(N)deposition are important because of their potential applications in addressing the relationship between N and P in forest ecosystems.A study of responses of soil APA to simulated N deposition was conducted in three succession forests of subtropical China.The three forests include a Masson pine(Pinus massoniana)forest (MPF)-pioneer community,a coniferous and broad-leaved mixed forest(MF)-transition community and a monsoon evergreen broad-leaved forest(MEBF)-climax community.Four N treatments were designed for MEBF:control(without N added),low-N(50 kg N ha-1 year-1),and medium-N(100 kg N ha-1 year-1)and high-N(150 kg N ha-1 year-1),and only three N treatments(i.e.,control, low-N,medium-N)were established for MPF and MF.Results showed that soil APA was highest in MEBF,followed by MPF and MF.Soil APAs in both MPF and MF were not influenced by low-N treatments but depressed in medium-N treatments.However,soil APA in MEBF exhibited negative responses to high N additions,indicating that the environment of enhanced N depositions would reduce P supply for the mature forest ecosystem.Soil APA and its responses to N additions in subtropical forests were closely related to the succession stages in the forests.  相似文献   

9.
In six small catchments located at the Cordillera de la Costa in southern Chile (40° S), concentrations and fluxes of NO3-N, NH4-N, organic-N, total-N and total-P in bulk precipitation and runoff water were measured. The main objective of this study was to compare nitrogen and phosphorus retention of catchments with varying land cover of native forest and exotic plantations, in order to evaluate possible effects of land use change. Nitrate-N was the dominant fraction (>50%) of nitrogen loss, especially in the catchments dominated by exotic plantations. In the catchment with native forests, NO3 ? only contributed with 34% of the nitrogen loss and DON was the main output with 55%. Annual NO3 ? export was lower in the catchment with native forest compared to the catchments with exotic plantations where the streamflow output exceed the precipitation input. Average inputs of total-N were 2.6 kg ha?1 year?1 (DIN?=?1.4 kg ha?1 year?1, DON?=?1.2 kg ha?1 year?1) and outputs were 1.7 kg ha?1 year?1 (DIN?=?1.2 kg ha?1 year?1, DON?=?0.5 kg ha?1 year?1). Annual retention of total nitrogen fluctuated between 61% in a catchment dominated by native forests to 15% in catchments dominated by exotic plantations of Eucalyptus sp. Nitrogen retention was positively related with native forest coverage. The N retention capacity of the catchments could be both attributed to consequences of clear cutting practices and differences in vegetation cover.  相似文献   

10.
Input-output budgets for dissolved inorganic nitrogen (DIN) are summarized for 24 small watersheds at 15 locations in the northeasternUnited States. The study watersheds are completely forested, free of recent physical disturbances, and span a geographical region bounded by West Virginia on the south and west, and Maine on the north and east. Total N budgets are not presented; however, fluxes of inorganic N in precipitation and streamwater dominate inputs and outputs of N at these watersheds. The range in inputs of DIN in wet-only precipitation from nearby National Atmospheric Deposition Program (NADP) sites was 2.7 to 8.1 kg N ha-1 yr-1 (mean = 6.4 kg N ha-1 yr-1; median = 7.0 kg N ha-1 yr-1). Outputs of DIN in streamwater ranged from 0.1 to 5.7 kg N ha-1 yr-1 (mean = 2.0 kg N ha-1 yr-1; median = 1.7 kg N ha-1 yr-1). Precipitation inputs of DIN exceeded outputs in streamwater at all watersheds, with net retention of DIN ranging from 1.2 to 7.3 kg N ha-1 yr-1 (mean = 4.4 kg N ha-1 yr-1; median = 4.6 kg N ha-1 yr-1). Outputs of DIN in streamwater were predominantly NO3-N (mean = 89%; median = 94%). Wet deposition of DIN was not significantly related to DIN outputs in streamwater for these watersheds. Watershed characteristics such as hydrology, vegetation type, and land-use history affect DIN losses and may mask any relationship between inputs and outputs. Consequently, these factors need to be included in the development of indices and simulation models for predicting 'nitrogen saturation' and other ecological processes.  相似文献   

11.
Input-output fluxes of nitrogen (N) and other ecosystem data from 64 European forest ecosystem studies have been compiled in a database (ECOFEE). Sites with high N deposition (up to 64 kg N ha–1yr–1) were characterized by high input of ammonia/ammonium. The deposition of oxidized N was usually only 10 to 15 kg N ha–1yr–1 Of all the sites included, 60 % leached more than 5 kg N ha–1yr–1. Elevated nitrate leaching appeared at inputs above 10 kg N ha–1yr–1. At several sites with inputs of 15–25 kg N ha–1yr–1 nitrate leaching approached the N input, whereas ammonium dominated sites with high input still retained c. 50 % of the input.  相似文献   

12.
Piirainen  S.  Finér  L.  Starr  M. 《Water, air, and soil pollution》1998,105(1-2):165-174
Nitrogen deposition, leaching, and retention were monitored in a mature spruce (Picea abies Karsten) dominated mixed boreal forest in eastern Finland. Bulk precipitation, throughfall, stemflow, and percolation through the podzolic soil profile were monitored from 1993 to 1996. Mean annual bulk deposition of total N was 3.83 kg ha-1, of which 33% was NH4 +, 26% was NO3 - , and 41% was organic N. Throughfall+stemflow flux of total N was 2.93 kg ha-1 yr-1. Sixty-four % of NH4 + and 38% of NO3 - in bulk precipitation was retained by tre three canopy. Organic N was released (0.27 kg ha-1 yr-1) from the tree canopy. Nitrate-N was retained and organic N was leached as the water passed through the ground vegetation and soil O-horizon. Ammonium-N and organic N were retained mainly in the E-horizon. The output of total N from the E-horizon was only 5% of the total N deposition in the forest stand during the study period and it was mainly as organic N. The output of inorganic N forms from under B-horizon was seasonal and occurred mainly at spring snowmelt.  相似文献   

13.
Mexico City experiences some of the most severe air pollution in the world. Ozone injury has been documented in sensitive tree species in urban and forested areas in the Valley of Mexico. However, little is known of the levels of other atmospheric pollutants and their ecological effects on forests in the Valley of Mexico. In this study bulk throughfall deposition of inorganic nitrogen (N) and sulfur (S) was measured for one year at a forested site upwind (east) and downwind (southwest) of Mexico City. Edaphic and plant (Pinus hartwegii Lindl.) indicators of N and S nutrient status were also measured. Streamwater NO3 - and SO4 2- concentrations were also determined as an indicator of watershed-level N and S loss. Annual bulk throughfall deposition of inorganic N and S at the high-pollution forested site 23 km southwest of Mexico City (Desierto de los Leones National Park; DL) was 18.5 and 20.4 kg ha-1. Values for N and S deposition at Zoquiapan (ZOQ), a relatively low-pollution site 53 km east of Mexico City, were 5.5 and 8.8 kg ha-1 yr-1. Foliar concentrations of N, foliar N:P and C:N ratios, extractable soil NO3 -, and streamwater NO3 - concentrations indicate that the forest at DL is N enriched, possibly as a result of chronic N deposition. Sulfur concentrations in current-year foliage were also slightly greater at DL than at ZOQ, but S concentrations in one-year-old foliage were not statistically different between the two sites. Streamwater concentrations of NO3 - ranged from 0.8 to 44.6 μEq L-1 at DL compared to 0.0 to 11.3 μEq L-1 at ZOQ. In summary, these findings support the hypothesis that elevated N deposition at DL has increased the level of available N, increased the N status of P. hartwegii, and resulted in export of excess N as NO3 - in streamwater.  相似文献   

14.
The impacts of increased nitrogen (N) inputs into temperate ecosystems via atmospheric nitrogen deposition on nitrogen cycling and nitrogen retention have been described in a variety of ecosystem types. The role of secondary nutrients such as phosphorus (P) in ecosystem responses to increased N inputs is less well-understood. N and P availability are likely to interact to influence ecosystem productivity and N cycling rates, and this interaction would be expected to vary as N inputs increase. Furthermore, N and P inputs may affect plant-mycorrhizal associations and the ability of arbuscular mycorrhizae (AM) to colonize roots. We added nitrogen (97 kg ha-1 yr-1) and phosphorus (30 kg ha-1 yr-1) to an oak-maple forest in southwestern Virginia (U.S.A.) from 1994 through 1996. Inorganic nitrogen concentrations, net nitrogen mineralization, net nitrification rates and arbuscular mycorrhizal inoculum potential (MIP) were assessed during the growing season in 1996. Responses of the understory vegetation and soil N cycling to N addition suggested that the ecosystem was strongly N-limited. Nitrogen cycling rates were not affected by P inputs, though P addition increased P availability and decreased MIP. It was hypothesized that P availability may have more significant influences on N cycling and the plant-mycorrhizal association in ecosystems showing stronger symptoms of nitrogen saturation. Results suggest that the use of P fertilization would be effective in alleviating P-deficiency in vegetation receiving elevated atmospheric N deposition, but perhaps at the cost of benefits that associations with arbuscular mycorrhizae provide.  相似文献   

15.
During recent decades, forest ecosystems have been exposed to high levels of atmospheric pollution, and it has been argued that this affects the composition and activity of decomposer communities and, subsequently, ecosystem functioning. To investigate the effects of atmospheric pollution on protozoa and microflora, a new experimental design was used. Undisturbed soil columns, originating from six coniferous forests across Europe and representing different stages of soil acidification, were transferred to two Scots pine forests (Fontainebleau and Wekerom) with different levels of N and S deposition (NH4 +-N=4.90 and 42.50?kg ha–1 year–1; SO4 S=10.90 and 30.40?kg ha–1 year–1, respectively). The number of protozoa, microbial biomass C and microbial activity were estimated in the organic layer (Of) of the transferred soils at the two host sites after 21 months of incubation. The experiment aimed at answering two questions: (1) Do changes in environmental conditions, studied by transferring soils from one site to another, affect protozoa and microbial communities and, if so, (2) how important are changes in both N and S deposition in explaining the effects of soil transfer on protozoa and microbial communities? The interaction between protozoa and microbial communities was addressed with regard to these changes in environmental conditions. No effect of enhanced N or S deposition on protozoan numbers and microbial biomass C, basal respiration and caloric quotient was revealed. Reciprocal transfer of various soil columns resulted in lower abundance and activity of protozoa and microbes. This reduction could not be explained by differences in N and S deposition, but by differences in microclimate and adaptation. In some cases, protozoa correlated with pH, C/N ratio, P and S content and leached mineral N.  相似文献   

16.
Critical acid loads for Dutch forests were derived using a multi-layer steady-state model that includes canopy interactions, nutrient cycling, mineral weathering and N transformations. Values were calculated for combinations of 12 tree species and 23 soil types for a 10×10 km grid. Critical acid loads thus derived increased with decreasing soil depth. Nearly 90% of the values varied approximately between 1500 and 4000 molc ha?1 yr?1 at 10 cm soil depth and between 750 and 2000 molc ha?1 yr?1 at the bottom of the rootzone. Separate critical loads calculated for N and S at the bottom of the rootzone varied between approximately 300 and 1000 molc ha?1 yr?1 for N and between 150 and 1250 molc ha?1 yr?1 for S. Using deposition data of 1990, a median reduction of the deposition by approximately 75% was calculated to achieve the critical loads at the bottom of the rootzone. The overall uncertainty in this value was estimated to be about 10%, although it can be much larger for specific soil types such as clay and peat soils. For N a larger reduction deposition percentage was calculated than for S, especially for coniferous forests with a high present N input.  相似文献   

17.
Pools and fluxes of N in wetland vegetation and soils were compared with an adjacent upland site to assess the relative importance of wetland versus upland landscapes in watershedN-retention in the Adirondack Mountains of New York (U.S.A.).The majority of N storage occurred in forest soils and wetlandpeat deposits (96 and 99% of total N in upland forests andwetlands, respectively). Annual N-uptake (49 kg N ha-1yr-1) was greater for wetland vegetation than that ofupland vegetation (30 kg N ha-1 yr-1). In the wetlandthe supply of N from mineralization (36 kg N ha-1yr-1) was less than N-uptake; in contrast, upland Nmineralization (76 kg N ha-1 yr-1) exceeded Nvegetation uptake. Annual N-storage in peat was small due to low peat accretion rates. Wetlands acted as a sink for N andstored a disproportionally high fraction (15%) of catchment Nin relation to their relatively small surface area (~4%)within the catchment.  相似文献   

18.
Elevated atmospheric inputs of NH4+ and NO3 have caused N saturation of many forest ecosystems in Central Europe, but the fate of deposited N that is not bounded by trees remains largely unknown. It is expected that an increase of NO3 leaching from forest soils may harm the quality of groundwater in many regions. The objective of this study was to analyze the input and output of NH4+ and NO3 at 57 sites with mature forest stands in Germany. These long‐term study sites are part of the European Level II program and comprise 17 beech, 14 spruce, 17 pine, and 9 oak stands. The chloride balance method was used to calculate seepage fluxes and inorganic N leaching below the rooting zone for the period from 1996 to 2001. Nitrogen input by throughfall was significantly different among most forest types, and was in the order: spruce > beech/oak > pine. These differences can be largely explained by the amount of precipitation and, thus, it mirrors the regional and climatic distribution of these forest types in Germany. Mean long‐term N output with seepage was log‐normal distributed, and ranged between 0 and 26.5 kg N ha–1 yr–1, whereby 29 % of the sites released more than 5 kg N ha–1 yr –1. Leaching of inorganic N was only significantly lower in the pine stands (P < 0.05) compared with leaching rates of the spruce stands. Median N output : input ratio ranged between 0.04 and 0.11 for the beech, oak, and pine stands, while the input : output ratio of the spruce stands was 0.24, suggesting a higher risk of NO3 leaching in spruce forests. Following log‐transformation of the data, N input explained 38 % of the variance in N output. The stratification of the data by the C : N ratio of the O horizon or the top mineral soil revealed that forests soils with a C : N ratio < 25 released significantly more NO3 (median of 4.6 kg N ha–1 yr–1) than forests with a C : N ratio > 25 (median of 0.8 kg N ha–1 yr–1). The stratification improved the correlation between N input and N output for sites with C : N ratios < 25 (r2 = 0.47) while the correlation for sites with C : N ratios > 25 was weaker (r = 0.21) compared with the complete data set. Our results suggest that NO3 leaching may increase in soils with wide C : N ratios when N deposition remains on a high level and that the potential to store inorganic N decreases with C : N ratios in the O horizons becoming more narrow.  相似文献   

19.
Atmospheric gases and particulates were collected using four-stage filter-pack in Chunchon from January through December in 1999. Particulate SO4 2? and NO3 ?, and gaseous HNO3, SO2 and NH3 were analyzed. Annual average concentration of SO4 2?(S), NO3 ?(S), HNO3 (g), SO2(g) and NH3(g) were 5.75µg/m3, 4.98µg/m3, 0.33ppb, 1.52ppb and 7.25ppb, respectively. Annual dry deposition fluxes were estimated using the measured concentration and dry deposition velocity published by other research group. Annual dry deposition of S was 287kg · (km)?2·y?1, which accounted for about 30% of total S deposition. For N deposition, dry deposition is predominant; about 70% of total N deposition was through dry process mostly as forms of NH3 and HNO3.  相似文献   

20.
Rainfall, stemflow, and throughfall were collected from 1996 to 1999 at two types of forest sites: (1) forests near the traffic roads and urban areas and (2) forests away from the urban areas at Mt. Gokurakuji, Hiroshima, western Japan in order to estimatethe effects of anthropogenic activities on atmospheric deposition. Rainfall deposition for major ions showed small differences between the sites. The NO3 - and SO4 2-concentrations in stemflow were higher at the urban-facing slope than at the mountain-facing slope. Throughfall deposition of NO3 - and SO4 2- was also higher at urban-facing slopes. Net throughfall (NTF) deposition (throughfall minus rainfall) of NO3 - and SO4 2- accounted for 77 and50% of the total throughfall deposition on urban-facing slopes, respectively, while it accounted for 44 and 23% on themountain-facing slopes, respectively. These results indicated a higher contribution from dry deposition on urban-facing slopes compared to mountain-facing slopes. Atmospheric N (NO3 - +NH4 +) deposition from throughfall was estimated to be around 17–26 kg N ha-1 yr-1 on urban-facing slopes, which was greater than the threshold of N deposition that could cause nitrogen leaching in Europe and the United States. The highload of atmospheric N deposition may be one of the factors bringing about the decline of pine forests on urban-facing slopesof Mt. Gokurakuji.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号