首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Sulphate sorption on to the surface of short‐range ordered minerals and precipitation of Al‐hydroxy sulphate contribute to the acid neutralizing capacity of soils. The correct measurement of total inorganic sulphate is thus essential in soils that are accumulating SO42– anions. We extracted SO42– by various solutions, namely 0.005 m Ca(NO3)2, 0.016 m KH2PO4, 0.5 m NH4F and 0.2 m acidic NH4‐oxalate (pH 3), from Vitric and Eutric Andosols exposed to prolonged deposition of acid and SO2 from an active volcano (Masaya, Nicaragua). We attributed sulphate extractable by KH2PO4 (20–3030 mg kg?1) to anion‐exchangeable SO42–, which was much smaller than NH4F‐ and oxalate‐extractable SO42– (400–9680 and 410–10 480 mg kg?1, respectively). Our results suggest the occurrence of a sparingly soluble Al‐hydroxy‐mineral phase extractable by both NH4F and oxalate. The formation of Al‐hydroxy minerals would result from the combination of enhanced weathering caused by strong acid loading and simultaneous occurrence of large SO42– concentrations in soil solution. Oxalate extracted slightly more inorganic SO42– than did NH4F, this additional amount of SO42– correlating strongly with oxalate‐extractable Si and Fe contents. Preferential occlusion of SO42– by short‐range ordered minerals, especially ferrihydrite, explains this behaviour. If we exclude the contribution of occluded sulphate then oxalate and NH4F mobilize similar amounts of SO42– and are believed to mobilize all of the inorganic SO42– pool.  相似文献   

2.
Various extractants used in current analytical procedures for the fractionation of sulphur (S) in soils were compared with respect to their ability to dissolve Al hydroxy sulphate minerals of defined composition (basaluminite, K alunite, mixtures of basaluminite and Na alunite). The minerals were synthesized and aged in the laboratory at 20°C and 50°C. The dissolution kinetics at 20°C of these Al hydroxy sulphates in deionized water, 0.02M HCl and 0.02M NaOH were also investigated. The dissolution stability of the Al hydroxy sulphate minerals increased in the order basaluminite < K alunite < Na alunite. The dissolving power of the reagents used increased in the order H2O ≤ 0.016M KH2PO4? 0.02M HCl ≈ acidic NH4 oxalate ≈ 0.5M NaHCO3 < Na2 CO3/NaHCO3 < 0.1M NH4F < 0.5M NH4F < 0.05M NaOH ≤ 0.05M LiOH. In Al hydroxy sulphate-containing soils, inorganic S is probably understimated and ester sulphate S overestimated, if the inorganic S pool is assessed by extraction with KH2PO4, Ca(H2PO4)2 or NaHCO3 solutions. The dissolution of all studied Al hydroxy sulphates, particularly that of K and Na alunite, in H2O and 0.02 M HCl is strongly delayed by kinetic restraints. Thus it seems unlikely that Al3+ or SO2?4 activites in soil solutions are strictly regulated by precipitation/dissolution equilibria of these minerals except for horizons with extraordinarily slow seepage water movement.  相似文献   

3.
The speciation of phosphorus (P) in native and degraded peat soils is an analytical challenge, and synchrotron‐based P K‐edge X‐ray absorption near‐edge structure (XANES) is a suitable method to gain information on P species in soils and organic materials. The objective of the present study was to test if P K‐edge XANES reflected differences in P fractions in fen peat due to sequential extraction and peat degradation. We investigated each one top‐ and subsoil sample of a Fibric Histosol, which differed in the degree of humification (H8 vs. H5) and concentration of total P (Pt) (1944 mg kg–1 vs. 436 mg kg–1). In the topsoil, residual P, H2SO4‐P, and NaOH‐P accounted for roughly the same proportions of Pt (≈30%). In the subsoil, residual P (64% of Pt) was more abundant than NaOH‐P (21% of Pt) and H2SO4‐P (10% of Pt). Among many different P reference standards, the P XANES spectra reflected differences in mineral P more distinctive than in organic P compounds. Phosphorus XANES spectra of the residues after each sequential extraction step all showed a prominent white‐line peak at around 2152 eV. Stepwise removal of resin‐P, NaHCO3‐P, and NaOH‐P were reflected mainly by the peak intensity but scarcely by distinct spectral features. Extraction with H2SO4 led to the disappearance of spectral features of Ca and Mg phosphates which is a first direct hint to these compounds in the peat. In conclusion, a combined sequential fractionation and spectroscopic (31P NMR, P K‐ and L‐edge XANES with linear‐combination fits) approach is proposed to overcome limitations of the present study and gain more insight into the P species in peat soils.  相似文献   

4.
Phosphorus availability in terrestrial ecosystems is strongly dependent on soil P speciation. Here we present information on the P speciation of 10 forest soils in Germany developed from different parent materials as assessed by combined wet‐chemical P fractionation and synchrotron‐based X‐ray absorption near‐edge structure (XANES) spectroscopy. Soil P speciation showed clear differences among different parent materials and changed systematically with soil depth. In soils formed from silicate bedrock or loess, Fe‐bound P species (FePO4, organic and inorganic phosphate adsorbed to Fe oxyhydroxides) and Al‐bound P species (AlPO4, organic and inorganic phosphate adsorbed to Al oxyhydroxides, Al‐saturated clay minerals and Al‐saturated soil organic matter) were most dominant. In contrast, the P speciation of soils formed from calcareous bedrock was dominated (40–70% of total P) by Ca‐bound organic P, which most likely primarily is inositol hexakisphosphate (IHP) precipitated as Ca3‐IHP. The second largest portion of total P in all calcareous soils was organic P not bound to Ca, Al, or Fe. The relevance of this P form decreased with soil depth. Additionally, apatite (relevance increasing with depth) and Al‐bound P were present. The most relevant soil properties governing the P speciation of the investigated soils were soil stocks of Fe oxyhydroxides, organic matter, and carbonate. Different types of P speciation in soils on silicate and calcareous parent material suggest different ecosystem P nutrition strategies and biogeochemical P cycling patterns in the respective ecosystems. Our study demonstrates that combined wet‐chemical soil P fractionation and synchrotron‐based XANES spectroscopy provides substantial novel information on the P speciation of forest soils.  相似文献   

5.
Abstract

Al toxicity in plants is related to the activity of Al3+ and Al‐hydroxy monomers in the soil solution, whereas Al complexed with ligands such as fluoride (F), sulphate (SO4 2‐), and oxalate is not toxic. Estimation of toxic Al relies on measurement of “labile”; Al after short contact times with colorimetric reagents or cation‐exchange resins. However, shifts in equilibrium may result in non‐toxic forms of Al reacting with the complexing agent or resin.

A series of laboratory experiments tested the degree to which labile Al is related to Al3+ in simplified media and compared methods of estimating labile Al in the presence of organic ligands and in soils. Cation‐exchange resins extracted more than the theoretical concentration of Al3+ from solutions containing a range of concentrations of OH and SO4 2‐. More Al was extracted in 15 s by 8‐hydroxy‐quinoline than by Chelex‐100 from solutions of Al‐humate at pH 4. In sands which had been spiked with Al and organic matter, the estimation of labile Al varied with both the method of measurement and type of extract. The cations present in commonly used soil‐extracting chloride solutions can decrease the proportion of organically complexed Al.  相似文献   

6.
X-ray absorption near edge structure (XANES) spectra at the sulfur (S) K-edge (E=2472 eV) were compared for bulk soil material, humic and fulvic acid fractions, and different particle size separates from Ah horizons of two arable Luvisols, from an O and a Bs horizon of a Podzol under Norway spruce forest, and from an H horizon of a Histosol (peat bog). In the bulk soil samples, the contribution of reduced organic S (organic mono- and disulfides) to total sulfur increased from 27% to 52%, and the contribution of ester sulfate and SO42−-S decreased from 39% to 14% of total S in the following order: arable Luvisols Ah—forested Podzol O—Histosol H. This sequence reflects the increasing organic carbon content and the decreasing O2 availability in that order. Neither sulfonate nor inorganic sulfide was detected in any of the bulk soil samples. For all samples except the Podzol Bs, the XANES spectra of the bulk soils differed considerably from the spectra of the humic and acid fractions of the respective soils, with the latter containing less reduced S (16-44% of total S) and more oxidized S (sulfone S: 19-35%; ester sulfate S: 14-38% of total S). Also the S speciation of most particle size fractions extracted from the Ah horizon of the Viehhausen Luvisol and the Bs horizon of the Podzol was different from that of the bulk soil. For both soils, the contribution of oxidized S species to total S increased and the contribution of sulfoxides and organic mono- and disulfides decreased with decreasing particle size. Thus, sulfur K-edge XANES spectra of alkaline soil extracts, including humic and fulvic acids or of particle size separates are not representative for the S speciation of the original soil sample they are derived from. The differences can be attributed to (i) artificial changes of the sulfur speciation during alkaline extraction (conversion of reduced S into oxidized S, loss of SO42− during purification of the extracts by dialysis) or particle size separation (carry-over of water-soluble S, such as SO42−), but also to (ii) preferential enrichment of oxidized S in hydrophilic water-soluble soil organic matter (ester sulfate) and in the clay fraction of soils (ester sulfate, adsorbed SO42−).  相似文献   

7.
Abstract

The beneficial action of gypsum in suppressing aluminum (Al) toxicity in Bt horizons of Ultisols is related to the self‐liming effect of the adsorption of sulphate (SO4 2‐) ion. The relationship between SO4 2‐ adsorption by gypsum‐amended soils and some components and properties of 38 surface and subsurface horizons from seven Palexerults in western and central Spain was analyzed. The highest correlations of maximal SO4 2‐ adsorption as determined from langmuir isotherms were with clay, free iron oxyhydroxides (Fedcb), and exchangeable Al contents, and pH. Liming reduces SO4 2’ ion adsorption; consequently, the joint application of limestone and gypsum to the surface of these soils results in increased availability of gypsum for the subsurface horizons.  相似文献   

8.
In regions with little atmospheric input of sulphur (S) and S‐poor parent material, the bio‐availability of S, which is dependent on its speciation, may limit ecosystem production and succession. In our study, soil S speciation in two glacier forefield soil chronosequences (Hailuogou Glacier, Gongga Shan, China; Damma Glacier, Swiss Alps) was investigated for the first time. Different S species were quantified by synchrotron‐based X‐ray absorption near‐edge structure (XANES) spectroscopy at the S K‐edge. Both chronosequences show similar patterns and pedogenetic trends of their topsoil S status. Topsoil concentrations of total S were correlated with the concentrations of organic carbon and pedogenic Fe/Al oxyhydroxides. Both moraine materials contained inorganic sulphides, which in the topsoil were oxidized within 30 (Hailuogou) or 75 years (Damma) of soil development after deglaciation. About 50% of total S in the fresh moraine material at Hailuogou and 75% of that in the 15 year‐old soil at Damma was organically‐bound. During initial soil development, the contribution of organic S to total S increased at the expense of inorganic sulphide and sulphate, resulting in organic S percentages > 90% of total topsoil S after 30 (Hailuogou) and 75 (Damma) years of pedogenesis. Organic S compounds with electronic oxidation states of the S atom > + 1.5 (sulphoxides, sulphones, sulphonates and ester sulphates) dominated the organic S pool in all soils. Hence, microbial degradation of non‐sulphide organic S (sulphonates and ester sulphates) is probably important to mitigate S scarcity caused by limited availability of SO42?‐S in these soils. Changes in topsoil S speciation during initial stages of pedogenesis and ecosystem succession in glacier forefields under a cool, humid climate appear to be governed by combined effects of mineral weathering (oxidation of inorganic sulphides and formation of S‐adsorbing sesquioxides), accumulation and microbial turnover of soil organic matter and the type of vegetation succession.  相似文献   

9.
Acidic groundwaters and soils in Halland County (Hailands län), southwest Sweden, have been investigated with respect to conditions of soluble aluminium (Al) and sulphate (SO4 2?. Basic Al-sulphate, Fe-oxide, Al-oxide, Al-hydroxide and clay minerals, are discussed and evaluated in their roles for governing Al and SO4 2? in the groundwaters. Based on this investigation, it is suggested that Al3+ solubility is controlled by amorphous Al-hydroxide. The SO4 2? in the groundwaters will depend primarily on the H2SO4 input. The H2SO4 load enhances soil mineral weathering which enhances the production of Fe-oxides, i.e. anion exchange surface sites, to which groundwater SO4 2? attain adsorption equilibra. The factors that control solubility of Al and SO4 2? are both influenced by the acidity in the soil catenas which in the area largely depend on the H2SO4 input. Clay minerals such as illite, smectites, halloysite, and variable composition Al-silicates do not exert strong control on Al in the groundwaters investigated.  相似文献   

10.
Abstract

Gypsum (CaSO4 · 2H2O) is used in agriculture both as a source of calcium (Ca) and sulphate (SO4 2?) and as an amendment to improve soil structure. The effect of gypsum on the adsorption of SO4 2? in irrigated and nonirrigated soils was examined. Almost all of the indigenous sulphate (SO4) in a range of Golesthan and North Khorasan soils with moderate pH values (>6) was found to be present in the soil solution and, as a consequence, was highly susceptible to leaching. The adsorption of sulphate to the soils receiving no gypsum was greater with correlation coefficient of r=0.91 at 0 kg S ha?1 as compared to the soils received 40 kg ha?1 of gypsum as fertilizer with the value of r=0.88 in Golesthan Province. The same trend was observed in Khorasan Province with r=0.79 and r=0.75 with soils receiving 0 and 40 kg S ha?1, respectively. The results were more pronounced in irrigated fields for both provinces. The amount of sulphate adsorption in Golesthan Province soils was comparatively greater than soils of Khorasan Province. The results raise questions regarding the efficiency of SO4‐containing fertilizers in correcting and preventing S deficiency in situations where leaching is a concern.  相似文献   

11.
Extractability and adsorption of sulphate in soils   总被引:8,自引:0,他引:8  
Virtually all of the indigenous sulphate (SO4) in a range of UK soils with moderately high pH values (> 6) was found to be present in the soil solution and, as a consequence, was highly susceptible to leaching. For acid soils containing adsorbed SO4, the extractability of SO4 in NaCl and CaCl2 solutions was dependent on both the ionic strength and cation species. Addition of small amounts (<~ 10?2M) of either NaCl or CaCl2 actually decreased the amount of SO4 extracted, but SO4 extractability increased sharply with concentrations of NaCl or CaCl2 higher than about 0.1 M. At a similar ionic strength, more SO4 was extracted by NaCl than CaCl2. Sequential extraction with 1 M NaCl removed essentially all of the absorbed SO4. The release characteristics of SO4 were very different to those of phosphate and this difference in behaviour is not easily reconciled with the view that SO4 is chemisorbed, as is phosphate. Except for a few acid soils with high oxide contents, the capacity of the soils to adsorb added SO4 was quite small. None of the soils with pH values higher than 6 adsorbed a significant amount SO4. The results raise questions regarding the efficiency of SO4-containing fertilizers in correcting and preventing S deficiency in situations where leaching is important.  相似文献   

12.
Abstract

Solubility and kinetic data indicated that concentrations of aluminum (Al) extracted with 1 M KCl are determined by the solubility of a precipitated A1(OH)3 phase in soils dominated by variable charge minerals. Kinetic studies examining the release of Al on non‐treated and KCl treated residues indicated the precipitation of an acid‐labile Al phase during the extraction procedure. The log ion activity products estimated for the KCl extracts ranged between 8.1–8.6 for the reaction Al(OH)3 + 3H+ < = > Al3++ 3H2O, which was similar to the solubility product of several Al(OH)3phases. The mechanism proposed for Al precipitation indicated that Al released by exchange with added K+ hydrolyzed and released H+ that was readily adsorbed on surfaces of variable charge minerals. The increased ionic strength of the extracting solution further increased the amount of H+adsorbed to the variable charge surface and reduced the H+ concentration in the aqueous phase. Consumption of H+ induced further hydrolysis of Al, resulting in supersaturation of the extracting solution and formation of polynuclear hydroxy Al species. It was concluded that the 1 M KCl extraction does not quantitatively extract salt exchangeable Al from variable‐charge soils.  相似文献   

13.
Dissolved organic carbon (DOC) in acid‐sensitive upland waters is dominated by allochthonous inputs from organic‐rich soils, yet inter‐site variability in soil DOC release to changes in acidity has received scant attention in spite of the reported differences between locations in surface water DOC trends over the last few decades. In a previous paper, we demonstrated that pH‐related retention of DOC in O horizon soils was influenced by acid‐base status, particularly the exchangeable Al content. In the present paper, we investigate the effect of sulphate additions (0–437 µeq l?1) on DOC release in the mineral B horizon soils from the same locations. Dissolved organic carbon release decreased with declining pH in all soils, although the shape of the pH‐DOC relationships differed between locations, reflecting the multiple factors controlling DOC mobility. The release of DOC decreased by 32–91% in the treatment with the largest acid input (437 µeq l?1), with the greatest decreases occurring in soils with very small % base saturation (BS, < 3%) and/or large capacity for sulphate (SO42?) retention (up to 35% of added SO42?). The greatest DOC release occurred in the soil with the largest initial base status (12% BS). These results support our earlier conclusions that differences in acid‐base status between soils alter the sensitivity of DOC release to similar sulphur deposition declines. However, superimposed on this is the capacity of mineral soils to sorb DOC and SO42?, and more work is needed to determine the fate of sorbed DOC under conditions of increasing pH and decreasing SO42?.  相似文献   

14.
Total S, extractable SO4, and SO4? retention capacity were determined in a range of soils covering the dominant soil groups in Portugal which are expected to show S deficiency. Total S was relatively low (83–435 mg S kg?1) in all soils and KH2PO4? extractable SO4 was, in general, low for plant growth, ranging from 0.9 to 32.2 mg S kg?1. SO4? retention capacity ranged from ?33.1 to 64.7 mg S kg?1 and was negative in many (14 out of 20) of the soils. Most of the soils are expected to be S deficient and show extensive leaching of SO4. Other selected soil properties that may affect the chemistry of SO4 were determined. A highly significant simple correlation was obtained between SO4 adsorbed and extractable Al by the Mehra and Jackson method (CDB-Al) (r = 0.74; P < 0.001). A multiple regression which included silt improved the correlation of SO4 adsorbed with CDB-Al (r = 0.79; P < 0.001).  相似文献   

15.
The relations between pH, different fractions of Fe and A1 and Na4P2O7-soluble C and the amount of adsorbed SO2-4 were assessed by analysing 63 soil samples from 14 podsolized soils in Sweden. The amount of adsorbed SO2-4 was significantly better correlated with the calculated amount of the inorganic fraction of Fe and A1 oxides obtained by subtracting Na4P2O7-soluble Fe and A1 from oxalate-soluble Fe and Al than with the oxalate extraction alone. There was a close correlation between C and organically-bound S in the Na4P2O7 extract which shows that the C:S ratio of the extracted fulvic acids is about constant in the soils studied. It was found that, as the proportion of organically-complexed Fe and Al increases, the ability of the soil to adsorb SO2-4 decreases. The amount of adsorbed SO2-4 expressed on the basis of the amounts of oxalate-soluble Fe and Al was generally smaller in areas with low S deposition (< 60 mmol m-2 a-1). The ratio between pyrophosphate-soluble C and oxalate-extractable Fe and Al was negatively correlated with pH in water. It was concluded that Fe and Al associated with organic matter cannot adsorb SO2-4 and that the degree of this association is pH dependent. These observations have important implications regarding the effects of anthropogenic acidification.  相似文献   

16.
Long‐term monitoring data from eastern North America and Europe indicate a link between increased dissolved organic carbon (DOC) concentrations in surface waters over the last two decades and decreased atmospheric pollutant and marine sulphur (S) deposition. The hypothesis is that decreased acidity and ionic strength associated with declining S deposition has increased the solubility of DOC. However, the sign and magnitude of DOC trends have varied between sites, and in some cases at sites where S deposition has declined, no significant increase in DOC has been observed, creating uncertainty about the causal mechanisms driving the observed trends. In this paper, we demonstrate chemical regulation of DOC release from organic soils in batch experiments caused by changes in acidity and conductivity (measured as a proxy for ionic strength) associated with controlled SO42? additions. DOC release from the top 10 cm of the O‐horizon of organo‐mineral soils and peats decreased by 21–60% in response to additions of 0–437 µeq SO42? l?1 sulphuric acid (H2SO4) and neutral sea‐salt solutions (containing Na+, Mg2+, Cl?, SO42?) over a 20‐hour extraction period. A significant decrease in the proportion of the acid‐sensitive coloured aromatic humic acids (measured by specific ultra‐violet absorbance (SUVA) at 254 nm) was also found with increasing acidity (P < 0.05) in most, but not all, soils, confirming that DOC quality, as well as quantity, changed with SO42? additions. DOC release appeared to be more sensitive to increased acidity than to increased conductivity. By comparing the change in DOC release with bulk soil properties, we found that DOC release from the O‐horizon of organo‐mineral soils and semi‐confined peats, which contained greater exchangeable aluminium (Al) and had lower base saturation (BS), were more sensitive to SO42? additions than DOC release from blanket peats with low concentrations of exchangeable Al and greater BS. Therefore, variation in soil type and acid/base status between sites may partly explain the difference in the magnitude of DOC changes seen at different sites where declines in S deposition have been similar.  相似文献   

17.
Surface soils from four watersheds located at the Coweeta Hydrologic Laboratory were found to rapidly convert exogenous 35SO42? into non-extractable ester sulphate and carbon bonded-sulphur.A substantial proportion of the added 35SO42? remained adsorbed in all samples but was completely released after sequential leaching with 1 m Na2SO4, NaH2PO4 and LiCl. This extraction procedure also released a number of 35S-labelled metabolites and some of these have been identified on the basis of co-electrophoresis and co-chromatography with authentic standards. Some metabolites including non-metabolized 35SO42? were recovered without extraction. These included a sulphated polysaccharide which accounted for about 61% of the total radioactivity of the soil water derived from one of the watersheds.Recoveries of 35S suggest that all samples were capable of volatilizing some of the added SO42? but only after prolonged incubation. The results support the possibility that S accumulation in these watersheds is related to SO42? adsorption. However, the results also indicate that incorporation of S into non-extractable organic forms is a possibility which must be addressed in future attempts to fully explain this phenomenon.  相似文献   

18.
Studies on selenium adsorption were conducted on seleniferous and non‐seleniferous soils of north‐west India. Soils were equilibrated with graded levels of Se ranging from 1 to 100 μg ml—1 tagged with 75Se in the presence of sulphate, nitrate and phosphate ions, generally being applied to soils as inorganic fertilizers. The adsorption of Se on different soils, both in the presence and absence of competing anions, increased with increase in the level of Se added. Adsorption of Se conformed to Langmuir equation. In the absence of any competing anions, adsorption maxima of Se for different soils ranged from 270 to 461 μg g—1. The corresponding values decreased appreciably in the presence of competing anions; per cent decrease ranged from 3 to 21 at 10 μg SO4‐S ml—1, from 8 to 40 at 60 μg NO3‐N ml—1 and 32 to 56 at 15 μg H2PO4‐P ml—1. The bonding energy of Se in different soils decreased by 33 to 66 per cent in the presence of only phosphate ions. The changes in bonding energy were inconsistent in the case of nitrate and sulphate ions. At equal concentration of added P and Se, the amount of P adsorbed was 2 to 3 times the amount of Se adsorbed. With increasing concentration of Se, greater amounts of S were released in the equilibrium solution. The distribution coefficients (Kd) decreased significantly in the presence of different anions; the effect was conspicuous in the case of phosphate ions.  相似文献   

19.
We experimentally determined the adsorption characteristics of natural, freshly precipitated Al(OH)3 for SO4 and PO4. The fresh Al precipitate occurred in stream sediment of Jachymov Stream (Czech Republic). The Al-rich sediment strongly adsorbed added PO4 prior to acidification experiment; this sorbed PO4 was released only after substantial dissolution of the sediment, at pH?<?3.67. Sorption of P by Al(OH)3 appears to be an important control on dissolved PO4 concentration in surface waters, unless there is a large excess of PO4. Acidification of the sediment-solution system caused protonation of the sediment surface, thereby increasing the adsorption capacity for SO4. Maximum SO4 adsorption occurred at pH 4.2, below which dissolution of the sediment offset the increasing anion adsorption capacity, and formation of AISO4 + inhibited the increasing SO4 adsorption capacity. This research demonstrates that there are important pH thresholds for anion adsorption in freshwaters below which dissolution of the Al(OH)3 substrate reduces total capacity for anion adsorption. In freshwaters, with sufficient concentrations of suspended Al(OH)3, or in Al(OH)3-rich sediment, PO4 mobility will be severely restricted. Suspended Al(OH)3 in acidified surface waters cannot strongly influence SO4 concentrations because of the considerably higher total SO4 concentrations compared to the available surface area.  相似文献   

20.
Sulphate sorption by variable charge soils   总被引:2,自引:0,他引:2  
The sorption of sulphate (SO2?4) by three variable charge soils from the Canary Islands (Spain) was studied. Sulphate sorption decreased with increasing pH. Only negligible amounts of SO2?4 were sorbed above pH 6.5. When the soils were washed with an indifferent electrolyte (0.01 M KCl), more SO2?4 was recovered than had been sorbed. This indicated a release of native SO2?4 Sulphate replaced hydroxyl ions (OH) and co-ordinated H2O molecules, as well as very small amounts of silicate (Si). No measurable amount of phosphate (P) was released. On average hydroxyl release accounted for 50% of SO2?4 sorbed, the rest being accounted for by the increase in negative charge as measured by K+ adsorption. The results presented here are consistent with the sorption of SO2?4 through a ligand exchange mechanism, but in a different plane of sorption to that of phosphate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号