首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 456 毫秒
1.
薛峰  彭欣  柯爱英 《浙江农业科学》2019,60(6):1029-1035
大型海藻光合作用是海洋初级生产力的来源之一,是海洋碳循环中关键的一环。基于涡度相关技术对浙江省洞头区霓屿岛紫菜养殖区海气界面CO2的足迹与通量进行观测,获取了2014年11月至2015年2月间紫菜养殖海域海气界面CO2通量数据,并进行碳足迹和碳通量分析。分析结果表明,观测数据能合理刻画人工紫菜养殖海区秋冬季海气界面的通量变化,秋冬季紫菜养殖海域表现出强烈的碳汇效应,海气界面CO2通量伴随着紫菜生长与收割的不同阶段呈现出规律的变化。整个紫菜养殖周期内,海气界面的CO2通量均值可达-1.45 μmol·m-2·s-1。  相似文献   

2.
陆地生态系统碳循环是全球气候变化研究的核心内容之一,森林生态系统作为陆地生态系统中面积最多、最重要的自然生态系统,在维持全球碳平衡和调节全球气候等方面有着举足轻重的地位。本文采用3类MODIS数据(叶面积指数、地表温度数据、地表水份数据)结合Ameri Flux通量观测网络中位于加拿大亚寒带气候区的4个通量塔站点观测数据建立1个遥感反演模型,利用该模型对常绿针叶林生态系统呼吸进行估算,并使用独立的通量站点观测数据评估模型的准确性。结果表明,遥感反演模型在估算森林生态系统呼吸方面具有很大的潜力,为大区域尺度上定量评估森林生态系统对区域碳平衡及全球碳循环的影响,制定合理的森林生态管理方案提供数据支持。  相似文献   

3.
本研究收集整理泰国SKR站2001—2003年热带季节性常绿林CO2垂直梯度浓度和气温、降水等气象数据集,耦合并改进NCEAS模型,在月尺度上模拟季节气候变率下热带森林碳源?汇的收支过程。结果表明:(1)泰国SKR监测站热带森林表现为较明显的雨热同期现象,雨季(4?10月)降水量占全年的90%以上,温度在4?5月达到峰值。干季与雨季的CO2浓度存在明显的差异,呈现雨季低、干季高;垂直方向上,CO2浓度随高度的增加而降低。(2)降水量影响是SKR监测站热带森林的生产力变化的主要因素,改进后的NCEAS模型能够较准确地模拟月尺度森林的NPP;6?7月是改进后的NCEAS模型模拟热带森林的月NPP的最佳时间尺度。(3)构建的模型具有较高的拟合精度:r=0.69,RMSE=14.93 gC·m?2·月。似然函数值RMSE对活化能Ea及凋落物质量M0不敏感,在参数分布区间内都有低似然值取值;扩散系数k敏感,在参数取值0.4时存在极值,表示k是影响热带森林CO2通量变化的主要影响因子。综上所述,在基于生态系统过程的碳通量模拟研究中,森林内部向大气边界层的CO2扩散过程是森林生态系统碳通量变化的主要影响因子。  相似文献   

4.
为探讨淡水养殖CO2通量的多时间尺度变化特征及其影响因子,本研究以我国长江三角洲区域典型淡水养殖池塘为研究对象,基于涡度相关法(Eddy covariance,EC)测定的2016—2021年高频连续CO2通量数据,对CO2通量的多时间尺度变化特征及其环境、人为影响要素进行分析。结果表明:养殖池塘CO2通量(以C计)存在明显的日变化、季节变化和年际变化特征,其年尺度交换量的变化范围为-671~1 005 kg·hm-2·a-1,年均值为(-74±688)kg·hm-2·a-1,表现为CO2的弱汇。CO2通量在不同时间尺度的主控因子存在明显差异,其中在0.5 h尺度上,太阳辐射和气温分别是白天和夜晚CO2通量的主要影响因子;日尺度和月尺度的CO2通量则分别受太阳辐射和归一化植被指数(NDVI)调控,且CO2...  相似文献   

5.
长白山阔叶红松林生态系统生产力与温度的关系   总被引:1,自引:1,他引:0  
目的气候变暖背景下生态系统碳循环的温度敏感性研究是全球变化生态学的主要研究内容之一,森林生态系统生产力对温度的响应和适应机制是理解生态系统的温度敏感性的重要手段,长白山阔叶红松林作为典型的温带森林生态系统及重要的碳汇,研究其生产力对环境温度的响应,对提升中国森林植被碳循环模拟的准确性至关重要。方法本研究以长白山阔叶红松林为对象,收集长白山通量站2003—2011年共9年的观测数据,通过进行整合分析,量化了生态系统碳循环的3个关键过程:生态系统总初级生产力、净生态系统生产力和生态系统呼吸的温度响应曲线,并进一步分析环境因子对其最适温的影响。结果研究发现总初级生产力、净生态系统生产力的温度响应均表现为一条峰值曲线,并存在最适温,GPP的最适温(tGPP)与NEP的最适温(tNEP)存在显著线性正相关关系。在年际尺度上,一年中最高空气温度的改变是引起tGPP和tNEP变化的主要因素,而年均温和夏季温度对tGPP和tNEP的变化没有显著影响。当最高温度升高1 ℃时,tGPP和tNEP分别增加0.41和0.66 ℃。降水、光和有效辐射、饱和蒸汽压差等环境因子对tGPP和tNEP无显著影响,但夏季降水能够降低温度对tGPP的影响。结论通过上述研究说明,生态系统的初级生产力及净生产力存在温度适应现象,当研究碳循环与气候变化相互作用的模型时需要充分考虑生态系统生产力的温度适应,从而更加准确地预测碳循环对气候变暖的响应和反馈。   相似文献   

6.
不同土地利用方式土壤呼吸速率动态研究进展   总被引:1,自引:0,他引:1  
陆地生态系统土壤呼吸是全球碳循环的重要过程之一,陆地土壤碳库的微小变化将直接影响全球碳平衡,并对大气CO_2浓度造成大的扰动。森林、草地及农田三大生态系统土壤碳库作为陆地生态系统土壤碳库的重要组成部分,是决定未来土壤碳源、汇动态的关键部分。综述了不同土地利用方式的土壤呼吸测定方法及土壤呼吸动态,并结合目前不同空间尺度及生态系统土壤呼吸的研究现状,提出未来研究中应加强不同测定方法所得结果间的比较,以及复杂环境条件下土壤呼吸模型的研究与尺度扩展应用。  相似文献   

7.
土壤呼吸是大气二氧化碳(CO2)重要的来源,采伐作为森林经营的常规活动之一,是影响森林土壤呼吸的重要人为干扰措施。开展有关采伐对森林土壤呼吸影响的研究对更好地理解森林碳循环和应对全球气候变化具有重要的科学意义和应用价值。本研究将采伐分为2类:皆伐和部分采伐(择伐、渐伐、间伐和更新采伐等)。分别综述了皆伐和部分采伐对土壤呼吸影响的代表性研究成果,讨论了皆伐和部分采伐对土壤呼吸的主要影响机制,总结了当前采伐对森林土壤呼吸及其组分与土壤温度敏感性(Q10)的影响并对未来研究提出展望。目前采伐对土壤呼吸的研究主要集中于:①采伐强度对土壤呼吸影响的方向和幅度;②皆伐或部分采伐后土壤呼吸随时间变化的动态特征及受土壤温度等环境因子的影响;③皆伐或部分采伐对土壤呼吸组分的影响;④皆伐或部分采伐对Q10的影响;⑤皆伐或部分采伐对土壤呼吸的影响机制。主要结论为:①因采伐强度、采伐措施、采伐剩余物的处理、气候类型、森林类型和植被恢复时间的不同,采伐的影响效果呈现不同的变化规律;②采伐往往导致土壤自养呼吸减少,异养呼吸增加,土壤总呼吸表现为两者相抵的程度,这种影响会随植被恢复程度的提高而减小;③采伐后短期内Q10有不同的变化规律,长期往往会下降。未来关于采伐对森林土壤呼吸影响的研究应集中于土壤呼吸组分及其温度敏感性对采伐的响应,同时应结合不同强度采伐、不同植被恢复阶段、其他营林措施和大气CO2浓度上升等全球变化因子,探讨采伐对区域土壤呼吸及组分的影响,更好地理解采伐对森林生态系统碳循环的影响机制。表2参89  相似文献   

8.
  目的  为研究林下植被和凋落物对我国寒温带天然林土壤CO2通量的影响,对不同处理下CO2通量排放特征进行分析探究,为大兴安岭地区森林生态系统的经营管理和土壤温室气体研究提供参考。  方法  在2019年5—9月采用静态箱?气相色谱法对大兴安岭北部4种主要林型(白桦林、山杨林、樟子松林和兴安落叶松林)土壤CO2通量排放特征进行原位监测研究。  结果  4种林型不同处理后的土壤CO2通量都呈现相似的单峰曲线变化趋势,峰值出现在7月或8月。去除凋落物会提高阔叶林土壤呼吸,降低针叶林土壤呼吸,但变化幅度较小,没有达到显著水平(P > 0.05)。与自然状态相比,去除林下植被后,白桦林、山杨林和兴安落叶松林的CO2通量均值分别升高了27.57%、15.84%和24.13%,达到显著水平(P < 0.05),但樟子松林则下降了0.68%(P > 0.05)。去除林下植被和凋落物状态下,白桦林、山杨林和兴安落叶松林土壤CO2通量均值升高了20.05% ~ 25.34%,但樟子松林则下降了12.36%,且去除林下植被和凋落物的阔叶林的平均通量显著大于针叶林(P < 0.05)。  结论  凋落物和林下植被的存在与否会对土壤CO2通量产生不同影响,且影响程度因林型而异,科学合理的林下管理对调控森林生态系统CO2排放和生态环境保护都有着重大的作用。   相似文献   

9.
祁连山区是我国西部重要的生态安全屏障和固碳场所。为准确评估祁连山区青海云杉林生态系统生长季碳汇特征,利用涡度相关技术并结合增强回归树模型与结构方程模型,研究生长季其碳通量变化特征及其环境影响机制。结果表明,青海云杉林生长季净生态系统碳交换(net ecosystem carbon exchange,NEE)日变化呈“V”型,CO2通量变化范围在-0.71~0.08 mg CO2·m-2·s-1,季节尺度NEE变化范围在-20.93~11.75 g C·m-2,月均碳吸收量(188.27±17.85) g·m-2,生长季累积碳吸收941.34 g·m-2。增强回归树模型揭示植被指数对净生态系统碳交换量相对贡献率最高,为50.3%,其次是净辐射,为15.9%。结构方程模型表明,植被指数与相对湿度对净生态系统碳交换量的直接作用系数分别为0.61与-0.17。多元逐步回归模型表明植被指数与相对湿度对NEE具有显著影响(R2  相似文献   

10.
植物碳利用效率(CUEa)是指净初级生产力与总初级生产力的比率,是植物光合作用利用分配的重要参数。它不但体现了植被生态系统将空气中CO2转化成生物量及固碳发展潜力的能力,还反映了光合作用对植被生产力产生的影响,是植物碳源或碳汇的全过程。碳利用效率(CUEe)是比较不同生态系统物质循环差距的关键参数。掌握生态系统CUEe,可以更加明确陆地生态系统的碳源、碳汇,生态系统CUEe预测全球变化与人类影响,并且对森林碳循环产生重要影响。通过对碳利用效率影响因素相关文献的查阅、整理、归纳,总结了植物碳利用效率的研究进展,主要包括生物与非生物因素(温度、海拔、降雨量、光照、人为因素等)之间的关系,它们之间的相互作用和相互联系影响CUEa变化。还综述了目前国内外碳利用效率测量方法,探讨了每种测量方法的原理、技术、优点、缺点、适用范围,对未来CUEa研究进行了展望。  相似文献   

11.
大气CO2浓度和温度升高会通过影响作物的光合作用,从而影响光合碳向土壤中的输送。输入到土壤中光合碳含量的变化势必会对土壤外源碳的主要分解者--微生物的群落结构产生影响。土壤微生物在土壤有机质的转化过程中发挥着重要的作用,是土壤碳循环的主要驱动者,其群落结构和功能的改变会影响土壤有机质的动态变化,而这些变化会进一步增加或者降低大气中的CO2浓度,从而对气候变化产生反馈作用。未来土壤的碳平衡取决于大气CO2浓度和全球变暖对土壤中碳的输入、输出以及碳在土壤中的驻留时间。因此,只有全面了解大气CO2浓度和温度升高将对土壤碳库及土壤微生物群落结构产生何种影响,才能明确地揭示陆地生态系统对气候变化的反馈机制,对未来农田土壤有机碳库的管理和生产力的维持有重要意义。文章综述了大气CO2浓度和温度升高及其交互作用对土壤碳库和土壤微生物群落结构的影响。主要结论为:(1)大气CO2浓度和温度升高对土壤碳库的影响可以相互抵消,但是土壤碳库是否成为碳“源”与温度升高的幅度密切相关;(2)大气CO2浓度升高增加了光合碳在玉米、小麦等植株各部分的分配,温度升高同样对光合碳的分配规律产生影响,但对不同部位的影响不一致,多呈降低或无显著影响;(3)大气CO2浓度和温度升高可能对土壤微生物活性及其群落结构产生交互影响,且对不同微生物(细菌、真菌和古菌)群落的影响程度不同,进一步对土壤有机碳的转化产生影响。最后提出未来的研究方向:(1)从气候变化影响植物-土壤互作角度解析根系分泌物的转化过程及其对微生物的影响;(2)通过DNA-SIP进一步研究大气CO2浓度和温度升高条件下土壤微生物对不同植物来源碳的选择性利用与碳循环的关系,从而阐明气候变化条件下微生物底物利用策略以及微生物群落结构的变化。  相似文献   

12.
通过对竹展开砧板从原材料、生产到分配(B2B)过程的跟踪调查, 采用英国PAS2050产品碳足迹评估标准, 一方面计测运输、加工、储存和供应链投入品等所有排放源的二氧化碳排放当量; 另一方面计测竹展开砧板产品碳储存效益的大小, 综合得到竹展开砧板碳足迹(净碳排放当量), 并进一步分析了碳足迹的构成及影响因素。研究表明:1块规格为360 mm×240 mm×17 mm的竹展开砧板的碳足迹为0.168 3 kg二氧化碳当量, 其中运输过程碳排放为0.041 7 kg二氧化碳当量, 加工过程碳排放为0.180 5 kg二氧化碳当量, 附加物隐含碳排放为0.063 3 kg二氧化碳当量; 竹展开砧板产品碳储存效益为-0.117 2 kg二氧化碳当量。  相似文献   

13.
目的气候变暖引起冻土退化将会增加冻土之上湿地的温室气体排放,但有关采伐干扰对冻土湿地温室气体排放有何影响仍不清楚。方法运用静态箱?气相色谱,相对生长方程等方法,测定寒温带大兴安岭冻土生境毛赤杨沼泽林4种不同采伐处理(对照(D)、轻度择伐15%(Qz)、重度择伐45%(Zz)及皆伐(J))的土壤呼吸年碳排放量(ACE)(CO2和CH4),植被净初级生产力(NPP)与年净固碳量(VNCS)及相关环境因子(土壤温度、水位、化冻深度、土壤碳氮含量、雪被厚度等),依据生态系统净碳收支平衡,揭示采伐干扰对冻土生境毛赤杨沼泽林生态系统碳源/汇的影响规律及其机制。结果(1) Zz和J显著降低土壤CH4年均通量(0.008 ~ 0.019 mg/(m2·h))52.6% ~ 57.9%,而Qz与对照相近(? 10.5%,P > 0.05),且其季节动态趋势存在2种类型(D、Qz双峰型?低排放及Zz和J双峰型?低吸收)。(2) Qz、Zz和J显著降低土壤CO2年均通量(103.69 ~ 133.65 mg/(m2·h))14.4% ~ 22.4%(P < 0.05),且其季节动态趋势存在2种类型(D、Qz单峰型?峰值于夏末及Zz和J单峰型?峰值提前于盛夏)。(3) 其土壤CH4通量受土壤温度、水位、雪被厚度综合控制,土壤CO2通量受土壤温度、土壤有机碳含量、化冻深度综合控制。(4) NPP(5.07 ~ 8.83 t/(hm2·a))和VNCS(2.10 ~ 3.83 t/(hm2·a))呈现随采伐强度增大而递减趋势,Qz与D相近(P > 0.05),Zz和J显著低于D 13.7% ~ 36.9%和14.2% ~ 43.5%(P < 0.05),J又显著低于Zz 26.9%和34.2%(P < 0.05)。(5) 净生态系统碳收支(? 0.42 ~ 1.30 t/(hm2·a))存在显著差异性,D、Qz、Zz均表现为碳的吸收汇,且Qz的汇强显著高于D和Zz 1.6和1.2倍(P < 0.05),但J已转化为碳的排放源(? 0.42 t/(hm2·a),P < 0.05)。结论择伐干扰8年后寒温带冻土区毛赤杨沼泽林的碳汇功能已恢复,而皆伐后仍维持碳源,故在湿地碳汇管理中适宜采取择伐而应避免皆伐。   相似文献   

14.
随着工业的不断发展,全球大气二氧化碳(CO2)呈明显增加趋势。大气CO2的增加将会影响土壤有机碳(SOC)转化和更新,进而改变土壤碳的稳定性。研究大气CO2升高对SOC稳定性的影响,不但是评价陆地生态系统对气候变化反馈效应的重要环节,也对实现碳元素在土壤中的有效储存,对保持土壤肥力的可持续性具有重要意义。利用现有的文献资料,综述了大气CO2升高对SOC稳定性的影响及其稳定性指标(生物指标、化学指标、其他指标等),外源氮和大气CO2升高的交互作用对SOC稳定性的影响,以及SOC稳定性随时间尺度的变化趋势等。总结发现:大气CO2升高导致活性有机碳(溶解性有机碳、颗粒性有机碳、易氧化有机碳等)比例增多,SOC稳定性降低,尤其在氮限制的环境中,SOC稳定性更差。总结近年的研究成果发现:随着高CO2处理时间的加长,SOC稳定性降低速率逐渐减小,表明土壤本身具有一定的适应能力和自我恢复能力。最后展望了SOC稳定性变化对植物生理、生长的反馈影响。未来大气CO2升高对SOC稳定性的影响研究,应该着力于提高农田生态系统土壤肥力可持续性及提高农作物的产量产能。图1参74  相似文献   

15.
在地球化学元素循环中,氮素是最重要、最活跃的营养元素之一。农田生态系统中的氮素很大程度上决定农作物的产量和品质。然而,在全球气候变化背景下,随着大气CO2浓度和温度升高,作物-土壤氮循环的变化可能显著影响农田生态系统中的作物生产。因此,研究作物-土壤氮循环对大气CO2浓度和温度升高的响应,能够为科学合理地预测未来气候条件下,农田生态系统中作物的氮素需求,以及保障农作物产量的稳定供应提供理论依据,对于全面认识全球气候变化背景下的农田生态系统氮素循环过程及土壤可持续利用具有重要意义。本文综述了大气CO2和温度升高对作物氮素吸收和分配,以及与氮有效性密切相关的土壤氮转化的影响,并系统总结了二者对作物-土壤氮循环过程产生的交互作用。总结以往研究发现,在大气CO2浓度升高条件下,作物的蒸腾作用减弱,但光合作用增强,生物量加大,根系分支和根表面积增加,豆科作物的根瘤固氮能力提高,因此整体上促进作物对氮的吸收,并且增加作物向籽粒中分配氮的比例,但作物的平均氮浓度降低。此外,高CO2浓度提高了土壤酶活性,增强了土壤有机氮矿化作用、硝化及反硝化作用,加速了土壤氮转化。升温和CO2浓度升高对作物-土壤氮循环产生正向或负向的交互作用,主要表现在:高温和高CO2浓度对作物的生物量、光合作用、地下部氮分配、根系分支以及根表面积具有协同促进作用,升高温度减轻了高CO2浓度对作物蒸腾作用和作物氮浓度的抑制作用。然而,升温抑制了高CO2浓度对作物向籽粒中氮分配、氮吸收以及产量的促进作用;升温虽然能进一步增强高CO2浓度对土壤酶活性和有机氮矿化的促进作用,但是对于土壤硝化和反硝化作用,二者的交互作用以及相关的分子机制尚不明确。大气CO2升高和温度升高对土壤微生物,以及微生物与作物之间的耦合关系的研究比较薄弱,特别是由微生物主导的氮循环过程及其对全球气候变化的反馈机制是未来研究的重点。本文提出利用16S rRNA、DGGE、T-RFLP、qPCR、RT-PCR技术、蛋白组学以及稳定性同位素探针原位研究技术,可以将复杂环境中微生物物种组成及其生理功能进行耦合分析,揭示大气CO2浓度与温度对作物-土壤氮循环过程的交互作用机理,增强对气候变化下农田生态系统氮素循环响应的预测能力,为农田生态系统有效地适应气候变化提供科学的理论依据。  相似文献   

16.
● For 8000 years, agricultural practices have affected atmospheric CO2 concentrations. ● Paddy rice cultivation has impacted atmospheric CH4 concentration since 5000 years ago. ● Modern agricultural practices must include carbon storage and reduced emissions. ● Sustainable management in agriculture must be combined with decarbonizing the economy and reducing population growth. Since humans started practicing agriculture at the expense of natural forests, 8000 years ago, they have affected atmospheric CO2 concentrations. Their impact on atmospheric CH4 started about 5000 years ago, as result of the cultivation of paddy rice. A challenge of modern agricultural practices is to reverse the impact cropping has had on greenhouse gas emissions and the global climate. There is an increasing demand for agriculture to provide food security as well as a range of other ecosystem services. Depending on ecosystem management, different practices may involve trade-offs and synergies, and these must be considered to work toward desirable management systems. Solution toward food security should not only focus on agricultural management practices, but also on strategies to reduce food waste, more socially-just distribution of resources, changes in lifestyle including decarbonization of the economy, as well as reducing human population growth.  相似文献   

17.
森林土壤有机碳(SOC)对全球碳循环有着重要的作用,森林SOC积累和分解直接影响陆地生态系统碳存储和全球碳平衡。碳汇的基本策略是把CO2固定于植被体,削减温室气体的排放量。森林经营管理对土壤碳库固定与存储影响明显且持续时期较长。鉴于此,综合分析了森林收获、轮伐期、氮肥施入、树种等营林措施对土壤碳库变化的影响及其不确定性,指出了当前森林土壤有机碳研究面临的一些问题和今后的研究方向。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号