首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
纤维素纳米纤维在生物医用产品、增强材料、过滤吸附材料、柔性电极材料和储能器件等领域具有广阔的应用前景。静电纺丝法是目前能直接且连续制备微纳米纤维的主要方法之一,由于纤维素中极强的氢键网络导致的高结晶度,使得直接使用纤维素静电纺丝制备纳米纤维较难。笔者以微晶纤维素、纸浆纤维素为研究对象,通过氯化锂/二甲基乙酰胺(LiCl/DMAc)溶剂体系溶解并进行活化处理,加入不同含量聚丙烯腈(PAN)对纤维素进行静电纺丝制备纤维素纳米纤维,探究纤维素类型、N,N-二甲基甲酰胺(DMF)活化处理前后、PAN加入量对纤维素溶解性、纺丝液性参数和纺丝效果影响。结果表明:DMF活化处理可有效提升纤维素在LiCl/DMAc溶剂体系中的溶解性,在相同溶解温度下获得更加均匀透明的纤维素溶液。在该溶剂体系下,纺丝液黏度、电导率和表面张力分别高于1 300 mPa·s、2 000μs/cm和34.5 mN/m,可获得连续的电纺纤维素纳米纤维。活化微晶纤维素纳米纤维膜比活化纸浆纤维素纳米纤维膜表面更光滑且纤维直径分布更均匀。活化微晶纤维素与PAN质量比为2∶8时可获得表面光滑无珠状物,纤维均一程度高,直径分布小(185~245 nm)的纤维素纳米纤维膜。  相似文献   

2.
采用静电纺丝技术制备了聚己内酯(PCL)纤维支架,并将酸水解制得的纤维素纳米晶体(CNCs)作为增强体,制备了不同CNCs加载量的CNCs/PCL复合纤维支架,以提高PCL纤维支架的力学性能,并探讨了CNCs对PCL纤维支架细胞相容性的影响。结果表明:最佳增强条件是m(CNCs)/m(PCL)为5.25%,在该条件下制备的复合纤维支架(CNCs-5.25/PCL)最大应力和断裂伸长与纯PCL纤维支架相比分别提高了291%和320%。复合纤维支架上成功培养了成人胰腺导管癌细胞(Panc-1)和肝细胞(HL7702);对成人胰腺导管癌细胞在PCL及CNCs/PCL复合纤维支架上的增殖速率进行的单因素方差分析表明,CNCs没有增大PCL复合纤维支架的细胞毒性。CNCs可以作为静电纺PCL纤维支架的增强材料,制备具有良好力学性能和细胞相容性的纳米复合纤维支架,为CNCs在组织工程中的应用提供了理论依据。  相似文献   

3.
以滤纸为原料,采用浓硫酸水解法制备纤维素纳米晶(CNCs),以柠檬酸钠还原法制备金纳米粒子(GNPs),并将GNPs与CNCs以不同质量比共混制备CNCs/GNPs复合虹彩薄膜;并在CNCs/GNPs体系中添加果糖,研究了果糖对等离子吸收共振效应的影响。采用透射电镜、反射光谱、扫描电镜、偏光显微镜、红外光谱、X射线衍射、紫外-可见光谱和圆二色谱对复合薄膜进行分析,探讨了GNPs与CNCs以不同质量比复合时的结构与性能,以及果糖对体系的影响。研究结果表明:CNCs在成膜过程中发生了自组装,形成了左旋的手性层状液晶结构;复合薄膜具有明显的虹彩颜色,具有周期性层状结构和指纹织构,添加GNPs没有改变CNCs本身的官能团,但复合膜具有明显的等离子共振吸收峰并发生蓝移。添加果糖会使薄膜颜色产生红移现象的同时促进GNPs更加均匀地分散,从而增强GNPs的等离子共振吸收效应。GNPs和果糖的加入不会改变CNCs的晶型结构,对纤维素的结晶度也没有影响。  相似文献   

4.
该项目的研究,在国内率先形成了纳米功能纤维及纳米功能纺织品的工业化生产,满足了市场对功能纤维和功能纺织品的需求,从制造功能纤维入手生产功能纺织品,大大地提高了功能效果的耐久性。使用纳米技术制备功能纤维,可不影响纤维的纺丝性能,添加量少即有优异的功能性,且不影响纤维的其他性能,减少了添加剂对纺丝设备的磨损。我们现已筛选、制备了适用于纤维应用的纳米功能材料,研究了纳米粉体添加至纤维中的最佳工艺,制造出纳米抗菌干法腈纶以及抗菌、抗紫外线和远红外腈纶、涤纶功能母粒及纤维;研究了纳米材料用于纺织品整理的配方和工艺。  相似文献   

5.
纳米纤维素是一种来源于植(动)物或微生物的天然绿色纳米材料,拥有高表面化学活性、独特的网络结构、优异的力学强度和高比表面积等优良特性。通过层层自组装、原位化学聚合和电化学沉积等方式,纳米纤维素可与金属氧化物、导电聚合物和二维纳米材料等多种纳米粒子高效复合,形成不同微观尺寸和结构特性的纳米纤维素基多孔膜材料和导电复合材料,在金属离子电池、超级电容器等储能器件用隔膜和电极材料领域具有广阔的应用前景。根据材料来源、制备方法和纤维形态的差异,纳米纤维素可分为纤维素纳米晶体、纤维素纳米纤丝、细菌合成纳米纤维和静电纺丝纳米纤维4大类,目前用于储能材料的主要是前3类。这些纳米纤维素常与水混合成胶体状态,失水后借助氢键自组装(织)形成力学性能和热稳定性优异的薄膜,在电解质溶液中具有良好的保湿能力,易于离子和电子传输,是储能器件隔膜材料的理想选择。纳米纤维素丰富的活性基团、独特的网络结构和易于成膜的特性,可作为骨架材料与其他导电活性成分(主要包括碳纳米材料、金属氧化物和导电聚合物)复合制备储能用电极材料。纳米纤维素也可以直接炭化用于电极材料,其储能性能与石墨化程度密切相关,常通过掺杂改性、多元复合等方式提高储能效率和性能。现阶段纳米纤维素基电极材料有主要碳纤维材料、二维纳米材料、导电高分子材料和多元复合材料,尽管具有无可比拟的性能优势和乐观的应用前景,但纳米纤维素与电极活性材料之间的复合方式、界面相容性以及微观形貌调控等研究尚处于起步阶段,如何最大限度发挥纳米纤维素的尺寸效应和网络结构,构建具有更加精细的纳米体系及高转化效率的储能器件是下一步需要攻克的主要难题。本文在简要介绍纳米纤维素分类和性能的基础上,详细阐述其在储能器件隔膜材料和新型电极材料领域的研究现状,并进一步对纳米纤维素在该领域的发展趋势进行展望。  相似文献   

6.
纤维素纳米晶体(cellulose nanocrystals,CNCs)和纤维素纳米纤维(cellulose nanofibrils,CNFs)具有独特的理化性质,例如,比表面积高(100 m2/g)、机械性能优越(弹性模量130~150 GPa)、密度低(低至1.6 g/cm3)、膨胀系数小(低至0.1×10-6/K)、生物相容性好、表面多羟基结构容易进一步修饰等,且原料易得、可再生和生物降解,是理想的先进功能材料构建砌块,已被证明是具有良好应用前景的生物基纳米材料。近年来,纳米纤维素基水凝胶引起了大量的关注,并且其在生物医学领域的应用得到了广泛研究。笔者主要综述了CNCs和CNFs基水凝胶的制备及其在生物医学应用的研究进展。首先介绍了制备CNCs基水凝胶的物理交联法和化学交联法,以及CNFs与金属离子交联、CNFs与聚合物交联两种制备CNFs基水凝胶的方法;其次重点介绍了CNCs和CNFs基水凝胶在药物递送、创伤敷料和组织工程支架中的应用;最后总结了CNCs和CNFs基水凝胶在生物医学领域的应用前景和面临挑战,并指明了CNCs和CNFs基水凝胶在生物医学领域研究的发展方向。  相似文献   

7.
在纳米材料特征、制备方法、纳米复合材料等方面研究成果的基础上,国内外的学者对木材无机纳米复合材料进行了初步研究.研究表明,木材内部具有容纳纳米粒子的纳米空间,它存在于木材细胞壁上的微细纤维之间;并存在能与纳米粒子结合的活性基团;可用溶胶-凝胶法(sol-gel)、原位插层合成法、注入填充法等方法,形成木材/无机纳米复合材料;木材原有性能均能有不同程度的提高,甚至有可能产生全新的性能.基于木材的特点,以木材/无机纳米复合材料的工业化研究为目标,分析木材/无机纳米复合材料的制备、检测与分析表征的研究现状,提出研究建议与展望,主要包括无机纳米材料的筛选、表面改性和分散处理、纳米粒子与木材复合的途径和复合机理研究、木材/无机纳米复合材料的结构表征和性能分析及其应用研究等.  相似文献   

8.
张扬 《技术与市场》2010,(7):120-120
电驱动材料是一种能在外界电信号的刺激下产生形变的材料,由于它的巨大应用价值,吸引了广大科研工作者的探索兴趣。碳纳米管是一种具有优异的电学、力学、热学等性能的新型纳米材料,自从1999年美国Texas大学的Baughman组首先报道了单臂碳纳米管在电解液中的电驱动现象后,碳纳米管的电驱动研究得到了越来越多的关注。  相似文献   

9.
通过超声波分散改性技术对硅烷偶联剂KH570改性的纳米碳酸钙进行表面改性制备了改性纳米碳酸钙,采用熔融共混法制备了木纤维(WF)/聚丙烯(PP)/纳米碳酸钙三元复合材料。使用ARES旋转流变仪系统研究了复合材料的动态流变性能。结果表明:扫描频率、温度及纳米Ca CO3含量均会对体系的流变性能产生影响。随着扫描频率的增大,体系的储能模量G′与损耗模量G″越大,而复数粘度η*则减小,温度升高时复数粘度和松弛时间降低。当纳米Ca CO3加入量≤15%(质量分数)时,随着纳米Ca CO3含量的增加,WF/PP/纳米Ca CO3复合材料的储能模量、损耗模量和复数黏度逐渐增加且均高于WF/PP,当纳米Ca CO3加入量15%(质量分数)时,反而呈下降趋势。  相似文献   

10.
以毛竹粉为原料,采用TEMPO催化氧化联合超声处理制备纳米微纤丝,通过改变Na Cl O与纤维素的质量比,研究了Na Cl O添加量对纳米纤维素的长径比、纤维形态以及羧基含量等特性的影响。结果表明:随着Na Cl O添加量的增加,纳米纤维素羧基含量逐渐提高,长径比增大;当Na Cl O添加量为15 mmol/g时,纳米纤维素羧基含量可高达1.646 mmol/g,横截面直径可达6~10 nm,长径比为273~455;随着纳米纤维素羧基含量的增加,纳米纤维素悬浮液的透光率和剪切黏度不断增大。虽然TEMPO催化氧化程度不断加深,但纳米纤维素的晶型并未遭到破坏,仍然呈现出典型的纤维素I晶体结构,而随着羧基含量的增加,纳米纤维素的结晶度和热稳定性有一定程度的下降。  相似文献   

11.
为了探究氧化石墨烯(GO)/纳米纤维素复合薄膜材料的热机械性能,研究了不同GO添加量对复合薄膜的动态热机械性能的影响。结果表明,随着GO添加量的增加,薄膜的储存模量不断增加,薄膜的玻璃化转变温度不断变大,而损耗因子的峰值则不断减小。  相似文献   

12.
采用乙酸(HAc)作为溶剂,配制壳聚糖(CS)/聚乙烯醇(PVA)纺丝液,探究纺丝液稳态流变和动态流变性能并考察其静电纺丝的可行性。研究结果表明:随着CS质量分数的增加,纺丝液的稠度系数、结构黏度指数、表观黏度、储能模量(G′)、损耗模量(G″)和复合黏度(η*)均相应增加,非牛顿指数相应减小,不利于CS/PVA纺丝液静电纺丝。随着测试温度的增加,纺丝液的稠度系数、结构黏度指数、表观黏度、G′、G″和η*均相应减小,非牛顿指数相应增加,纺丝液流动性能加强,可纺性提升。当CS质量分数为3.0%时,纺丝液在测试温度30℃下的稠度系数和结构黏度指数均较小,分别为7.978 1和2.16,且非牛顿指数为0.887 7接近于1,表明该纺丝液具有良好的流动性和加工性。结合SEM和流变行为分析,在室温条件下CS质量分数为3.0%的CS/PVA纺丝液呈现优异的可纺性,可以构建连续、均匀且不带珠状连结的纳米纤维。  相似文献   

13.
以稻秸(Oryza sativa L.)纤维纸浆为原料,利用高压超声波震荡使纸浆纤维纤丝化,制得稻秸微/纳米纤丝,并将其作为增强材料填充到聚丙烯基体中制备丁稻秸微/纳米纤丝增强聚丙烯纳米复合材料,研究了稻秸微/纳米纤丝以及改性剂(马来酸酐接枝聚丙烯)的不同添加最对于复合材料拉伸性能的影响.结果表明:稻秸微/纳米纤丝的添加量为5%时,复合材料的拉伸强度最大,为31.71MPa.拉伸模量随稻秸微/纳米纤丝添加量的增加而逐渐增加,当添加量为8%时达最大值.拉伸断裂伸长率则随添加量增加而减小.改性剂的添加量对于聚丙烯基体及稻秸微/纳米纤丝增强聚丙烯纳米复合材料的拉伸强度和拉伸断裂伸长率无显著的影响.在改性剂添加量为4%时,聚丙烯基体及稻秸微/纳米纤丝增强聚丙烯纳米复合材料的拉伸模最均达到最大值.  相似文献   

14.
以微晶纤维素(MCC)为原料,通过硫酸水解得到纳米纤维素晶体(NCC),再将纳米纤维素晶体与聚乙烯醇复合共混制备聚乙烯醇/纳米纤维素晶体复合膜,研究复合膜的热学性能,同时采用场发射透射电镜(FETEM)、场发射扫描电镜(FE-SEM)、原子力显微镜(AFM)、热重分析(TG)、差示扫描量热仪(DSC)等仪器对纳米纤维素晶体及其复合膜进行表征与分析。结果表明:所制得的纳米纤维素晶体直径约2~24nm,50~450nm长,呈棒状;由FE-SEM图可观察到纳米纤维素晶体与聚乙烯醇具有良好的界面相互作用,但在较大添加量7%时,NCC出现部分团聚,与基体的相容性下降;由TG和DSC分析说明NCC与PVA基体可较好相容,形成了热稳定性较好的复合膜,但当NCC添加量较大时,由于团聚使复合膜热稳定性下降。  相似文献   

15.
纳米TiO2/纤维素的复合纤维可以用于纺织、材料和催化等领域.在1-丁基-3-甲基咪唑氧盐([ BMIM] Cl)离子液体中,将纳米TiO2粉末与纤维素浆柏共混,采用湿法成型技术制备不同含量的纳米TiO2/纤维素纤维复合纤维.通过力学测试、傅立叶变换红外光谱(FT-IR)、扫描电子显微镜(SEM)对所得复合纤维的力学性能、形貌和结构等进行表征;以亚甲基蓝为模型物,对其光催化性能进行测试.结果表明,TiO2质量分数对复合纤维的形貌和性能影响显著,随TiO2质量分数由2%增大至16.7%,复合纤维的断裂强度降低,初始模量由0.139 cN/dtex降至0.077 cN/dtex,光催化性能先降低而后增强,其中含TiO216.7%的复合纤维催化性能较强.以[BMIM] Cl离子液体为介质,温法纺丝制备有光催化活性纳米TiO2/纤维素纤维的方法是可行的;综合考虑,含TiO2 2.0%的复合纤维性能较佳.  相似文献   

16.
利用生物质纳米纤维素纤维的高强度和高长径比,向聚乙烯醇中引入纳米纤维素,可改善薄膜的拉伸性能。针对聚乙烯醇阻隔性能的改善问题,选用片层的还原氧化石墨烯作为增强相,将自制的纳米纤维素和氧化石墨烯加入聚乙烯醇溶液中,以D-果糖为绿色还原剂,分别添加质量分数0.2%,0.4%,0.6%,0.8%的还原氧化石墨烯,采用浇涂法制备聚乙烯醇/纳米纤维素/石墨烯复合薄膜。通过纳米纤维素与石墨烯的协同增强作用,研制了兼具优良阻隔性能和拉伸性能的生物降解薄膜。结果表明,当纳米纤维素和石墨烯质量分数分别为0.8%和0.6%时,聚乙烯醇/纳米纤维素/石墨烯复合薄膜的拉伸强度、氧气透过系数、对水的接触角和吸水率分别为88.76 MPa、0.592×10-15cm~3·cm/(cm~2·s·Pa)、90.5°和72.9%。但石墨烯的用量存在一个阈值,当质量分数高于0.6%时,复合薄膜的力学和阻隔性能反而下降。  相似文献   

17.
以竹粉为原料制备纳米纤维素基体材料,以聚乙烯醇(PVA)为增强相,在酸性环境下采用冷冻干燥法制得PVA/CNFs(纳米纤维素)复合气凝胶;采用三甲基氯硅烷(TMCS)对其进行疏水改性处理,随后将其浸渍到还原氧化石墨烯(r GO)悬浮液中,最终制得疏水型r GO/PVA/CNFs复合气凝胶;通过扫描电子显微镜(SEM)、傅里叶变换红外光谱(FT-IR)、拉曼光谱(Raman)、接触角(CA)和吸油性能测试,对所制气凝胶的微观形貌、化学结构、疏水性能及吸油性能进行表征。结果表明:制得的复合气凝胶密度为6.78 mg/cm3,具有均匀的三维网状多孔结构,且孔洞结构表面均被石墨烯片层覆盖;经过TMCS疏水处理后,在气凝胶表面形成疏水层结构。FT-IR和Raman分析表明,TMCS疏水改性处理并未改变PVA/CNFs复合气凝胶的化学结构。经疏水处理后气凝胶与水的接触角为138°左右,吸油倍率为78 g/g左右,且吸附过程迅速,饱油后也能悬浮于溶液表面,便于回收再利用。  相似文献   

18.
纳米纤丝化纤维素(NFC)通过化学改性的方法可以赋予其特殊表面性质。研究以漂白竹浆为原料,采用机械(球磨机和高压均质机)和化学改性相结合的方法,制备改性纳米纤丝化纤维素(m-NFC)。在球磨中使用丁酰氯为酰基化试剂,N,N-二甲基甲酰胺(DMF)为分散剂,降低纤维尺寸的同时对纸浆纤维进行化学改性,再经高压均质机处理制备了取代度为2.07的m-NFC。利用激光粒度分析仪、原子力显微镜(AFM)、傅里叶红外光谱(FTIR)、X射线衍射仪(XRD)对m-NFC的结构和形态进行表征。均质20次最高压力80 MPa制备的mNFC微纤丝长度为316.9 nm,直径分布在25~80 nm范围内,强物理机械力作用改变了m-NFC的晶体结构。改性后的m-NFC在低极性溶剂丙酮中具有较好的分散稳定性。研究结果可为纳米纤丝化纤维素应用于疏水性生物基质材料制备提供依据。  相似文献   

19.
以纤维素纸为基底或电正性摩擦材料的摩擦纳米发电机在柔性电子器件具有潜在应用前景,然而纤维素纸基摩擦纳米发电机需要在高工作频率下才能获得良好的输出性能,限制了纤维素纸基摩擦纳米发电机的应用与发展。为提高纤维素的电正性摩擦性能,将银纳米颗粒原位负载于纤维素纤维表面,制备纳米银复合纸(Ag@paper),并以Ag@paper与聚四氟乙烯薄膜(PTFE)为摩擦材料构建纸基摩擦纳米发电机(P-TENG)。结果表明:P-TENG开路电压可达95 V,短路电流可达0.19μA。该P-TENG在长期工作过程中还能防止细菌生长,因而可用于开发新型可穿戴电子产品。  相似文献   

20.
采用液相混合法制备了纳米纤维增强苯乙烯-丁二烯-丙烯腈(ABS)复合材料,研究了纳米纤维素晶须(NCW)含量对复合材料性能影响。SEM测试表明,添加少量的NCW即会对复合材料的断裂面形态造成明显影响。热重分析发现,NCW的加入会降低复合材料的热稳定性。当NCW含量为10%时,复合材料热分解温度下降20%。红外光谱(FTIR)测试表明,在复合材料中纳米纤维素间的自由羟基和氢键数量明显下降。拉伸性能和动态机械性能测试表明,NCW含量为5%时复合材料的性能增加明显,拉伸强度上升11%,模量上升19%。研究结果表明,采用液相混合法制备纳米纤维素晶须/ABS复合材料时,丙酮溶液和ABS中存在的—CN对改善复合材料的界面相容性尤为关键。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号