首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
介绍了纳米纤维素的分类及性质,纳米纤维素分为纳米纤维素晶体(NCC)、微纤化纤维素(MFC)和细菌纳米纤维素(BNC)。NCC呈棒状晶须结构,结晶度高且具有高的力学性能;MFC呈纤丝状,具有宽的尺寸范围和更大的长径比,比表面积大,成氢键能力强;BNC呈超细网络状纤维结构,化学纯度和聚合度高,保水能力强。综述了纳米纤维素在纸基增强材料、纸基抗菌材料、纸基过滤材料、纸基导电材料、纸基发光材料、纸基绝缘材料、纸基疏水材料和纸基传感器材料领域的应用现状,并对其在纸基功能材料未来发展方向进行了展望。  相似文献   

2.
纳米纤维素作为纤维素基纳米材料的代表,不但保留了天然纤维素的性质,同时赋予纳米粒子以高强度、高结晶性、高比表面积、高抗张强度等特性,能够明显改善材料的光、电、磁等性能,在复合材料、精细化工、医药载体、药物缓释等领域具有广阔的应用前景。进一步对纳米纤维素的结构进行调控,在纳米尺度操控纤维素超分子聚集体,进行结构设计并组装出稳定的功能性纤维素基纳米材料,即可以纤维素为原料构建具有优异性能的生物质材料,这也正是目前生物质材料和纤维素科学领域的研究热点。概括了目前纳米纤维素的主要制备方法:机械法、化学法和生物法,并对各种制备方法的优缺点进行了讨论,同时综述了纳米纤维素的应用状况,指出了纳米纤维素的制备及应用方面需要解决的主要问题及今后的发展方向。  相似文献   

3.
纳米纤维素是一种来源于植(动)物或微生物的天然绿色纳米材料,拥有高表面化学活性、独特的网络结构、优异的力学强度和高比表面积等优良特性。通过层层自组装、原位化学聚合和电化学沉积等方式,纳米纤维素可与金属氧化物、导电聚合物和二维纳米材料等多种纳米粒子高效复合,形成不同微观尺寸和结构特性的纳米纤维素基多孔膜材料和导电复合材料,在金属离子电池、超级电容器等储能器件用隔膜和电极材料领域具有广阔的应用前景。根据材料来源、制备方法和纤维形态的差异,纳米纤维素可分为纤维素纳米晶体、纤维素纳米纤丝、细菌合成纳米纤维和静电纺丝纳米纤维4大类,目前用于储能材料的主要是前3类。这些纳米纤维素常与水混合成胶体状态,失水后借助氢键自组装(织)形成力学性能和热稳定性优异的薄膜,在电解质溶液中具有良好的保湿能力,易于离子和电子传输,是储能器件隔膜材料的理想选择。纳米纤维素丰富的活性基团、独特的网络结构和易于成膜的特性,可作为骨架材料与其他导电活性成分(主要包括碳纳米材料、金属氧化物和导电聚合物)复合制备储能用电极材料。纳米纤维素也可以直接炭化用于电极材料,其储能性能与石墨化程度密切相关,常通过掺杂改性、多元复合等方式提高储能效率和性能。现阶段纳米纤维素基电极材料有主要碳纤维材料、二维纳米材料、导电高分子材料和多元复合材料,尽管具有无可比拟的性能优势和乐观的应用前景,但纳米纤维素与电极活性材料之间的复合方式、界面相容性以及微观形貌调控等研究尚处于起步阶段,如何最大限度发挥纳米纤维素的尺寸效应和网络结构,构建具有更加精细的纳米体系及高转化效率的储能器件是下一步需要攻克的主要难题。本文在简要介绍纳米纤维素分类和性能的基础上,详细阐述其在储能器件隔膜材料和新型电极材料领域的研究现状,并进一步对纳米纤维素在该领域的发展趋势进行展望。  相似文献   

4.
介绍了以纳米纤维素(NCC)为骨架材料、聚乙二醇(PEG)为相变储能功能基,采用化学接枝的方法制备一种NCC/PEG固-固相变材料.并分别用IR、DSC以及TGA等技术手段对其储能性能进行表征.结果表明,以纳米纤维素为骨架材料制备的固-固相变材料具有更高的相变焓,所得的相变材料具有更好的储能效率,其相变焓最大可达 103.8 J/g.  相似文献   

5.
纳米纤维素是一种高透明度、高机械强度的材料,使用不同的方法如真空过滤法、溶液浇铸法等可将其制备成膜材料。通过对纳米纤维素进行改性或添加紫外屏蔽剂可以提高膜材料的紫外屏蔽性能,实现其在光敏材料覆膜、食品包装、紫外防护等领域的应用价值。首先介绍了紫外屏蔽剂作用机制,重点综述了改性纳米纤维素、纳米纤维素/无机氧化物、纳米纤维素/木质素及其他复合紫外屏蔽膜材料的研究进展,最后总结并展望了纳米纤维素基紫外屏蔽膜材料制备及应用所面临的机遇和挑战。  相似文献   

6.
摩擦材料是一种应用在动力机械上,依靠摩擦作用来执行制动和传动功能的部件材料,它最主要的功能是通过摩擦来吸收或传递动力,使机械设备与各种机动车辆能够安全可靠地工作。目前常用的摩擦材料有纸基摩擦材料和橡胶板木型摩擦材料。 本专利提供的摩擦材料:是由衬片、纸基摩擦材料、橡胶软木型摩擦材料合成的。纸基摩擦材料与橡胶软木型摩擦材料的体积比为1:1~5。  相似文献   

7.
纤维素纳米纤维在生物医用产品、增强材料、过滤吸附材料、柔性电极材料和储能器件等领域具有广阔的应用前景。静电纺丝法是目前能直接且连续制备微纳米纤维的主要方法之一,由于纤维素中极强的氢键网络导致的高结晶度,使得直接使用纤维素静电纺丝制备纳米纤维较难。笔者以微晶纤维素、纸浆纤维素为研究对象,通过氯化锂/二甲基乙酰胺(LiCl/DMAc)溶剂体系溶解并进行活化处理,加入不同含量聚丙烯腈(PAN)对纤维素进行静电纺丝制备纤维素纳米纤维,探究纤维素类型、N,N-二甲基甲酰胺(DMF)活化处理前后、PAN加入量对纤维素溶解性、纺丝液性参数和纺丝效果影响。结果表明:DMF活化处理可有效提升纤维素在LiCl/DMAc溶剂体系中的溶解性,在相同溶解温度下获得更加均匀透明的纤维素溶液。在该溶剂体系下,纺丝液黏度、电导率和表面张力分别高于1 300 mPa·s、2 000μs/cm和34.5 mN/m,可获得连续的电纺纤维素纳米纤维。活化微晶纤维素纳米纤维膜比活化纸浆纤维素纳米纤维膜表面更光滑且纤维直径分布更均匀。活化微晶纤维素与PAN质量比为2∶8时可获得表面光滑无珠状物,纤维均一程度高,直径分布小(185~245 nm)的纤维素纳米纤维膜。  相似文献   

8.
为了应对全球日益严重的环境污染和资源短缺,近年来,可再生、环境友好的生物质材料受到越来越多的关注。纤维素是地球上产量最大的生物质,在自然界中分布广泛且含量丰富,具有资源优势的同时还具有可生物降解、无毒等优点。纳米纤维素是一种可通过物理、化学或生物方法从原纤维中分离出的直径为纳米级的纤维素材料,其优异的力学、光学和热稳定性使其在电子器件领域具有广阔的应用前景。纳米纤维素结构的基本属性对其在新兴应用设计和产品制造上至关重要。因此,笔者在介绍纳米纤维素不同维度结构的基础上,对纳米纤维素基导电材料制备过程中的改性和炭化处理研究进展,以及其在电子、储能器件领域所取得的应用研究进展进行了综合评述,并对其在应用过程中存在的问题进行了分析。最后,就纳米纤维素基导电材料未来应用研究的重点和方向阐述了自己的观点,认为应该在降低纳米纤维素材料的制备成本以提高纳米纤维素的生产效率,以及开发既能方便储存运输又不会导致纳米纤维素聚集的新方法等方面加强投入。  相似文献   

9.
纤维素是自然界中一种轻质、生物相容性好以及柔韧性强的生物高分子材料,在柔性超级电容器、生物传感器以及电磁屏蔽等领域得到了广泛应用。在柔性超级电容器领域中,纤维素基材料的多羟基结构是电解质离子传导的良好介质,有助于提高电极材料的电容特性以及循环特性,并且易与导电活性材料(如:石墨烯、碳纳米管、导电高分子)通过涂布、共混、层层自组装以及原位聚合等方法构建导电框架以制备柔性电极材料。综述了基于纤维素材料的柔性超级电容器电极开发的相关研究,重点介绍了基于不同纤维素基原料(原生纤维素、纳米纤维素以及纤维素衍生物)制备柔性超级电容器电极的方法以及所得电极的电化学性质,分析归纳了纤维素基材料在柔性电极中的主要作用:作为骨架支撑柔性电极材料、充当柔性基底(可兼有隔膜作用)、形成多孔结构传输电解质离子。最后,对纤维素材料在柔性电极材料领域的发展趋势进行了展望。  相似文献   

10.
为制备力学性能优良、透光性能好以及阻隔性能较佳的可再生生物质基膜材料,以漂白硫酸盐竹浆纤维(BP)为原料,先制备竹纳米纤维素(B-CNF),再通过高碘酸钠氧化改性的方法对竹纤维中纤维素的分子结构进行调控,制备了以竹材为基质的竹纳米纤维素膜材料。当NaIO4氧化处理0.5、 1.5、 3 h时,所得氧化竹纳米纤维素分别标记为OB-CNF-0.5、OB-CNF-1.5和OB-CNF-3,对应制备的膜材料分别标记为OBF-0.5、OBF-1.5和OBF-3,B-CNF制备的膜材料为BF。采用傅里叶红外光谱(FT-IR)、扫描电子显微镜(SEM)、原子力显微镜(AFM)等方法对膜材料进行了表征,并测试了其力学性能、透光性能、水蒸气和氧气阻隔性能。结果表明:高碘酸盐氧化可成功地在竹纤维的纤维素分子长链中引入醛基,随着NaIO4氧化时间延长至3.0 h,竹纳米纤维素中含醛基量增加至1.23 mmol/g;与BF相比,随着氧化时间的延长,竹纳米纤维素基膜材料会逐渐出现分层结构,在波长为600 nm处的透光率从82.24%增加至97.49%,水蒸气透过量(W...  相似文献   

11.
层层自组装技术,具有原理简单、易于操作、可调控纳米尺度上组装物质的形貌等优点,在多种制备纳米纤维素基复合功能材料的方法中脱颖而出。基于此原理,以纳米纤维素作为研究对象,按其在复合功能材料中承担的不同角色,详细阐述纳米纤维素基功能复合材料的制备过程、结构特征和功能特性,并提出了层层自组装技术在纳米纤维素基功能复合材料制备中进一步的研究方向。  相似文献   

12.
近年来,随着人们对于可再生生物质资源转化利用的日益重视,纳米纤维素因其独特的性质而受到广泛关注。纳米纤维素在高性能复合材料、电子产品、催化材料、生物医用材料和能源等领域的潜在应用引起了学术界和工业界的浓厚兴趣。纳米纤维素与有着近100年发展历史的石油化工产品之间的竞争将是大势所趋。林业行业、建筑业、石化行业和制造业之间的密切合作是将绿色纳米纤维素引入大型消费品市场的关键。纳米纤维素的成本和性能非常具有市场竞争力,其两大主要产品为纤维素纳米纤丝(CNF)和纤维素纳米晶体(CNC)。目前,CNF的制备主要是用化学和酶解等方法对纤维素纤维进行预处理,再通过机械解纤法来分离和减小经过预处理的CNF尺寸。CNC则是利用无机酸、有机酸、氧化、酶解、离子液体、低共熔溶剂(DES)或超临界水法对纯化纤维素处理得到的。CNF和CNC未来的市场发展将取决于新型高效溶剂体系的开发(如固体有机酸和DES等),可大量应用纳米纤维素、有效降低总体生产成本的相关产品(如纳米纤维素复合钻井液、纳米纤维素-水泥复合材料和纳米纤维素改性塑料等)的研发,以及纤维素纳米材料的相关国际标准、生理毒性和使用规范的制订,从而帮助相关部门研发和利用纤维素纳米材料。  相似文献   

13.
摩擦材料是一种应用在动力机械上,依靠摩擦作用来执行制动和传动功能的部件材料,它最主要的功能是通过摩擦来吸收或传递动力,使机械设备与各种机动车辆能够安全可靠地工作.目前常用的摩擦材料有纸基摩擦材料和橡胶板木型摩擦材料.  相似文献   

14.
纤维素纳米晶体(cellulose nanocrystals,CNCs)和纤维素纳米纤维(cellulose nanofibrils,CNFs)具有独特的理化性质,例如,比表面积高(100 m2/g)、机械性能优越(弹性模量130~150 GPa)、密度低(低至1.6 g/cm3)、膨胀系数小(低至0.1×10-6/K)、生物相容性好、表面多羟基结构容易进一步修饰等,且原料易得、可再生和生物降解,是理想的先进功能材料构建砌块,已被证明是具有良好应用前景的生物基纳米材料。近年来,纳米纤维素基水凝胶引起了大量的关注,并且其在生物医学领域的应用得到了广泛研究。笔者主要综述了CNCs和CNFs基水凝胶的制备及其在生物医学应用的研究进展。首先介绍了制备CNCs基水凝胶的物理交联法和化学交联法,以及CNFs与金属离子交联、CNFs与聚合物交联两种制备CNFs基水凝胶的方法;其次重点介绍了CNCs和CNFs基水凝胶在药物递送、创伤敷料和组织工程支架中的应用;最后总结了CNCs和CNFs基水凝胶在生物医学领域的应用前景和面临挑战,并指明了CNCs和CNFs基水凝胶在生物医学领域研究的发展方向。  相似文献   

15.
以微晶纤维素(MCC)为原料,通过硫酸水解得到纳米纤维素晶体(NCC),再将纳米纤维素晶体与聚乙烯醇复合共混制备聚乙烯醇/纳米纤维素晶体复合膜,研究复合膜的热学性能,同时采用场发射透射电镜(FETEM)、场发射扫描电镜(FE-SEM)、原子力显微镜(AFM)、热重分析(TG)、差示扫描量热仪(DSC)等仪器对纳米纤维素晶体及其复合膜进行表征与分析。结果表明:所制得的纳米纤维素晶体直径约2~24nm,50~450nm长,呈棒状;由FE-SEM图可观察到纳米纤维素晶体与聚乙烯醇具有良好的界面相互作用,但在较大添加量7%时,NCC出现部分团聚,与基体的相容性下降;由TG和DSC分析说明NCC与PVA基体可较好相容,形成了热稳定性较好的复合膜,但当NCC添加量较大时,由于团聚使复合膜热稳定性下降。  相似文献   

16.
以纤维素为基体制备的功能复合材料,可赋予纤维素光、电、磁以及催化等性能,在制浆造纸、精细化工、组织工程、生物医药等领域具有广阔的应用前景。纤维素基生物医用复合材料是纤维素功能复合材料的典型代表,它结合了生物质材料和生物材料的优点,在骨修复替代、组织工程、药物缓释、基因载体以及蛋白质吸附等领域具有潜在的应用价值,是当前生物质领域的研究热点。综述了目前制备复合材料常用的3种方法,即水热(溶剂热)法、微波辅助法和超声波法,并对这几种方法的特点进行了分析;同时对纤维素功能复合材料发展现状进行了概述,系统介绍了纤维素/羟基磷灰石、纤维素/碳酸钙以及纤维素/银等生物医用复合材料的研究进展。最后,结合笔者自身的研究经历,探讨了纤维素基生物医用复合材料开发过程中存在的问题以及今后的发展方向。  相似文献   

17.
研究了一种利用硬脂酸对纳米二氧化钛(Nano-TiO_2)和纤维素纳米纤维(CNF)复合物进行有机表面修饰的新方法,主要包括纳米二氧化钛、纤维素纳米纤维的制备和利用硬脂酸对Nano-TiO_2/CNF复合体系进行有机表面修饰制得超疏水材料三个工艺过程。通过傅里叶变换红外光谱仪(FTIR)和场发射扫描电子镜(SEM)等对所得的样品进行表征,得出硬脂酸中的—COOH基团与TiO_2/CNF复合体系表面的—OH基团发生脱水反应,并将疏水性—CH_3基团引入复合体系中,复合体系表面构建的纳米级粗糙结构协同体系内引入的疏水基团使最终产物具有超疏水性。  相似文献   

18.
【目的】探究马尾松树皮纳米木质纤维素气凝胶吸附剂对Cr~(3+)、Cu~(2+)、Pb~(2+)、Ni~(2+)的吸附性能,阐明马尾松树皮和纳米木质纤维素气凝胶吸附重金属离子的相关机理,以更好地利用农林废弃物马尾松树皮制备出成本低廉、便于产业化的生物质吸附材料,为其大规模应用奠定理论基础。【方法】将抽提后的马尾松树皮绝干样品在80℃水浴加热搅拌条件下使用对甲苯磺酸溶液处理1 h,反应结束后趁热过滤并透析滤渣。滤渣样品通过微射流均质机20次,得到马尾松树皮纳米木质纤维素。固含量2%的马尾松树皮纳米木质纤维素样品-20℃冷冻120 min后进行冷冻干燥,得到马尾松树皮纳米木质纤维素气凝胶。研究马尾松树皮纳米木质纤维素气凝胶吸附剂对Cr~(3+)、Cu~(2+)、Pb~(2+)、Ni~(2+)的最大吸附容量(q_e)以及其等温吸附特性、吸附热力学特性和吸附动力学特性。【结果】马尾松树皮纳米木质纤维素气凝胶吸附剂对Cr~(3+)、Cu~(2+)、Pb~(2+)和Ni~(2+)的最大吸附容量(q_e)分别为132.7、130.4、186.7和123.4 mg·g~(-1)。马尾松树皮纳米木质纤维素气凝胶吸附Cr~(3+)符合Temkin等温吸附(R~2=0.990 1),且为不均匀的单层吸附。吸附热力学特性研究表明,马尾松树皮纳米木质纤维素气凝胶吸附Cr~(3+)的过程符合热力学规律,R~2=0.992 9,且为非自发复合吸附过程,升高温度对吸附过程的促进作用与放热反应对吸附过程的抑制作用甚至会出现相互抵消的情况。马尾松树皮纳米木质纤维素气凝胶吸附Cr~(3+)符合准二级动力学模型(R~2=0.991 0),其吸附Cr~(3+)的速率主要受化学作用而非物质传输步骤影响,特别是二者之间电子的化学分享或共价键交换等过程。【结论】基于廉价的生物质———马尾松树皮制备的马尾松树皮纳米木质纤维素气凝胶可作为重金属离子的有效吸附剂,表现出较为理想的吸附容量,静态吸附涉及的条件较为简单,具有一定的可试验推广性,马尾松树皮基吸附剂的开发也可推动廉价生物质的资源化利用。马尾松树皮和纳米木质纤维素气凝胶2种吸附剂的吸附性能稳定可靠,有望通过优化工艺提升性能;但是需要基于大规模甚至中试规模试验才能检验其有效性,进而指导工艺优化,得到性能更加出色的马尾松树皮纳米木质纤维素气凝胶作为重金属离子吸附剂。  相似文献   

19.
以纳米纤维素为原料,采用"CaCl_2溶液促进物理凝胶法"制备水凝胶,选用叔丁醇溶液为置换溶剂并采用"多步法"完成溶剂置换,最后通过冷冻干燥法制备纳米纤维素气凝胶。通过扫描电子显微镜(SEM)、全自动比表面积与孔隙度分析仪和热重分析仪(TG)对所制备的纳米纤维素气凝胶进行微观形貌、比表面积、孔径分布及热稳定性进行表征分析。结果表明:叔丁醇冷冻干燥法制备的纳米纤维素气凝胶是具有层状的以中孔和大孔为主的多孔材料,其比表面积可达174.3 m2/g,收缩率仅为7.86%,平均孔径约为18.4 nm。随着纤维素质量分数的增加,纳米纤维素气凝胶的吸附量和比表面积增大,孔隙度增加,收缩率逐渐减小;纳米纤维素气凝胶具有与微晶纤维素和纳米纤维素相似的热稳定特性。CaCl_2溶液通过改变原始溶胶体系的电荷分布而使粒子更易相互靠近聚集形成凝胶,落入其中的纳米纤维素颗粒会保持其落入瞬间的完整状态。  相似文献   

20.
无石棉纸基摩擦材料具有高摩擦系数、低动静系数比、传递扭矩高、制动效果好的特点,广泛用于汽车、拖拉机、工程机械等的离合器和制动器中。该材料代替铜基摩擦材料,具有节能、节材的优点。用于工程无石棉纸基摩擦材料  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号