首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
采用同轴静电纺丝技术,将酸水解获得的纤维素纳米晶体(cellulose nanocrystals,CNCs)添加到聚甲基丙烯酸甲酯(PMMA)/二甲基甲酰胺(DMF)溶液中作为壳层电纺液,聚丙烯腈(PAN)/DMF溶液为核层电纺液,成功制备出核-壳结构的纳米复合纤维。探讨了CNCs添加量对电纺液的电导率和黏度的影响及同轴复合纤维的微观形貌、直径分布、结晶特性、热学性能和疏水性能的影响。结果表明:CNCs添加后电纺液的电导率和黏度有明显提高,所制备的同轴纳米纤维具有较好的核-壳结构,其直径随CNCs加载量的增加而减小,且分布更加集中;添加高结晶度的CNCs后,复合纤维的结晶性得到明显提高;在热学性能方面,CNCs增强的同轴纳米材料最大热分解温度为402.7℃,远高于单纺PMMA和单纺PAN纤维以及未添加CNCs的同轴PMMA/PAN纳米材料;添加亲水性CNCs后,水接触角值由130.0°降低至116.7°,复合纤维的疏水性能明显下降。  相似文献   

2.
纤维素纳米晶体(cellulose nanocrystals,CNCs)和纤维素纳米纤维(cellulose nanofibrils,CNFs)具有独特的理化性质,例如,比表面积高(100 m2/g)、机械性能优越(弹性模量130~150 GPa)、密度低(低至1.6 g/cm3)、膨胀系数小(低至0.1×10-6/K)、生物相容性好、表面多羟基结构容易进一步修饰等,且原料易得、可再生和生物降解,是理想的先进功能材料构建砌块,已被证明是具有良好应用前景的生物基纳米材料。近年来,纳米纤维素基水凝胶引起了大量的关注,并且其在生物医学领域的应用得到了广泛研究。笔者主要综述了CNCs和CNFs基水凝胶的制备及其在生物医学应用的研究进展。首先介绍了制备CNCs基水凝胶的物理交联法和化学交联法,以及CNFs与金属离子交联、CNFs与聚合物交联两种制备CNFs基水凝胶的方法;其次重点介绍了CNCs和CNFs基水凝胶在药物递送、创伤敷料和组织工程支架中的应用;最后总结了CNCs和CNFs基水凝胶在生物医学领域的应用前景和面临挑战,并指明了CNCs和CNFs基水凝胶在生物医学领域研究的发展方向。  相似文献   

3.
以脱脂棉为原料制备纳米纤维素(CNCs),并通过表面引发原子转移自由基聚合法(SI-ATRP),在牺牲引发剂2-溴代异丁酸乙酯(EBiBr)存在的条件下,将甲基丙烯酸月桂酯(LMA)和甲基丙烯酸四氢糠基酯(THFMA)接枝到CNCs的表面,制备了CNCs增强的复合热塑性弹性体材料(CTPEs),并通过FT-IR、1H NMR和GPC证明成功制备了CTPEs。采用DSC和拉伸试验机对CTPEs的热力学性能和机械性能进行分析,DSC测试表明:随着THFMA含量的增加,CTPEs的玻璃化温度(Tg)由-0.04℃逐渐增加到22.58℃,CTPEs的拉伸强度由0.14 MPa增加到6.17 MPa。此外,通过比较具有相同THFMA/LMA单体投料比的CTPE-3与线性共聚物P(LMA-coTHFMA)的机械性能发现:CTPEs的拉伸强度较P(LMA-co-THFMA)提高了3倍,表明接枝后的CNCs可以实现CTPEs力学性能的增强。  相似文献   

4.
以滤纸为原料,采用浓硫酸水解法制备纤维素纳米晶(CNCs),以柠檬酸钠还原法制备金纳米粒子(GNPs),并将GNPs与CNCs以不同质量比共混制备CNCs/GNPs复合虹彩薄膜;并在CNCs/GNPs体系中添加果糖,研究了果糖对等离子吸收共振效应的影响。采用透射电镜、反射光谱、扫描电镜、偏光显微镜、红外光谱、X射线衍射、紫外-可见光谱和圆二色谱对复合薄膜进行分析,探讨了GNPs与CNCs以不同质量比复合时的结构与性能,以及果糖对体系的影响。研究结果表明:CNCs在成膜过程中发生了自组装,形成了左旋的手性层状液晶结构;复合薄膜具有明显的虹彩颜色,具有周期性层状结构和指纹织构,添加GNPs没有改变CNCs本身的官能团,但复合膜具有明显的等离子共振吸收峰并发生蓝移。添加果糖会使薄膜颜色产生红移现象的同时促进GNPs更加均匀地分散,从而增强GNPs的等离子共振吸收效应。GNPs和果糖的加入不会改变CNCs的晶型结构,对纤维素的结晶度也没有影响。  相似文献   

5.
介绍了一种简单、新颖、环保的制备甲壳素/多壁碳纳米管复合电极的工艺方法。先利用一次研磨法制备出甲壳素纳米纤维(CNFs),纤维直径分布在10~30 nm之间;然后使用十二烷基苯磺酸钠(SDBS)作为多壁碳纳米管的分散剂,通过超声混合法制备CNFs/碳纳米管(CNTs)复合电极;再使用扫描电镜、力学试验机、四探针、热机械分析仪、电化学工作站等对材料性能进行测试。结果表明,CNFs/CNTs复合薄膜内部纤维相互交织,呈现三维网状结构。在此复合物中,甲壳素起到了增强力学性能和抑制碳纳米管团聚的作用,力学性能随着碳纳米管含量的增加而降低,拉伸强度和杨氏模量低至46.23 MPa和1.18 GPa,相比于甲壳素纯膜(113.48 MPa和3.72 GPa)分别减少了59.3%和68.3%。热膨胀系数从2.84×10-5m/K降至3.42×10-6m/K,仅有甲壳素纯膜的12%。CNFs/CNTs复合材料的电导率(1 471.9 S/m)显著提高且电化学性能优异,电容量在经过1 000次充放电循环之后依然保持在99%以上,在扫描速率为10 m V/s时,复合薄膜的电容量达到48.1 F/g。制得的柔性电极材料,成本低廉且环保,今后在便携可折叠装置和固态超级电容器电极方面均具有巨大的应用潜力。  相似文献   

6.
将竹纤维(BF)和聚己内酯(PCL)熔融共混模压制备竹纤维增强聚己内酯(BF/PCL)复合材料,采用硅烷偶联剂(KH560)做界面调控。结合力学、红外、扫描电镜及凝胶色谱等分析检测,确定最佳偶联剂用量和最佳模压温度。结果表明:偶联剂用量为1%(占纤维绝干重量)时,复合材料力学性能较佳,冲击、拉伸强度和断裂伸长率分别为13.72 kJ/m~2,12.71 MPa和6.28%;模压温度为90℃时,复合材料的冲击、拉伸强度及断裂伸长率分别达到15.02 kJ/m~2、14.21 MPa和7.21%,力学性能优良。  相似文献   

7.
纳米TiO2/纤维素的复合纤维可以用于纺织、材料和催化等领域.在1-丁基-3-甲基咪唑氧盐([ BMIM] Cl)离子液体中,将纳米TiO2粉末与纤维素浆柏共混,采用湿法成型技术制备不同含量的纳米TiO2/纤维素纤维复合纤维.通过力学测试、傅立叶变换红外光谱(FT-IR)、扫描电子显微镜(SEM)对所得复合纤维的力学性能、形貌和结构等进行表征;以亚甲基蓝为模型物,对其光催化性能进行测试.结果表明,TiO2质量分数对复合纤维的形貌和性能影响显著,随TiO2质量分数由2%增大至16.7%,复合纤维的断裂强度降低,初始模量由0.139 cN/dtex降至0.077 cN/dtex,光催化性能先降低而后增强,其中含TiO216.7%的复合纤维催化性能较强.以[BMIM] Cl离子液体为介质,温法纺丝制备有光催化活性纳米TiO2/纤维素纤维的方法是可行的;综合考虑,含TiO2 2.0%的复合纤维性能较佳.  相似文献   

8.
纤维素纳米纤维在生物医用产品、增强材料、过滤吸附材料、柔性电极材料和储能器件等领域具有广阔的应用前景。静电纺丝法是目前能直接且连续制备微纳米纤维的主要方法之一,由于纤维素中极强的氢键网络导致的高结晶度,使得直接使用纤维素静电纺丝制备纳米纤维较难。笔者以微晶纤维素、纸浆纤维素为研究对象,通过氯化锂/二甲基乙酰胺(LiCl/DMAc)溶剂体系溶解并进行活化处理,加入不同含量聚丙烯腈(PAN)对纤维素进行静电纺丝制备纤维素纳米纤维,探究纤维素类型、N,N-二甲基甲酰胺(DMF)活化处理前后、PAN加入量对纤维素溶解性、纺丝液性参数和纺丝效果影响。结果表明:DMF活化处理可有效提升纤维素在LiCl/DMAc溶剂体系中的溶解性,在相同溶解温度下获得更加均匀透明的纤维素溶液。在该溶剂体系下,纺丝液黏度、电导率和表面张力分别高于1 300 mPa·s、2 000μs/cm和34.5 mN/m,可获得连续的电纺纤维素纳米纤维。活化微晶纤维素纳米纤维膜比活化纸浆纤维素纳米纤维膜表面更光滑且纤维直径分布更均匀。活化微晶纤维素与PAN质量比为2∶8时可获得表面光滑无珠状物,纤维均一程度高,直径分布小(185~245 nm)的纤维素纳米纤维膜。  相似文献   

9.
在聚丙烯纤维比例为50%的条件下,采用不同竹/木纤维配比制备竹/木/聚丙烯纤维复合材料,考察竹纤维用量对复合材料物理力学性能和微观形貌的影响。结果显示:随着竹纤维用量增加和木纤维用量减少,复合材料的耐水性能增强,力学性能则呈先升后降的趋势,竹纤维用量为25%时力学性能达到最大;试验确定优化竹/木纤维配比为m(竹)∶m(木)=25∶25,复合材料的性能满足TL 52448-1998《天然纤维成型材料热塑性增强材料要求》的要求。  相似文献   

10.
以桐马酸酐甲酯改性杨木纤维(MEMA-PWF)为增强体、双酚A缩水甘油醚型环氧树脂(E51)/甲基四氢邻苯二甲酸酐(MeTHPA)为基体树脂,经热压成型制备杨木纤维增强环氧树脂复合材料.通过接触角测量、扫描电镜(SEM)分析表征了复合材料表面及断裂面结构形貌,并测试了复合材料的冲击强度、弯曲强度.实验结果表明,改性后的杨木纤维表面疏水性及其与环氧树脂基体界面相容性得到明显提高;以MEMA-PWF/环氧树脂体系制备的复合材料力学性能提高,冲击强度、弯曲强度分别达到7.95 kJ/m2、55.42 MPa,并具有较好的疏水性.  相似文献   

11.
近年来,随着人们生活品质要求的不断提升,具有除臭性能好、吸收性能强和价格成本低廉的纤维材料在婴幼儿、成人除臭纸尿裤等卫生用品中的需求量不断增高。但目前市场上的除臭纤维基本存在除臭性能差、吸水性弱以及成本高的问题,严重制约我国除臭功能性纤维材料的国际竞争力。笔者以国内常见的白竹炭纤维和针叶木纤维为基本原料,以ZIF-8纳米粒子和纳米纤维素(CNF)为除臭改性填料,通过复合加工工艺,制备了兼具除臭和吸水功能的竹木复合除臭纤维,并探究了白竹炭纤维和针叶木纤维原料质量比、改性填料含量对复合除臭纤维微结构、吸水以及除氨气、硫化氢等臭味气体的影响规律。研究结果表明,所制备复合除臭纤维最佳工艺条件为针叶木纤维与白竹炭纤维绝干质量比为70∶30,ZIF-8和CNF的质量分数分别为7%和6%,23℃下风干处理24 h,在该工艺条件下制备的除臭纤维对氨气和硫化氢的消臭率分别为84.56%和83.11%,吸水量为8.4 g/g,除臭纤维性能达到国家标准GB/T 33610.2—2017(消臭率≥70%)的要求。  相似文献   

12.
LLDPE/PS塑料合金及其与木纤维形成复合材料的研究   总被引:6,自引:0,他引:6  
郭文静  王正 《林业科学》2006,42(3):59-66
研究线性低密度聚乙烯(LLDPE)与聚苯乙烯(PS)共混制备的塑料合金的性能并用不同制备条件的塑料合金与木纤维复合形成塑料合金/木纤维复合材料,研究该种复合材料的外观质量及物理力学性能.结果表明:不同共混比例与共混温度对制备的塑料合金熔体流动性、力学强度有较显著影响.塑料合金/木纤维复合材料的性能与塑料合金共混比例及共混温度有较强的相关性.2种塑料在共混比为50/50,共混温度为200℃时,形成的塑料合金与木纤维具有相对最好的相容性和最好的材料外观质量与力学性能.DMA试验表明:塑料合金/木纤维复合材料的耐热性明显优于相应的塑料合金.  相似文献   

13.
以洋麻纤维和聚丙烯纤维针刺毛毡、橡胶板为原料,以PE(聚乙烯)胶膜为胶黏剂,利用热压成型工艺制备洋麻纤维/聚丙烯/橡胶板复合材料。首先通过热压因子单因素和正交试验制备洋麻纤维/聚丙烯复合板,测试其物理力学性能,选出较优热压工艺参数。然后加入橡胶板,通过优化热压因子,采用二次成型制备洋麻纤维/聚丙烯/橡胶板复合板材,与一次成型工艺制备的洋麻纤维/聚丙烯/橡胶板复合板材物理力学性能作对比。探究制备洋麻纤维/聚丙烯/橡胶板复合板材时,不同热压温度、时间和压力对复合材料物理力学性能的影响,并分析得出较优热压工艺。  相似文献   

14.
为探索纳米CaCO3对增强生物可降解复合材料力学性能的影响,采用混炼、注射成型工艺制备纳米CaCO3改性木纤维/聚乳酸复合材料,研究了纳米粒子添加量(1wt%,2wt%,3wt%,4wt%)及粒子预处理(偶联剂,硬脂酸,偶联剂-硬脂酸)对材料拉伸性能与冲击性能的影响。随着CaCO3添加量增加,复合材料力学强度先增大后减小,质量分数2%时材料拉伸强度和冲击强度分别提高8%与20%,粒子的增韧效果明显。预处理不仅能增强木纤维与聚乳酸的结合,也提高了纳米粒子分散性,增强材料整体力学性能。纳米粒子在聚合物基体中的分散性及其与聚合物界面结合是影响材料性能的关键。  相似文献   

15.
以辛酰氯作酯化试剂,制备得到酯化淀粉(SE),并将SE作为界面改性剂应用于木薯渣纤维/聚丁二酸丁二醇酯(PBS)复合材料的合成。在n(—COCl)∶n(—OH)为2∶1的条件下,取代度(DS)2.13的SE与水的接触角达87.9°,相比未处理淀粉,酯化淀粉的疏水性显著提高。SE用量(以木薯渣纤维质量计)5.0%时,表面处理过的木薯渣纤维/PBS复合材料的拉伸强度12.57 MPa、弯曲强度67.53 MPa和冲击强度4.89 k J/m2,比未处理纤维制备的复合材料分别提高了52.7%、24.0%和30.4%。SEM分析表明,SE处理过的纤维与基体之间表现出更好的相容性。初步推测SE增强复合材料界面结合的机理为:两亲性的酯化淀粉,其疏水端与PBS基体表面活性相近,易产生良好的相容性;而其亲水端易与木薯渣纤维上的羟基通过氢键结合,从而增强了复合材料的界面结合。  相似文献   

16.
研究采用润湿处理、NaOH处理和硅烷偶联剂KH550(γ-氨丙基三乙基氧基硅烷)处理等方式改性竹原纤维(长度为20 mm),并将竹原纤维用于增强石膏板。对竹原纤维/石膏复合材的静曲强度、弯曲模量、吸水厚度膨胀率及内结合强度进行测试,采用傅里叶红外光谱、扫描电子显微镜和X射线扫描分析手段探究增强原理。竹原纤维经处理后制备的复合材脆性减小、结晶度增大、力学性能都有提高,脆性得到改善。NaOH处理去除了纤维表面的蜡质等,使表面粗糙;偶联剂处理降低了纤维表面的极性,这些都有利于改善纤维与石膏的界面结合,提高石膏板的力学性能。当竹原纤维质量分数为3%时,复合材的静曲强度比纯石膏提高了77.8%,弯曲模量提高了9.4%,内结合强度提高了229.6%,24 h吸水厚度膨胀率未发生明显变化。  相似文献   

17.
采用液相混合法制备了纳米纤维增强苯乙烯-丁二烯-丙烯腈(ABS)复合材料,研究了纳米纤维素晶须(NCW)含量对复合材料性能影响。SEM测试表明,添加少量的NCW即会对复合材料的断裂面形态造成明显影响。热重分析发现,NCW的加入会降低复合材料的热稳定性。当NCW含量为10%时,复合材料热分解温度下降20%。红外光谱(FTIR)测试表明,在复合材料中纳米纤维素间的自由羟基和氢键数量明显下降。拉伸性能和动态机械性能测试表明,NCW含量为5%时复合材料的性能增加明显,拉伸强度上升11%,模量上升19%。研究结果表明,采用液相混合法制备纳米纤维素晶须/ABS复合材料时,丙酮溶液和ABS中存在的—CN对改善复合材料的界面相容性尤为关键。  相似文献   

18.
为改善纳米SiO_2在水性聚丙烯酸(poly acrylic acid,PAA)涂料中的分散性,以纤维素纳米晶体(cellulose nanocrystal,CNC)为模板,正硅酸乙酯为硅源,通过溶胶凝胶法在CNC表面原位聚合形成纳米SiO_2,制备CNC/SiO_2复合胶体,并以复合胶体改性水性PAA涂料,探讨了CNC、纳米SiO_2以及CNC/SiO_2复合胶体对水性PAA涂料的影响规律。结果表明,以CNC为模板负载SiO_2制备得到的CNC/SiO_2复合胶体加入水性PAA涂料中可以有效提高SiO_2在PAA涂料中的分散性,改善了SiO_2与PAA的界面相容性。经CNC/SiO_2复合胶体改性后,PAA涂料中形成了氢键和微量的酯基。相比CNC和SiO_2,CNC/SiO_2复合胶体改善了水性PAA涂料的物理力学性能。当CNC/SiO_2复合胶体添加量为5%时,PAA涂料的硬度由H增大到6H,附着力由四级提高到一级,黏度由979.3 mPa·s减小到480.8 mPa·s,表干时间由60 min延长至130 min。  相似文献   

19.
高质量的生物质微细纤维作为木塑复合材(WPC)填料可使产品综合性能显著提高。笔者围绕WPC用微细纤维的定向制备展开研究,考察了不同含水率、不同树种和不同形态原料对制备的木纤维质量的影响及以其为增强材料制备的WPC力学性能。结果表明:随着原料初含水率的增加,木纤维的整体几何尺寸明显增大;单板粉碎制备的纤维长度和直径比木片制备的纤维稍大;当木纤维直径为0.21 mmd≤0.29 mm、长径比为5~7时可赋予WPC较好的力学性能,与纤维直径为0.14 mm的WPC相比,拉伸、弯曲及冲击强度分别提高了10.12%、6.13%及14.65%。  相似文献   

20.
竹纤维经一步碱纯化制得α-纤维素含量高于96%的碱处理竹纤维素,达到了商业合成醋酸纤维素对原料的要求;随后对提纯的竹纤维素进行乙酰化改性,以提高其用于静电纺丝技术制备纳米材料的溶解特性。采用相应的表征手段(SEM和NMR)分析了竹纤维纯化和乙酰化反应过程中产物形貌及结构的变化,结果表明:经Na OH溶液纯化后样品的纤维形貌得到了保持,粗糙的纤维表面印证了原料中杂质成分的脱除;乙酰反应使得纤维素分子上的羟基被取代转变为醋酸纤维素结构。并基于静电纺丝技术(纺丝工艺条件:电压22 k V,溶液流速为1 m L/h,接收距离15 cm,滚筒转速15.2 m/s)成功制得了形貌均匀、取向可控的竹纤维源纳米纤维。相关研究结论可为我国农业纤维性资源纳米化全新利用提供一定的理论基础,契合时下充分开发环境友好型可再生生物质资源的研究主题。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号