首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The stable carbon isotope ratio of atmospheric CO(2) (δ(13)C(atm)) is a key parameter in deciphering past carbon cycle changes. Here we present δ(13)C(atm) data for the past 24,000 years derived from three independent records from two Antarctic ice cores. We conclude that a pronounced 0.3 per mil decrease in δ(13)C(atm) during the early deglaciation can be best explained by upwelling of old, carbon-enriched waters in the Southern Ocean. Later in the deglaciation, regrowth of the terrestrial biosphere, changes in sea surface temperature, and ocean circulation governed the δ(13)C(atm) evolution. During the Last Glacial Maximum, δ(13)C(atm) and atmospheric CO(2) concentration were essentially constant, which suggests that the carbon cycle was in dynamic equilibrium and that the net transfer of carbon to the deep ocean had occurred before then.  相似文献   

2.
The carbon isotopic composition ((13)C/(12)C, expressed as δ(13)C) of fossil foraminifera is the primary tracer used to infer changes in past ocean ventilation, and its variations are interpreted by using the modern oceanic δ(13)C distribution as a framework. However, the present ocean δ(13)C distribution is strongly overprinted by isotopically light anthropogenic carbon dioxide. A correction for this oceanic C-13 Suess effect in the North Atlantic (NA) shows that the pristine NA δ(13)C distribution has a richer and more detailed structure that is more clearly related to water mass distributions. Our results revise some fundamental perceptions regarding glacial-interglacial ocean δ(13)C differences and allow paleo-δ(13)C variations to be understood within the context of modern climate variability.  相似文献   

3.
The carbon-14 distribution in the abyssal waters of the world oceans indicates replacement times for Pacific, Indian, and Atlantic ocean deep waters (more than 1500 meters deep) of approximately 510, 250, and 275 years, respectively. The deep waters of the entire world ocean are replaced on average every 500 years.  相似文献   

4.
During the past decade, geochemical paleoceanographers have begun to explore the changes in the circulation of the deep ocean that occurred during the glacial-interglacial cycles of the earth's recent history. The deep ocean was significantly colder during the glacial maximum. The distributions of biologically utilized elements (such as carbon and phosphorus) were significantly different as well; higher concentrations of these elements occurred in the deep (>2500 meters depth) North Atlantic, and lower concentrations occurred in the upper (<2500 meters depth) waters of the North Atlantic and possibly in all of the major ocean basins. In contrast, relatively subtle changes have been observed in the radiocarbon ages of deep waters. Slow deepwater changes are statistically linked to variations in the earth's orbit, but rapid changes in deepwater circulation also have occurred. Deepwater chemistry and circulation changes may control the variability in atmospheric CO(2) levels that have been documented from studies of air bubbles in polar ice cores.  相似文献   

5.
Changes in the upwelling and degassing of carbon from the Southern Ocean form one of the leading hypotheses for the cause of glacial-interglacial changes in atmospheric carbon dioxide. We present a 25,000-year-long Southern Ocean radiocarbon record reconstructed from deep-sea corals, which shows radiocarbon-depleted waters during the glacial period and through the early deglaciation. This depletion and associated deep stratification disappeared by ~14.6 ka (thousand years ago), consistent with the transfer of carbon from the deep ocean to the surface ocean and atmosphere via a Southern Ocean ventilation event. Given this evidence for carbon exchange in the Southern Ocean, we show that existing deep-ocean radiocarbon records from the glacial period are sufficiently depleted to explain the ~190 per mil drop in atmospheric radiocarbon between ~17 and 14.5 ka.  相似文献   

6.
南极普里兹湾关键物理海洋学问题研究进展及未来趋势   总被引:5,自引:2,他引:3  
南极普里兹湾及其邻近海域关键物理海洋学问题包括水团特性、环流特征和冰架 海洋 海冰相互作用过程等。该海域水团可以分为南极表层水、绕极深层水、南极底层水、南极陆架水和南极冰架水等,受外部条件影响,这些水团时空变化显著。普里兹湾区域的环流以普里兹湾流涡,西向的沿岸流和东向的绕极流,以及两者之间的南极辐散带的环流为主要特征,地形是环流特征的关键影响因素。埃默里冰架 海洋的相互作用过程显著影响普里兹湾海域的水团特性和环流状况。冰泵机制,是埃默里冰架外海水进入冰穴,并引起冰架底部消融和冻结的重要原因。冰架 海洋 海冰相互作用形成的低温高盐水,是普里兹湾形成南极底层水的潜在因素之一。加强现场观测,并建立高分辨率的冰架 海洋 海冰耦合模型系统是研究普里兹湾海域物理海洋学关键过程和变化机制的重要手段,是南极研究的发展趋势。  相似文献   

7.
Earth's modern climate, characterized by polar ice sheets and large equator-to-pole temperature gradients, is rooted in environmental changes that promoted Antarctic glaciation ~33.7 million years ago. Onset of Antarctic glaciation reflects a critical tipping point for Earth's climate and provides a framework for investigating the role of atmospheric carbon dioxide (CO(2)) during major climatic change. Previously published records of alkenone-based CO(2) from high- and low-latitude ocean localities suggested that CO(2) increased during glaciation, in contradiction to theory. Here, we further investigate alkenone records and demonstrate that Antarctic and subantarctic data overestimate atmospheric CO(2) levels, biasing long-term trends. Our results show that CO(2) declined before and during Antarctic glaciation and support a substantial CO(2) decrease as the primary agent forcing Antarctic glaciation, consistent with model-derived CO(2) thresholds.  相似文献   

8.
We present a 650-year Antarctic ice core record of concentration and isotopic ratios (δ(13)C and δ(18)O) of atmospheric carbon monoxide. Concentrations decreased by ~25% (14 parts per billion by volume) from the mid-1300s to the 1600s then recovered completely by the late 1800s. δ(13)C and δ(18)O decreased by about 2 and 4 per mil (‰), respectively, from the mid-1300s to the 1600s then increased by about 2.5 and 4‰ by the late 1800s. These observations and isotope mass balance model results imply that large variations in the degree of biomass burning in the Southern Hemisphere occurred during the last 650 years, with a decrease by about 50% in the 1600s, an increase of about 100% by the late 1800s, and another decrease by about 70% from the late 1800s to present day.  相似文献   

9.
Oxygen isotope analysis of benthic foraminifera in deep sea cores from the Atlantic and Southern Oceans shows that during the last interglacial period, North Atlantic Deep Water (NADW) was 0.4 degrees +/- 0.2 degrees C warmer than today, whereas Antarctic Bottom Water temperatures were unchanged. Model simulations show that this distribution of deep water temperatures can be explained as a response of the ocean to forcing by high-latitude insolation. The warming of NADW was transferred to the Circumpolar Deep Water, providing additional heat around Antarctica, which may have been responsible for partial melting of the West Antarctic Ice Sheet.  相似文献   

10.
Fast recession of a west antarctic glacier   总被引:2,自引:0,他引:2  
Satellite radar interferometry observations of Pine Island Glacier, West Antarctica, reveal that the glacier hinge-line position retreated 1.2 +/- 0.3 kilometers per year between 1992 and 1996, which in turn implies that the ice thinned by 3.5 +/- 0.9 meters per year. The fast recession of Pine Island Glacier, predicted to be a possible trigger for the disintegration of the West Antarctic Ice Sheet, is attributed to enhanced basal melting of the glacier floating tongue by warm ocean waters.  相似文献   

11.
Coupled radiocarbon and thorium-230 dates from benthic coral species reveal that the ventilation rate of the North Atlantic upper deep water varied greatly during the last deglaciation. Radiocarbon ages in several corals of the same age, 15.41 +/- 0.17 thousand years, and nearly the same depth, 1800 meters, in the western North Atlantic Ocean increased by as much as 670 years during the 30- to 160-year life spans of the samples. Cadmium/calcium ratios in one coral imply that the nutrient content of these deep waters also increased. Our data show that the deep ocean changed on decadal-centennial time scales during rapid changes in the surface ocean and the atmosphere.  相似文献   

12.
The Eocene greenhouse climate state has been linked to a more vigorous hydrologic cycle at mid- and high latitudes; similar information on precipitation levels at low latitudes is, however, limited. Oxygen isotopic fluxes track moisture fluxes and, thus, the δ(18)O values of ocean surface waters can provide insight into hydrologic cycle changes. The offset between tropical δ(18)O values from sampled Eocene sirenian tooth enamel and modern surface waters is greater than the expected 1.0 per mil increase due to increased continental ice volume. This increased offset could result from suppression of surface-water δ(18)O values by a tropical, annual moisture balance substantially wetter than that of today. Results from an atmospheric general circulation model support this interpretation and suggest that Eocene low latitudes were extremely wet.  相似文献   

13.
We use pore fluid measurements of the chloride concentration and the oxygen isotopic composition from Ocean Drilling Program cores to reconstruct salinity and temperature of the deep ocean during the Last Glacial Maximum (LGM). Our data show that the temperatures of the deep Pacific, Southern, and Atlantic oceans during the LGM were relatively homogeneous and within error of the freezing point of seawater at the ocean's surface. Our chloride data show that the glacial stratification was dominated by salinity variations, in contrast with the modern ocean, for which temperature plays a primary role. During the LGM the Southern Ocean contained the saltiest water in the deep ocean. This reversal of the modern salinity contrast between the North and South Atlantic implies that the freshwater budget at the poles must have been quite different. A strict conversion of mean salinity at the LGM to equivalent sea-level change yields a value in excess of 140 meters. However, the storage of fresh water in ice shelves and/or groundwater reserves implies that glacial salinity is a poor predictor of mean sea level.  相似文献   

14.
羊组织中碳、氮同位素组成及地域来源分析#br#   总被引:4,自引:1,他引:3  
 【目的】探讨羊组织中C、N同位素组成特征及其在地域间的变化规律,为利用稳定性同位素技术进行羊肉产地溯源提供科学依据。【方法】利用稳定性同位素比率质谱仪(IRMS)测定来自内蒙古自治区锡林郭勒盟、阿拉善盟和呼伦贝尔市3个牧区,重庆市和山东省菏泽市2个农区羊肉、羊颈毛及饲料样品中的δ13C和δ15N值,比较不同地域羊组织中稳定性碳、氮同位素组成的差异,分析羊组织同位素组成的相关关系,结合羊的饲喂方式和地域环境,探讨C、N同位素组成的变化规律。【结果】不同地域羊组织的δ13C、δ15N值有显著性差异,其δ13C值与牧草δ13C值高度相关,主要受牧草种类的影响;δ15N值与饲料和地域环境有关。脱脂羊肉、粗脂肪及羊颈毛的δ13C、δ15N值均呈极显著性相关。【结论】稳定性C、N同位素可以作为追溯羊肉产地及其饲喂体系的参考指标。脱脂羊肉、羊颈毛、粗脂肪均可用于羊肉产地溯源研究。  相似文献   

15.
通过GeoprobeR深层取土18m,分析了不同施氮水平下厚不饱和层土壤中NO3--N的迁移变化。发现不同施氮处理下NO3--N在一个生育期的淋失变化主要体现在0~4m土体内,土壤中硝态氮累积峰下移深度为0.2~0.6m,高施肥土体中,深层土壤6.7~8m和13~15m土体中也有少量硝态氮淋失,施氮量越高,淋失量和累积量也越高;不同施肥处理下,厚不饱和层土壤中NO3--N累积量变化主要体现4m土体特别是根区土层中,在2m土体内,土体中NO3--N的累积量与施入的氮肥量呈极显著线性关系,根区以下不饱和层中NO3--N累积量超过1800kg/hm2。  相似文献   

16.
The Turonian (93.5 to 89.3 million years ago) was one of the warmest periods of the Phanerozoic eon, with tropical sea surface temperatures over 35 degrees C. High-amplitude sea-level changes and positive delta18O excursions in marine limestones suggest that glaciation events may have punctuated this episode of extreme warmth. New delta18O data from the tropical Atlantic show synchronous shifts approximately 91.2 million years ago for both the surface and deep ocean that are consistent with an approximately 200,000-year period of glaciation, with ice sheets of about half the size of the modern Antarctic ice cap. Even the prevailing supergreenhouse climate was not a barrier to the formation of large ice sheets, calling into question the common assumption that the poles were always ice-free during past periods of intense global warming.  相似文献   

17.
Rapid progression of ocean acidification in the California Current System   总被引:1,自引:0,他引:1  
Nearshore waters of the California Current System (California CS) already have a low carbonate saturation state, making them particularly susceptible to ocean acidification. We used eddy-resolving model simulations to study the potential development of ocean acidification in this system up to the year 2050 under the Special Report on Emissions Scenarios A2 and B1 scenarios. In both scenarios, the saturation state of aragonite ?(arag) is projected to drop rapidly, with much of the nearshore region developing summer-long undersaturation in the top 60 meters within the next 30 years. By 2050, waters with ?(arag) above 1.5 will have largely disappeared, and more than half of the waters will be undersaturated year-round. Habitats along the sea floor will become exposed to year-round undersaturation within the next 20 to 30 years. These projected events have potentially major implications for the rich and diverse ecosystem that characterizes the California CS.  相似文献   

18.
The isotopic composition of neodymium has been determined in seawaters from the Drake Passage. The Antarctic Circumpolar Current, which controls interocean mixing, flows through this passage. The parameter epsilon(Nd)(0) which is a function of the ratio of neodymium-143 to neodymium-144, is found to be uniform with depth at two stations with a value which is intermediate between the values for the Atlantic and the Pacific and indicates that the Antarctic Circumpolar current consists of about 70 percent Atlantic water. Cold bottom water from a site in the south central Pacific has the neodymium isotopic signature of the waters in the Drake Passage. By using a box model to describe the exchange of water between the Southern Ocean and the ocean basins to the north together with the isotopic results, an upper limit of approximately 33 million cubic meters per second is calculated for the rate of exchange between the Pacific and the Southern Ocean. Concentrations of samarium and neodymium were also determined and found to increase approximately linearly with depth. These results suggest that neodymium may be a valuable tracer in oceanography and may be useful in paleo-oceanographic studies.  相似文献   

19.
Sub-sea-floor sediments may contain two-thirds of Earth's total prokaryotic biomass. However, this has its basis in data extrapolation from ~500-meter to 4-kilometer depths, whereas the deepest documented prokaryotes are from only 842 meters. Here, we provide evidence for low concentrations of living prokaryotic cells in the deepest (1626 meters below the sea floor), oldest (111 million years old), and potentially hottest (~100 degrees C) marine sediments investigated. These Newfoundland margin sediments also have DNA sequences related to thermophilic and/or hyperthermophilic Archaea. These form two unique clusters within Pyrococcus and Thermococcus genera, suggesting unknown, uncultured groups are present in deep, hot, marine sediments (~54 degrees to 100 degrees C). Sequences of anaerobic methane-oxidizing Archaea were also present, suggesting a deep biosphere partly supported by methane. These findings demonstrate that the sub-sea-floor biosphere extends to at least 1600 meters below the sea floor and probably deeper, given an upper temperature limit for prokaryotic life of at least 113 degrees C and increasing thermogenic energy supply with depth.  相似文献   

20.
A deep-sea temperature record for the past 50 million years has been produced from the magnesium/calcium ratio (Mg/Ca) in benthic foraminiferal calcite. The record is strikingly similar in form to the corresponding benthic oxygen isotope (delta(18)O) record and defines an overall cooling of about 12 degrees C in the deep oceans with four main cooling periods. Used in conjunction with the benthic delta(18)O record, the magnesium temperature record indicates that the first major accumulation of Antarctic ice occurred rapidly in the earliest Oligocene (34 million years ago) and was not accompanied by a decrease in deep-sea temperatures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号