首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
Barley (Hordeum vulgare L.) was grown on a sandy soil given different doses of cadmium carbonate (salt), copper carbonate (malachite), lead carbonate (cerussite), and zinc carbonate (smithsonite) in a pot experiment conducted in a greenhouse. The element compounds were added to the soil in amounts equivalent to the following levels of the metals: Cd 5, 10, 50 μq ?1; Cu and Pb 50, 100, 500 μg g?1; Zn 150, 300, 1500 μg g?1. Sequential extraction was used for partition these metals into five operationally-defined fractions: exchangeable, bound to carbonates, bound to Fe-Mn oxides, bound to organic matter and residual. The residue was the most abundant fraction in the untreated soil for all the metals studied (43 to 61% of the total contents). The concentration of exchangeable Cd (0.2 μg g?1), Cu (0.01 μg g?1), Pb (0.1 μg g?1), and Zn (1.4 μg g?1) were relatively low in the untreated soil but increased markedly in the treated soils for Cd (up to 31 μg g?1) and Zn (up to 83 μg g?1), whereas only small changes were observed for Cu and Pb. The pot experiment showed a significant increase in the Cd and Zn contents of barley grown on the treated soils, but only small changes in Cu and Pb concentrations.  相似文献   

2.
The cereal crops (barley -Hordeum vulgare L., maize -Zea mays L., wheat -Triticum vulgare L.) were grown in a greenhouse using a sandy soil type treated with various doses of cadmium carbonate (salt), copper carbonate (malachite), lead carbonate (cerussite), and zinc carbonate (smithsonite), added jointly. The following levels of these metals were used: Cd ? 5, 10, 50μg g?1 soil; Cu and Pb - 50,100, 500 μg g?1 soil; Zn-150, 300, 1500 μg g-1 soil. Sequential extraction was adopted to partition the metals into five operationally-defined fractions: exchangeable, carbonate, Fe-Mn oxides, organic, and residual. The residual was the most abundant fraction in the untreated (control) soil for all the metals studied (50 to 60% of the total metal content). The concentrations of exchangeable Cd, Cu, Pb, and Zn were relatively low in untreated soil but increased (over the three year period) in treated soils for Cd, Zn, and Cu, whereas only small changes were observed for Ph. This experiment showed a significant increase in Cd, Zn, and Cu in tissue of plants grown on the treated soil, but a non-significant change in plant tissue with respect to Pb concentration.  相似文献   

3.
Abstract

The amounts and forms of zinc in twenty surface soils from Canterbury and Southland, New Zealand were determined using a sequential fractionation scheme. Total soil zinc concentrations ranged from 38.1 mg#lbkg‐1 to 113.8 mg#lbkg‐1. Although the proportions of zinc found in individual fractions varied between soils, on average approximately 3% occurred as exchangeable zinc, 5% as organic‐bound zinc, 9%, 18%, 24% was associated with manganese, amorphous iron and crystalline iron oxides, respectively, and 40% was in the residual fraction. In a group of soils formed in greywacke alluvium or loess, exchangeable zinc was inversely related to soil pH. Within the same group of soils, those of similar age with greater concentrations of total and organic‐bound zinc were present in imperfectly‐ and poorly‐drained soils compared with well‐drained soils. Zinc extracted from the soils with a range of reagents used to assess ‘plant available’ zinc was correlated strongly with the concentrations of zinc present in the exchangeable and organic‐bound zinc fractions.  相似文献   

4.
Used with one of two surfactants (SDS, an anionic surfactant, and Triton X-100, a nonionic surfactant), the ligand, I? was evaluated as a washing agent for the desorption of Cd from naturally and artificially contaminated soils. Increasing amounts of the ligand, I?, with a surfactant, specifically removes higher levels of Cd but not Cu, Zn and Pb. After seven washings, the ligand, I? with the nonionic surfactant, Triton X-100, removed 65 and 90% of the Cd from soils I and II, containing respectively, to 15 and 1275 mg of Cd/kg. The ligand, I?, and the anionic surfactant, SDS, removed 35 and 70% of the Cd from soils I and II, respectively. Before washing, the carbonate fraction of soil I contained the most Cd (48%) while the exchangeable and carbonate fractions of soil II contained 29 and 33% of the total Cd, respectively. For soil I, SDS with/ without the ligand desorbed Cd mainly from the carbonate and oxide fractions, while only Triton X-100 with ligand I? could remove Cd from the exchangeable fraction. For soil II, Cd was desorbed from the exchangeable fraction only when either surfactant was used in combination with the ligand. Thus, a surfactant with ligand can extract specific heavy metals from soils and selective sequential extraction is useful in identifying which fraction can be targeted by the surfactant – ligand agent.  相似文献   

5.
海南岛砖红壤中铅、镉的化学形态与转化   总被引:2,自引:1,他引:1  
采用土培实验和连续提取.原子吸收分光光度法,研究了重金属Pb、Cd在海南岛花岗岩砖红壤中的形态组成、外源Pb、Cd污染及化学修复剂磷、钙、硫对土壤重金属形态的影响.结果表明:在供试原土壤中,重金属Pb的化学形态以结合态和残余态为主,土壤有效态Pb含量较低,其中残余态Pb>有机质结合态Pb>铁锰氧化物结合态Pb>碳酸盐结合态Pb>交换态Pb>水溶态Pb,说明土壤Pb的环境风险较低;重金属Cd的化学形态以铁锰氧化物结合态和碳酸盐结合态为主,土壤中交换态Cd含量较高,其中铁锰氧化物结合态Cd>碳酸盐结合态Cd>交换态Cd>有机结合态Cd>残余态Cd>水溶态Cd,说明土壤Cd的环境风险较高.当外源Pb、Cd污染土壤时,有铁锰结合态Pb>残余态Pb>有机态Pb>碳酸盐结合态Pb>交换态Pb>水溶态Pb,交换态Cd>铁锰氧化物结合态Cd>碳酸盐结合态Cd>残余态Cd>有机态Cd>水溶态Cd的趋势.向污染土壤施加化学改良剂过磷酸钙、硫化钠和石灰,能显著降低水溶态Pb、Cd和交换态Pb、Cd的含量,并使有机结合态Pb、碳酸盐结合态Pb和铁锰氧化物结合态Pb含量下降,但残余态Pb、碳酸盐结合态Cd、铁锰氧化物结合态Cd和有机态Cd有增加的趋势,残余态Cd的含量基本稳定.  相似文献   

6.
Abstract

The accumulation of heavy metals in plants is related to concentrations andchemical fractions of the metals in soils. Understanding chemical fractions and availabilities of the metals in soils is necessary for management of the soils. In this study, the concentrations of copper (Cu), cadmium (Cd), lead (Pb), and zinc (Zn) in tea leaves were compared with the total and extractable contents of these heavy metals in 32 surface soil samples collected from different tea plantations in Zhejiang province, China. The five chemical fractions (exchangeable, carbonate‐bound, organic matter‐bound, oxides‐bound, and residual forms) of the metals in the soils were characterized. Five different extraction methods were also used to extract soil labile metals. Total heavy metal contents of the soils ranged from 17.0 to 84.0 mgCukg?1, 0.03 to 1.09 mg Cd kg?1, 3.43 to 31.2 mg Pb kg?1, and 31.0 to 132.0 mg Zn kg?1. The concentrations of exchangeable and carbonate‐bound fractions of the metals depended mainly on the pH, and those of organic matter‐bound, oxides‐bound, and residual forms of the metals were clearly controlled by their total concentrations in the soils. Extractable fractions may be preferable to total metal content as a predictor of bioconcentrations of the metals in both old and mature tea leaves. The metals in the tea leaves appeared to be mostly from the exchangeable fractions. The amount of available metals extracted by 0.01 mol L?1 CaCl2, NH4OAc, and DTPA‐TEA is appropriate extractants for the prediction of metals uptake into tea plants. The results indicate that long‐term plantation of tea can cause sol acidification and elevated concentrations of bioavailable heavy metals in the soil and, hence, aggravate the risk of heavy metals to tea plants.  相似文献   

7.
长三角和珠三角农业土壤中铅、铜、镉的化学形态与转化   总被引:9,自引:1,他引:9  
研究了重金属Pb、Cu、Cd在长江三角洲和珠江三角洲土壤中的转化及不同Pb、Cu、Cd负荷水平对土壤重金属形态的影响。结果表明:未明显污染土壤中重金属主要以残余态为主,可提取态组分的比例Cd>Cu>Pb,但不同土壤之间有较大变化;随着土壤重金属负荷的提高,土壤中交换态重金属的比例增大,残余态比例下降,有效性提高,对环境威胁增大;当重金属加入量较低时,重金属优先向氧化物结合态、有机质结合态转化,而当加入量较高时,向交换态和碳酸盐结合态转化的比例明显增加;pH和土壤组分对重金属在土壤中的转化有显著影响,土壤pH下降可使交换态Cd、Cu、Pb的比例递增。  相似文献   

8.
9.
Ageing reactions can reduce trace metal solubility and can explain natural attenuation of contaminated soils. We modelled ageing reactions in soil with an assemblage model that considers slow reactions in Fe‐oxyhydroxides and reversible sorption on organic matter and clay minerals. Metal adsorption kinetics on Fe‐oxyhydroxides was obtained from data with synthetic oxyhydroxides. Metal solubility and isotopic exchangeability data were obtained from 28 soils amended with Ni, Zn, Cu and Cd metal salts and monitored for 850 days. The assemblage model was constructed in WHAM 6.0 and used soil properties and dissolved organic matter as input data. The model was first validated to predict dissolved metal concentrations, based on the concentration of isotopic exchangeable metals. The model overestimated metal solubility without parameter adjustment by mean factors of 4–7, and successful fits were obtained by increasing the specific surface area of Fe‐oxyhydroxides from measured values of synthetic systems to a value of 600 m2 g?1 recommended by other authors. The effect of ageing on the isotopic exchangeable metal fraction was subsequently modelled starting from the predicted fraction of metals present on Fe‐oxyhydroxides immediately after soil spiking. The observed isotopic exchangeable metal fractions of Ni, Zn and Cd agreed reasonably well with predicted values. The model predicts that ageing reactions are more pronounced at higher pH because metal sorption is increasingly directed to oxyhydroxide surfaces with increasing soil pH. Modelling fixation of Cu requires more information on fixation of that metal in organic matter.  相似文献   

10.
河北主要土壤中Cd和Pb的形态分布及其影响因素   总被引:61,自引:2,他引:61  
刘霞  刘树庆  王胜爱 《土壤学报》2003,40(3):393-400
采用网室盆栽试验和大田取样 ,运用连续提取方法 ,研究了河北平原潮土和潮褐土两种土壤中Cd、Pb的化学形态特征及与其影响因素的关系。结果表明 :随着Cd、Pb污染程度的增加 ,其交换态有增加趋势。当高浓度重金属污染土壤时 ,Cd(潮土 >1mgkg- 1、潮褐土 >5mgkg- 1)主要以交换态存在 ,并表现为 :交换态 >碳酸盐结合态 >铁锰氧化物结合态 >有机结合态 >残留态 ;Pb主要以碳酸盐结合态和铁锰氧化物结合态存在。在低浓度重金属污染的土壤中 ,Cd (潮土 <1mgkg- 1、潮褐土 <5mgkg- 1)的残留态、有机结合态成倍增加 ,甚至超过交换态 ,表现为 :残留态 >碳酸盐结合态 >有机结合态 >交换态 >铁锰氧化物结合态 ;Pb主要以铁锰氧化物结合态和残留态存在。Cd、Pb在土壤中的分布与土壤的pH值 ,有机质含量密切相关。  相似文献   

11.
Different forms of manganese (Mn) were investigated, including total, diethylenetriamine penta-acetic acid (DTPA) extractable, soil solution plus exchangeable (Mn), Mn adsorbed onto inorganic sites, Mn bound by organic sites, and Mn adsorbed onto oxide surfaces, from four soil taxonomic orders in northwestern India. The total Mn content was 200–950 mg kg?1, DTPA-extractable Mn content was 0.60–5.80 mg kg?1, soil solution plus exchangeable Mn content was 0.02–0.80 mg kg?1, Mn adsorbed onto inorganic sites was 2.46–90 mg kg?1, and Mc adsorbed onto oxide surfaces was 6.0–225.0 mg kg?1. Irrespective of the different fractions of Mn their content was generally greater in the fine-textured Alfisols and Inceptisols than in coarse-textured Entisols and Aridisols. The proportion of the Mn fractions extracted from the soil was in the order as follows: Adsorbed onto oxide surfaces > adsorbed onto inorganic site > organically bound > DTPA > soil solution + exchangeable. Based on coefficient of correlation, the soil solution plus exchangeable Mn, held onto organic site and oxide surface (amorphous) and DTPA-extractable Mn, increased with increase in organic carbon of the soil. The two forms, adsorbed onto inorganic site (crystalline) and DTPA extractable, along with organic carbon, increased with increase in clay content of the soil. DTPA-Mn and Mn adsorbed onto oxide surfaces and held on organic site decreased with increased with an increase in calcium carbonate and pH. Total Mn was strongly correlated with organic carbon and clay content of soil. Among the forms, Mn held on the organic site, water soluble + exchangeable and adsorbed onto oxide surface were positively correlated with DTPA-extractable Mn. DTPA-extractable Mn seems to be a good index of Mn availability in soils and this form is helpful for correction of Mn deficiency in the soils of the region. The uptake of Mn was greater in fine-textured Inceptisols and Alfisols than in coarse-textured Entisols and Aridisols. Among the different forms only DTPA-extractable Mn was positively correlated with total uptake of Mn. Among soil properties Mn uptake was only significantly affected by pH of the soil.  相似文献   

12.
STUDIES ON SOIL COPPER   总被引:1,自引:0,他引:1  
A method based on that used by McAuliffe et al. (1948) for phosphorus was developed for determining isotopically exchangeable copper in soils using the radioisotope 64Cu. The authors are confident that, with a few exceptions, isotopic equilibrium in soil/solution systems is attained rapidly enough to overcome possible difficulties resulting from the short half-life of this isotope. For the twenty-four soils examined, amounts of isotopically exchangeable copper were found to be between 0.19 and 12-24 μg g-I and represented between 2 and 21 per cent of the total soil copper. A correlation test and an experiment involving fractionation of labelled soils both demonstrated that the bulk of the isotopically exchangeable copper was located in the organic-bound fraction. Not all copper specifically adsorbed by organic matter was readily exchangeable with 64Cu : for one sample of organic material examined only 20 per cent of the adsorbed copper was isotopically exchangeable after 24 hours equilibration. The corresponding figures for clay materials and oxide material were found to be between 75 and 60 per cent.  相似文献   

13.
A sequential extraction procedure was used to fractionate Cu, Cd, Pb and Zn in 4 soil profiles into the designated forms of water soluble + exchangeable, organically bound, carbonate and Mn oxides bound. Soil profiles were obtained from the Rural Development District 063, State of Hidalgo, which have been irrigated with wastewater coming out of the basin of Mexico. The total heavy metal contents range as follows: Cu, 8.9 to 86.5 mg kg-1 Cd, 0.86 to 5.07 mg kg-1 Pb, 18.1 to 131.7 mg kg-1 and Zn, 101 to 235.5 mg kg-1. The highest concentrations of total heavy metals were found in the surface layers at all soil profiles. Sequential chemical fractionation indicated that the four metals were predominantly associated with the organic fraction at most soil samples. The contents in all fractions of the four metals showed a decrease with depth which has been explained by the variations in the organic matter and CaCO3 contents in the different layers of soils. These soil properties were also the most important variables in the biological availability of the metals in these soils.  相似文献   

14.
Adamo  Paola  Dudka  S.  Wilson  M. J.  McHardy  W. J. 《Water, air, and soil pollution》2002,137(1-4):95-116
The sequential extraction procedure proposed by the European Commission Measurement and Testing Programme, combined with Scanning Electron Microscopy and Energy Dispersive X-ray Analysis(SEM/EDS), was applied to identify and quantify the chemical andmineralogical forms of Cu, Ni, Fe, Mn, Zn, Pb, Cr and Cd presentin the topsoil from a mining and smelting area near Sudbury (Ontario, Canada). The possible mobility of the chemical forms was also assessed. The metal fractions: (1) soluble and exchangeable, (2) occluded in manganese oxides and in easily reducible iron oxides, (3) organically bound and in form of sulphides, (4) residual mainly present in the mineral lattice structures were separated. Cu and Ni were the major metallic contaminants, occurring in soils in broad ranges of concentrations: Cu 11–1890 and Ni 23–2150 mg kg-1. Cu was uniformly distributed among allthe extracted fractions. Ni was found associated mainly withthe residual forms, accounting for 17–92%, with an averageof 64%, of the total Ni present in the soils. Fe, Mn, Zn,Pb, Cr and Cd, while occurring in most analysed samples innormal soil concentrations, were primarily held in theresidual mineral fraction (on average >50%). The solubleand exchangeable forms made a small contribution (≤8.1%)to the total content of metals extracted. At least 14% ofthe total Cd, Mn and Pb was mobilised from the reducibleforms. The oxidizable fraction assumed mean values higher than10% only for Pb and Zn. Statistical treatment of the experimental data showed significant correlations between totalmetal content of the soils, some soil properties such as pH value, clay and organic matter content, and metal concentrationsin the various fractions. SEM/EDS analysis showed Fe in form ofoxides and sulphides in soils and Cu, Ni, Mn, Zn and Cr in association with iron oxides. Numerous black carbonaceous particles and precipitates of aluminium fluoride salts, observedin the solid residue left after `total’ digestion, were found tocontain Fe, Ni and Cr.  相似文献   

15.
施用有机物料对土壤镉形态的影响   总被引:12,自引:1,他引:11  
采用室内培养试验,研究作物新鲜秸秆和腐熟猪粪对模拟镉(Cd)污染的土壤中Cd形态转化的动态影响。结果表明,各处理土壤交换态Cd含量随培养时间均逐渐降低。碳酸盐结合态和铁锰氧化物结合态Cd含量先增加后降低, 而有机质结合态和残渣态Cd含量则逐渐增加。添加秸秆可增加土壤交换态Cd含量,但随时间延长,增幅逐渐降低, 猪粪则可降低土壤交换态Cd含量。添加有机物后土壤交换态Cd含量的变化主要是由有机质结合态或残渣态Cd含量的变化而引起。秸秆和猪粪对土壤Cd形态的转化与土壤胡敏酸(HA)和富里酸(FA)的变化有关。秸秆对能活化土壤Cd的FA增加幅度大于对能钝化土壤Cd的HA增加幅度,降低HA/FA比,但降幅随时间逐渐减少; 猪粪在整个培养阶段对HA增加幅度均大于FA的增加幅度,增加HA/FA比。秸秆和猪粪均可降低潮土pH而提高红壤pH,但只有猪粪可通过提高红壤pH降低Cd向交换态转化。添加秸秆和猪粪后,Cd由低活性态向交换态转化与HA/FA呈显著负相关。  相似文献   

16.
Abstract: The fraction distributions of heavy metals have attracted more attention because of the relationship between the toxicity and their speciation. Heavy‐metal fraction distributions in soil contaminated with mine tailings (soil A) and in soil irrigated with mine wastewater (soil B), before and after treatment with disodium ethylenediaminetetraacetic acid (EDTA), were analyzed with Tessier's sequential extraction procedures. The total contents of lead (Pb), cadmium (Cd), copper (Cu), and zinc (Zn) exceeded the maximum permissible levels by 5.1, 33.3, 3.1, and 8.0 times in soil A and by 2.6, 12.0, 0.2, and 1.9 times in soil B, respectively. The results showed that both soils had high levels of heavy‐metal pollution. Although the fractions were found in different distribution before extraction, the residual fraction was found to be the predominant fraction of the four heavy metals. There was a small amount of exchangeable fraction of heavy metals in both contaminated soils. Furthermore, in this study, the extraction efficiencies of Pb, Cd, and Cu were higher than those of Zn. After extraction, the concentrations of exchangeable Pb, Cd, Cu, and Zn increased 84.7 mg·kg?1, 0.3 mg·kg?1, 4.1 mg·kg?1, and 39.9 mg·kg?1 in soil A and 48.7 mg·kg?1, 0.6 mg·kg?1, 2.7 mg·kg?1, and 44.1 mg·kg?1 in soil B, respectively. The concentrations of carbonate, iron and manganese oxides, organic matter, and residue of heavy metals decreased. This implies that EDTA increased metal mobility and bioavailability and may lead to groundwater contamination.  相似文献   

17.
A tri-state mining region, including parts of Missouri, Oklahoma, and Kansas, was the site of intense lead and zinc mining and smelting activity until the 1950's. A study was initiated to characterize the heavy-metal contamination of soils in this area. Water-soluble, an index of plantavailable, total, and sequentially extractable metals; organic, and total carbon; and saturated paste pH were determined for mine tailings and soil samples. Mine tailings contained 81 to 89 mg kg?1 total Cd, 1 150 to 1 370 mg kg?1 total Pb, and 11 400 to 13 700 mg kg?1 total Zn. Total concentrations in soil samples were 15 to 86 mg kg?1 Cd, 35 to 1 620 mg kg?1 Pb, and 99 to 18 500 mg kg?1 Zn; and, DTPA extractable concentrations ranged from 0.6 to 10 mg kg?1 Cd, 7.8 to 68 mg kg?1 Pb, and 33 to 715 mg kg?1 Zn. Samples were sequentially extracted to approximate the proportions of the metals in the sulfide, carbonate, organic, sorbed, and exchangeable fractions. For Zn and Cd, concentrations were greatest in the sulfide fraction followed by carbonate, organic, sorbed, and exchangeable. Lead followed the same pattern, except higher concentrations were observed in the sorbed than the organic fractions.  相似文献   

18.
Sequential extraction was utilized for partitioning Cd, Cr, Ni, and Zn, in soil and sludge samples into five operationally-defined fractions: exchangeable, bound to carbonates, bound to Fe-Mn oxides, bound to organic matter and residual. The highest amounts of Cd, Ni, and Zn, expressed as per cent of the total, were found in the Fe-Mn oxide fraction of the sewage sludge. Chromium was significantly associated with the organic fraction of the sludge. The residue was the most abundant fraction for all metals studied in the untreated soil, and for Cd and Ni in the sludge-treated soil. The concentration of exchangeable Cd and Cr was relatively low in the untreated soil and did not change much after sludge application, whereas the concentrations of exchangeable Zn increased about 50 times and the concentrations of exchangeable Ni doubled in the sludge-treated soil. The lysimetric experiment revealed an increase in Zn and Ni uptake by ryegrass and in the percentage of metals leached from the soil profile after massive sludge application. In contrast only negligible changes were observed for Cd and Cr. The assumption that mobility and biological availability are related to metal speciation was confirmed by the agreement between the distribution pattern of Cd, Cr, Ni and Zn in the soils, the uptake of the metals by plants and their capacity for leaching out from the soils.  相似文献   

19.
Abstract

The accumulation of heavy metals in tea leaves is of concern because of its impact on tea quality. This study characterized long‐term changes of soil properties and heavy‐metal fractions in tea gardens and their effect on the uptake of metals from soils by the plants. Soil and tea leaf samples were collected from five plantations with a history of 2–70 years in Jinghua, Zhejiang Province, southeast China. The six chemical fractions (water‐soluble, exchangeable, carbonate‐bound, organic‐matterbound, oxide‐bound, and residual forms) of cadmium (Cd), chromium (Cr), copper (Cu), iron (Fe), nickel (Ni), manganese (Mn), lead (Pb), and zinc (Zn) in the soils were characterized. Dissolved organic‐matter accumulation in the soils and effects of low‐molecular‐weight organic acids on solubility of soil heavy metals were also tested. Long‐term tea plantation use resulted in accumulation of dissolved organic matter, decrease of soil pH, and elevation of water‐soluble and exchangeable metal fractions, thereby increasing metal contents in leaves. The influence was more significant when soil pH was less than 4.4. The results indicated that both acidification and accumulation of dissolved organic matter induced by tea plantations were also important causes of increased accumulation of the metals in the tea leaves. This was particularly true for the soils polluted with low concentration of heavy metals, because availability of the metals in these soils was mainly controlled by pH and dissolved organic matter.  相似文献   

20.
A greenhouse study was conducted to examine the effects of four soil solution organic acids on the distribution of Zn within various soil micro nutrient pools and their influence on Zn uptake by wheat. L‐malic, malonic, oxalic, and succinic acids at four concentration levels, 0,10‐2 mol/L, 10‐3 mol/L, and 10‐4 mol/L were applied to pots growing wheat (Triticum aestivum) over a period of 10 weeks. A sequential Zn extraction technique was performed on the soil for each treatment, with the quantity amount of Zn in each fraction being determined using atomic absorption spectroscopy. Soil Zn fractions significantly affected by the organic acid treatments were the exchangeable, organic and Mn oxide fractions. An inverse relationship existed between Zn extracted from the exchangeable fraction and organic acid concentration for all acid treatments. Succinic and malonic acids at higher concentrations were the only treatments to be significantly higher in organic Zn compared to the control. All treatments were significantly less than the control for Zn levels in the manganese oxide fraction, however there were nonsignificant differences between organic acid treatments. Organic acids had no affect on the quantity of Zn associated with the amorphous and crystalline Fe oxide soil fractions. Zinc concentration in wheat tissue showed an inverse relationship between exchangeable Zn and organic acid concentration similiar to that in the exchangeable fraction. Differences in amounts of Zn in wheat tissue were attributed to both organic acid type and concentration. It was concluded that organic acids may be important in influencing the distribution of Zn between the various soil fractions and thus affecting its availability to the plant.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号