首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract

The accumulation of heavy metals in plants is related to concentrations andchemical fractions of the metals in soils. Understanding chemical fractions and availabilities of the metals in soils is necessary for management of the soils. In this study, the concentrations of copper (Cu), cadmium (Cd), lead (Pb), and zinc (Zn) in tea leaves were compared with the total and extractable contents of these heavy metals in 32 surface soil samples collected from different tea plantations in Zhejiang province, China. The five chemical fractions (exchangeable, carbonate‐bound, organic matter‐bound, oxides‐bound, and residual forms) of the metals in the soils were characterized. Five different extraction methods were also used to extract soil labile metals. Total heavy metal contents of the soils ranged from 17.0 to 84.0 mgCukg?1, 0.03 to 1.09 mg Cd kg?1, 3.43 to 31.2 mg Pb kg?1, and 31.0 to 132.0 mg Zn kg?1. The concentrations of exchangeable and carbonate‐bound fractions of the metals depended mainly on the pH, and those of organic matter‐bound, oxides‐bound, and residual forms of the metals were clearly controlled by their total concentrations in the soils. Extractable fractions may be preferable to total metal content as a predictor of bioconcentrations of the metals in both old and mature tea leaves. The metals in the tea leaves appeared to be mostly from the exchangeable fractions. The amount of available metals extracted by 0.01 mol L?1 CaCl2, NH4OAc, and DTPA‐TEA is appropriate extractants for the prediction of metals uptake into tea plants. The results indicate that long‐term plantation of tea can cause sol acidification and elevated concentrations of bioavailable heavy metals in the soil and, hence, aggravate the risk of heavy metals to tea plants.  相似文献   

2.
Greenhouse experiment was conducted to assess the iron (Fe) and zinc (Zn) fractionation patterns in soils of arbuscular mycorrhizal (AM) fungus-inoculated and uninoculated maize plants fertilized with varying levels of Fe and Zn. Soil samples were collected for Fe and Zn fractions and available Fe, Zn and phosphorus (P) contents besides organic and biomass carbon (BMC), soil enzymes and glomalin. Major portion of Fe and Zn fractionations was found to occur in the residual form. Mycorrhizal symbiosis increased the organically bound forms of Fe and Zn while reducing the crystalline oxide, residual Fe and Zn fractions, indicating the transformation of unavailable forms into available forms. Soil enzymes, viz. dehydrogenase and acid phosphatase activities in M+ soils, were significantly higher than M? soil consistently. Overall, the data suggest that mycorrhizal symbiosis enhanced the availability of Fe and Zn as a result of preferential fractionation and biochemical changes that may alleviate micronutrient deficiencies in calcareous soil.

Abbreviations: AM: arbuscular mycorrhiza; Fe: Iron; Zn: Zinc; P: Phosphorous; Amox-Zn: amorphous oxide bound zinc; Cryox-Zn: crystalline oxide bound zinc; DAS: days after sowing; DTPA: diethylene Triamine Penta Acetic Acid; MnO2-Zn: manganese oxide bound zinc; OC-Zn: organically bound zinc; WSEX: water soluble plus exchangeable zinc; MnO2 Fe: manganese oxide bound iron; OC-Fe: Organically bound iron; WSEX Fe: water soluble plus exchangeable iron.  相似文献   

3.
Abstract

Information on the redistribution of applied micronutrients into different fractions as a result of lime application is important to predict plant accumulation of nutrients and to select appropriate chemical extraction procedures for evaluation of micronutrient availability. The present work was carried out to study the influence of liming on the availability and redistribution of zinc (Zn) and copper (Cu) among soil fractions. Additionally, the effect of liming was evaluated on the recovery of these micronutrients by different chemical extractants (Mehlich‐1, Mehlich‐3, and diethylenetriaminepentaacetate (DTPA), which were correlated with Zn and Cu concentrations in corn (Zea mays L.) plants and soil fractions (exchangeable, organic matter, amorphous iron oxides, and crystalline iron oxides). The results showed that Zn added to soil samples that did not receive lime was retained mainly in the exchangeable and organic matter fractions. The liming resulted in distribution of Zn into iron oxides and as a result decreased the plant accumulation of Zn. Mehlich‐3 was the most efficient extractant to predict the plant accumulation of Zn in the acid soils, whereas DTPA was the most efficient in the limed soils. The oxide crystalline fraction was the major fraction responsible for retaining Cu in the soils. However, Cu added to soil was distributed mainly into organic matter. Mehlich‐3 was the most suitable extractant for predicting the bioavailability of Cu in limed or unlimed soils.  相似文献   

4.
Abstract

The concentrations and forms of soil cadmium (Cd) in 12 different New Zealand topsoils were investigated using a sequential fractionation procedure. Total soil Cd concentrations were low and ranged between 0.03 μg g‐1 to 1.34 μg g‐1 and were highly correlated with total soil phosphorus (r2=0.85, P<0.01). Results indicated that there was a wide range in the concentrations of Cd associated with individual soil fractions and large variations between soils. On average for all soils, the smallest proportion of Cd was in exchangeable forms, i.e., 3%, with 12% in the crystalline oxide fraction, 13% in the amorphous oxide fraction and the greatest proportion of Cd associated with the organic 34% and residual 38% fractions. There was evidence to show that a soil extractant which is commonly used to predict plant uptake of Cd from soils, i.e., 0.04 M ethylene diamine terra acetic acid (EDTA), extracts Cd from both exchangeable and organic forms of soil Cd.  相似文献   

5.
Abstract

The accumulation of heavy metals in tea leaves is of concern because of its impact on tea quality. This study characterized long‐term changes of soil properties and heavy‐metal fractions in tea gardens and their effect on the uptake of metals from soils by the plants. Soil and tea leaf samples were collected from five plantations with a history of 2–70 years in Jinghua, Zhejiang Province, southeast China. The six chemical fractions (water‐soluble, exchangeable, carbonate‐bound, organic‐matterbound, oxide‐bound, and residual forms) of cadmium (Cd), chromium (Cr), copper (Cu), iron (Fe), nickel (Ni), manganese (Mn), lead (Pb), and zinc (Zn) in the soils were characterized. Dissolved organic‐matter accumulation in the soils and effects of low‐molecular‐weight organic acids on solubility of soil heavy metals were also tested. Long‐term tea plantation use resulted in accumulation of dissolved organic matter, decrease of soil pH, and elevation of water‐soluble and exchangeable metal fractions, thereby increasing metal contents in leaves. The influence was more significant when soil pH was less than 4.4. The results indicated that both acidification and accumulation of dissolved organic matter induced by tea plantations were also important causes of increased accumulation of the metals in the tea leaves. This was particularly true for the soils polluted with low concentration of heavy metals, because availability of the metals in these soils was mainly controlled by pH and dissolved organic matter.  相似文献   

6.
土壤中锌的形态分布及其影响因素   总被引:32,自引:1,他引:32       下载免费PDF全文
  相似文献   

7.
Abstract

Forms of metals in soils control their availability to plants and animals and affect the environment differently. To evaluate shifts of metal forms as affected by organic amendments, a sequential extraction procedure was used to fractionate calcium (Ca), iron (Fe), magnesium (Mg), manganese (Mn), and zinc (Zn) in two Hawaii soils amended with three organic wastes. The designated forms are water‐soluble, exchangeable, sorbed, organically bound, carbonate, and residual fractions. The soils, a Mollisol (Waimanalo series) and an Ultisol (Paaloa series), were incubated at 25°C±2°C at field capacity with either chicken manure, sewage sludge, or green manure (cowpea leaves) at 0, 5, and 20 Mg#lbha‐1 for one or five months. Organically bound metals decreased with time because of organic matter decomposition. Iron was mostly residual, but water‐soluble Fe also increased in the acid Paaloa soil. Unlike Fe, most forms of Ca and Mg were transformed to the exchangeable form in 5 months. There was no significant change of Mn forms during the 5‐month incubation. Virtually all organically bound Zn shifted to carbonate and residual forms in the neutral Mollisol (pH 6.2), but shifted to carbonate and exchangeable forms in the acid Ultisol (pH 4.5). The solubilities and exchangeabilities of the five metals in the two soils treated with sewage sludge were not significantly different from those treated with cowpea green manure or chicken manure during the 5‐month incubation. The results suggest that the additions of sewage sludge, chicken manure, or cowpea green manure to Hawaii soils at 20 Mg#lbha‐1 do not have environmentally significant impacts in terms of Ca, Mg, Fe, Mn, and Zn. On the other hand, the amendments may decrease Ca and Mg deficiencies in highly weathered, nutrient‐poor soils such as Ultisols and Oxisols of the tropics.  相似文献   

8.
Abstract

The zinc (Zn) content of ten selected soils in Louisiana was partitioned into the following fractions: water‐soluble, exchangeable, chelated, organic and residual. In seven of the soils, water‐soluble > exchangeable < chelated < organic < residual Zn. In three of the soils, water‐soluble < exchangeable < chelated < organic < residual Zn.

The ten soils contained an average of 1.7, 0.9, 2.6, 4.4 and 86.4 per cent of the total in the water‐soluble, exchangeable, chelated, organic and residual mineral Zn fractions respectively.  相似文献   

9.
Abstract

Speciation study of microelements in soils is useful to assess their retention and release by the soil to the plant. Laboratory and greenhouse investigations were conducted for five soils of different agro‐ecological zones (viz., Bhuna, Delhi, Cooch‐Behar, Gurgaon, and Pabra) with diverse physicochemical properties to study the distribution of zinc (Zn) among the soil fractions with respect to the availability of Zn species for uptake by rice plant. A sequential extraction procedure was used that fractionated total soil Zn into water‐soluble (WS), exchangeable (EX), specifically adsorbed (SA), acid‐soluble (AS), manganese (Mn)‐oxide‐occluded (Mn‐OX), organic‐matter‐occluded (OM), amorphous iron (Fe)‐oxide‐bound (AFe‐OX), crystalline Fe‐oxide‐bound (CFe‐OX), and residual (RES) forms. There was a wide variation in the magnitude of these fractions among the soils. The studies revealed that more than 90% of the total Zn content occurred in the relatively inactive clay lattice and other mineral‐bound form (RES) and that only a small fraction occurred in the forms of WS, EX, OM, AFe‐OX, and CFe‐OX. Rice (Oryza sativa L.) cultivars differ widely in their sensitivity to Zn deficiency. Results suggested that Zn in water‐soluble, organic complexes, exchange positions, and amorphous sesquioxides were the fractions (pools) that played a key role in the uptake of Zn by the rice varieties (viz., Pusa‐933‐87‐1‐11‐88‐1‐2‐1, Pusa‐44, Pusa‐834, Jaya, and Pusa‐677). Isotopic ally exchangeable Zn (labile Zn) was recorded higher in Typic Ustrochrept of Pabra soil, and uptake of Zn by rice cultivars was also higher in this soil. The kinetic parameters such as maximum influx at high concentrations (Imax) and nutrient concentration in solution where influx is one half of Imax (Km) behaved differentially with respect to varieties. The highest Imax value recorded was 9.2×10?7 µmol cm?2 s?1 at the 5 mg kg?1 Zn rate for Pusa‐933‐87‐1‐11‐88‐1‐2‐1, and the same was lowest for Pusa‐44, being 4.6×10?7 µmol cm?2 s?1 at the 5 mg kg?1 Zn rate. The Km value was highest for Pusa‐44 (2.1×10?4µmol cm?2 s?1) and lowest for Pusa‐933‐87‐1‐11‐88‐1‐2‐1 (1.20×10?4µmol cm?2 s?1). The availability of Zn to rice cultivars in Typic Ustrochrepts of Bhuna and Delhi soils, which are characterized by higher activation energy and entropy factor, was accompanied by breakage of bonds or by significant structural changes.  相似文献   

10.
11.
Isotopic composition of lead is a very sensitive indicator allowing us to determine even very low contamination of soils by this element, which is not noticeable from the change in its concentration against the background of the natural variability. Isotopic composition of loosely bound lead fractions (exchangeable and specifically sorbed) changes in soils of the Kologrivskii Forest State Natural Reserve under the impact of global or regional atmospheric transport and deposition of contaminants, though these soils are not subjected to the local technogenic pollution. The maximum portion of lead bound with the soil organic matter in the upper organic horizons reaches 75% of the total lead content. The portion of lead bound with iron and manganese (hydr)oxides increases down the soil profile. The portion of the residual fraction of lead also increases significantly down the soil profile. The most pronounced changes are observed for the 206Pb/207Pb ratio, which decreases from 1.20–1.24 to 1.15–1.18 under the impact of global pollution. The technogenic compounds of lead migrate down the soil profile. In the gray-humus gley alluvial soil (Fluvic Gleysol), low values of the 206Pb/207Pb ratio are observed for the exchangeable and specifically sorbed lead fractions in the entire soil profile, which is explained by the worse conditions for lead fixation in the profile of this soil in comparison with those in the podzolic soils.  相似文献   

12.
Abstract

Relative suitability of different extraction procedures for estimating available zinc (Zn) and copper (Cu) in soils was assessed using DTPA, 0.1 N HCl, ammonium acetate+EDTA, and double acid (HCl+ H2SO4) as extractants and rice as a test crop in Neubauer experiment. The relationships between Zn concentration and uptake of Zn by rice plants and Zn extracted by the different methods showed that DTPA‐TEA, pH 7.3, could very suitably be used to assess Zn availability in soils. However, 0.1 N HCl was better for assessing the Cu availability in soils to the rice plants. Water‐soluble and exchangeable fractions of Zn and Cu had significant positive correlations with Zn and Cu concentrations, respectively obtained by all the four extractants tested. The results also showed that DTPA and ammonium acetate+EDTA extracted organically bound Zn, whereas DTPA, 0.1 N HCl and ammonium acetate+EDTA extracted organically bound Cu. Water‐soluble, exchangeable and organic matter bound fractions exhibited significant relationships with Zn and Cu concentrations, their uptake and rice dry matter yield.  相似文献   

13.
Abstract

The objectives of this study were to (1) characterize zinc (Zn) fractions and their relation to Zn extracted with mixed‐bed ion exchange resin capsules and (2) assess the relationships between the latter and Zn uptake by rice in 12 Mollisols from North India. The Resin Adsorption Quantity (RAQ) of Zn was measured after 1 and 14 days of anaerobic incubation. Six organic and inorganic Zn fractions were determined on anaerobic soil. Zinc uptake by rice was studied in a greenhouse experiment. Soil Zn fractions under reduced conditions followed the order residual Zn (80%)>carbonates and amorphous oxides bound Zn (12%)>weakly organically bound Zn (3%)>crystalline oxides bound Zn (2%)>strongly organically bound Zn (2%)>water soluble + exchangeable Zn (1%). RAQ‐Zn was best correlated with Zn bound to carbonates and amorphous oxides. Due to negative interactions between bicarbonate and Zn uptake, correlations between relative dry matter yield or total Zn uptake and the different Zn fractions, DTPA‐Zn measured on dry soil, or RAQ Zn were not significant. Adjusting soil test values according to soil pH improved the prediction of relative dry matter yield, but further studies are required to determine whether the resin capsule can be used as a soil test for Zn in calcareous soils.  相似文献   

14.
Abstract

Profiles of semi‐arid–zone soils in Punjab, northwest India, were investigated for different forms of zinc (Zn), including total, diethylenetriamine penta‐acetic acid (DTPA)-extractable, soil solution plus exchangeable (Zn), Zn adsorbed onto inorganic sites, Zn bound by organic sites, and Zn adsorbed onto oxide surfaces. Irrespective of the different fractions of Zn present, its content was higher in fine‐textured Alfisols and Inceptisols than in coarse‐textured Entisols. In general, the higher content of Zn was observed in the surface horizon and then decreased in the subsurface horizons. However, none of the forms of Zn exhibited any consistent pattern of distribution. Organic matter and size fractions (clay and silt) had a strong influence on the distribution of different forms of Zn. Based upon the linear coefficient of correlation, the soil solution plus exchangeable Zn, adsorbed onto inorganic sites, and DTPA‐Zn increased with increase in organic carbon but decreased with increase in pH and calcium carbonate content. Total Zn increased with increase in clay and silt content. Among the different forms, Zn bound by organic sites, water soluble plus exchangeable Zn and Zn adsorb onto oxide (amorphous surfaces) were all correlated with DTPA extractable Zn. The uptake of Zn was more in recent floodplain Entisols than very fine textured Alfisols and Inceptisols. Among the different forms soil solution +exchangeable and DTPA‐extractable Zn was positively correlated with total uptake of Zn.  相似文献   

15.
The extractability and slow reactions of copper (Cu) and zinc (Zn) in a weathered savanna soil under Brachiaria decumbens, Digitaria smutsii, and Stylosanthes guianensis pastures were determined in a laboratory incubation study using a sequential extraction to remove operationally defined fractions of the metals, consisting of exchangeable, organically bound, precipitate [occluded in aluminum (Al) and iron (Fe) oxides], and residual metal fractions. The soils from the pasture fields were spiked with 100 mg Cu kg–1 soil and 200 mg Zn kg–1 soil for 24 weeks. Copper and Zn extractable with 1 N potassium nitrate (KNO3) solution decreased exponentially with time but reached a steady state after 2–3 weeks. The concentrations of Cu and Zn exchangeable with potassium (K) were greater in the Digitaria smutsii field soil than Brachiaria decumbens and Stylosanthes guianensis field soils. The exchangeability of added Cu and Zn (indexed Mn+ (exch)) with time was described by a simple exponential decay equation: Mn+ (exch) = αeβt, where α is a constant, β is a coefficient that defines the rate of transformation of added Cu and Zn from the exchangeable to nonexchangeable pools, and t is time. The β values for Cu (0.040–0.076 mg kg–1 d–1) were almost 10 times greater than those of Zn (0.005–0.007 mg kg–1 d–1). Sequential extraction of added Cu and Zn indicated that between 26 and 30% of the total Cu and between 19 and 30% of the total Zn were associated with organic matter. Similarly, between 35 and 38% of total Cu and between 47 and 60% of total Zn were associated with Fe, Al, and manganese (Mn) oxides. The differential capacity of the pasture fields to transform added Cu and Zn from exchangeable and labile form to nonlabile and nonexchangeable form appears to be governed by organic matter (OM), pH, and active Fe ratio in the pasture field soils.  相似文献   

16.
Rhizosphere processes have a major impact on copper (Cu) availability and its fractions in soils. A greenhouse experiment with wheat was performed to investigate availability (using seven chemical procedures) and fractionation of Cu in the rhizosphere of ten agricultural soils (Typic Calcixerepts) amended with sewage sludge (1% w/w) using rhizoboxes. The results show that available Cu concentrations in rhizosphere soils were significantly (P < 1%) lower than in bulk soils. In comparison with the bulk soils, in the rhizosphere soils the concentration of Cu associated with organic matter and residual Cu increased by 24 and 4%, respectively, whereas exchangeable Cu, Cu associated with iron‐manganese oxides, and Cu associated with carbonate decreased by 20, 14, and 12%, respectively. Dissolved organic carbon (DOC) and Cu associated with iron‐manganese oxides and Cu associated with organic matter in the rhizosphere and bulk soils were significantly correlated (P < 5%). The results show that the differences between rhizosphere and bulk soils in chemical conditions such as DOC concentrations can change the proportion of soil Cu fractions and, therefore, Cu availability for wheat in calcareous soils amended with sewage sludge. The results show that the wheat root‐induced modifications of chemical and biological soil conditions do not only lead to Cu depletion in mobile soil Cu fractions, but also to modification in soil Cu fractions which are commonly considered as more stable.  相似文献   

17.
Abstract

A previous study indicated that agricultural biosolid applications increased the concentration of EPA3050‐digestible trace elements in soils on Pennsylvania production farms but could not indicate potential trace‐element environmental availability. This study was conducted to determine if biosolid application had altered the distribution of trace‐elements among operationally defined soil fractions and the relationship of trace element concentrations in soil and crop tissues. Biosolid‐amended and unamended soils from production farms in Pennsylvania were extracted using a modified Bureau Communautaire de Référence (BCR) sequential fractionation technique and analyzed for chromium (Cr), copper (Cu), nickel (Ni), lead (Pb), and zinc (Zn). Trace‐element concentrations in crop tissues (soybean silage, sudangrass, corn grain, alfalfa hay, and orchardgrass hay) from the same farms were also determined. Fractionation results indicated that the proportion of Cr, Cu, Ni, Pb, and Zn that is potentially bioavailable is quite small in unamended soils. Biosolid applications significantly (P≤0.1) increased concentrations of Cu in all soil fractions (average increase over unamended soil=1.14, 8.27, 6.04, and 5.84 mg kg?1 for the exchangeable, reducible, oxidizable, and residual fractions, respectively), Ni (0.41, 1.65 mg kg?1 for the reducible and residual fractions, respectively), Pb (5.12 and 1.49 mg kg?1 for the reducible and residual fractions, respectively), and Zn (8.28, 7.12, 4.44, and 8.98 mg kg?1 for the exchangeable, reducible, oxidizable, and residual fractions, respectively) but did not significantly increase Cr in any soil fraction. Concentrations of Cu in all soil fractions were significantly (P≤0.01) correlated with concentrations of Cu in orchardgrass tissue (r=0.70, 0.66, 0.76, and 0.69 for the exchangeable, reducible, oxidizable, and residual soil fractions, respectively). Concentrations of exchangeable and reducible Zn were significantly correlated with Zn in sudangrass tissue (r=0.81 and 0.67), and reducible Zn was significantly correlated with Zn concentrations in orchardgrass tissue (r=0.65). Application of biosolids had little effect on bioavailability of Cr, Ni, or Pb, whereas higher loadings of Cu and Zn led to a shift toward the more labile soil fractions. Loadings of Cu and Zn were much smaller than cumulative loadings permitted under U.S. Environmental Protection Agency (USEPA) Part 503 regulations. Chemical soil fractionation was able to detect increases in labile soil Cu and Zn that relate to increased phytoavailability.  相似文献   

18.
Abstract

Zinc (Zn) speciation was determined in a Zn pre‐treated Andosol, Inceptisol, and a Vertisol before and after adding phosphate. The fractions obtained, i.e., soluble, exchangeable, iron‐manganese (Fe‐Mn) bound, chelated and insoluble organic forms had a different distribution in the three soils. The exchangeable form predominated in the Andosol, followed by Fe‐Mn oxide bound Zn and minor amounts of the chelated forms, whereas Fe‐Mn oxide bound Zn was very abundant in the Inceptisol and Vertisol. Sizable amounts of the exchangeable form were also present. Phosphate pre‐treatment of the Inceptisol and Vertisol did not alter the distribution of the different forms of Zn, whereas in the Andosol the exchangeable as well as the Fe‐Mn oxide bound Zn increased markedly, chelated Zn also increased somewhat.  相似文献   

19.
Abstract

In a two‐year field experiment, dry sewage sludge was applied to fields plots at rates of 0,26,42,58, or 77 tons ha‐1 year‐1 on a clay loam soil (calcixerrolic xerochrept), well drained with a pH value of 8.15. Cotton was the cultivated plant (Gossypiumhirsutum variety korina). Sequential extraction was used to separate the different forms of the metals (exchangeable, organically bound, carbonates and residual) in the soil‐sludge mixtures. Cotton yield increased in the second year of experimentation compared with the control treatment (without fertilization and no application of sewage sludge). Most of the metals studied [cadmium (Cd), zinc (Zn), copper (Cu), and nickel (Ni)] were found in the organically bound, carbonate or residual forms. From the elements in the soil fractions, only Zn in the residual form was correlated with the Zn content of cotton leaves. The diethylenetriaminepentaacetic acid (DTPA) extraction of the plant‐available levels of the elements showed only for Cd a simple linear correlation, between concentration in soils and cotton leaves.  相似文献   

20.
Abstract

The benchmark soils collection of Pernambuco state contain 13 of the 14 soil orders of the Brazilian System of Soil Classification. Thus, information on zinc (Zn) and copper (Cu) status in such soils is useful as a reference of micronutrient distribution and availability in a representative set of Brazilian soils. The present work was performed to assess Zn and Cu distribution into operationally defined fractions of benchmark soils of Pernambuco state. In addition, chemical extractants, with contrasting chemical properties, were used to assess the availability of these micronutrients to relate such values with fertility guidelines concentrations and with the fractions defined by the sequential extraction. The results demonstrated that the organic matter was the most important fraction retaining Zn and Cu in the studied soils, as indicated by the sequential extraction. The Zn availability in the majority of the soils (90% of the samples) is sufficient to meet the requirement of the major field crops, although the available Cu concentrations are below the critical levels for plant growth in 46% of the analyzed samples. Mehlich‐1 extractant appeared to be the most efficient in predicting the availability of Zn in the soils because of its better correlation with exchangeable and organic fractions. DTPA and Mehlich‐3 were the most efficient extractants for the evaluation of Cu availability, as suggested by the better correlation with organic matter, which is the main pool of available Cu in the soils.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号