首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Trace mineral concentrations of annual cool season pasture forages grazed by growing beef cattle during late fall-winter-spring grazing season were evaluated during two experimental cool season grazing studies, each lasting two years at the North Florida Research and Education Center (NFREC), Marianna, Florida. Eight 1.32 ha fenced pastures or paddocks were divided into two groups of pasture land preparation/planting methods, four pastures for the sod seeding treatments (SS) and four for the prepared seedbed treatments (PS). Two different pasture forages, small grains, (rye/oats mix) with or without ryegrass for the first two years (Study 1); and oats with ryegrass or ryegrass only for the last two years (Study 2) were planted in these pasture lands. Each of the four forage, type, and cultivation combination treatments was assigned to two pastures each year, thereby giving two replicates per pasture treatment per year. Forage samples were collected at the start of pasture grazing and twice monthly thereafter until the end of grazing season, pooled by month, and analyzed for copper (Cu), iron (Fe), zinc (Zn), manganese (Mn), cobalt (Co), molybdenum (Mo), and selenium (Se). Liver biopsies and blood plasma samples were collected from the tester cattle only during the spring of year two of Study 2. Liver was analyzed for Cu, Fe, Mn, Co, Mo, and Se and plasma for Cu, Fe, Zn, and Se. Forage trace mineral concentrations were found to differ by month in Cu (P < 0.01), Fe and Zn (P < 0.0001) in both studies, and with Mn (P < 0.0001) in Study 2 only. Pasture forage type effects on Cu (P < 0.05), Fe and Zn (P < 0.01), and Se (P < 0.05) and forage type by month interactions on Cu and Mn (P < 0.0001), and Zn (P < 0.05) were observed in Study 2. Forage concentrations of Cu, Zn, Mn, and Mo in Study 1 and Mn, Mo, and Se in Study 2 were affected (P < 0.05) by pasture land preparation/planting methods in that these minerals were found to be lower from forages of sod-seeded treatments than from those of prepared seedbed treatments. Forage Cu concentrations were lower than the minimum requirements (10 ppm, DM) for beef cattle among months in both studies. Oats-ryegrass pastures of Study 2 had surprisingly low Fe concentrations (P < 0.01) in all months of the winter-spring grazing season. Cobalt, Mn, Mo, and Se did not vary much month to month during the winter-spring grazing months. All mean forage Se concentrations were lower than the requirements (0.10 ppm, DM) for grazing beef cattle. There were no differences (P > 0.05) in mean Se values between the two studies. Liver Cu, Fe, Co, and Se concentrations were sufficient to indicate adequate status of these minerals in tester animals from both forage types. Liver concentrations of Mn and Mo were slightly low, indicating a low status or these minerals. Plasma concentrations of Cu, Fe, Se, and Zn were all above the recommended concentrations for beef cattle. In conclusion, trace minerals deficient in North Florida during the cool season were Cu, Co, and Se, and a special consideration should be given to include adequate amounts while supplementing the mineral mixtures to growing beef cattle since forage samples reflected deficient concentrations of these minerals.  相似文献   

2.
Abstract

A two‐year study was conducted to determine the macromineral status of cattle grazed forages, mostly bahiagrass, and soils in central Florida. Soil and forage samples were collected every month for two years. Month differences (P < 0.01) were observed in all forage macrominerals and in crude protein (CP) for both years. No month effect (P > 0.05) was observed in IVOMD level during year 1. Year effects (P < 0.05) were observed in calcium (Ca), sodium (Na) and CP. Concentrations below the critical level were observed in all macrominerals studied. Higher forage macro‐mineral concentrations were found during spring‐summer months. In general, higher (P < 0.05) soil aluminum (Al), Ca, magnesium (Mg), phosphorus (P), and organic matter (OM) were observed during fall‐winter months, while Na was higher in winter. Soil Ca and Mg were adequate and potassium (K), Na and P were deficient. Year 2 showed higher (P < 0.05) soil macromineral concentrations. Correlation coefficients (r >|0.5|, P < 0.05) were present between forage K and forage CP (r = 0.557) and between forage P and forage CP (r = 0.554). Low correlations were found between soil and forage macrominerals. Percentages of total forage samples with macromineral and CP concentrations below critical levels (in parentheses) and suggestive of deficiency were as follow: in forage, Ca (0.30 ppm), 21%; Mg (0.18 ppm), 34%; K (0.60 ppm), 47%; Na (0.06 ppm), 89%; P (0.25 ppm), 85%; and CP (7%), 18%.  相似文献   

3.
Abstract

The experiment rationale was to determine forage micromineral concentrations as effected by biosolids fertilization. We determined the effects of two exceptional quality biosolids on bahiagrass trace mineral concentrations as related to beef cattle requirements. Twenty‐five 0.8‐ha pastures were divided into five blocks. Two biosolids were applied as normal and double agronomic rates. The control received NH4NO3. Forages were analyzed for total copper (Cu), iron (Fe), manganese (Mn), zinc (Zn), molybdenum (Mo), cobalt (Co), and selenium (Se), and soils were analyzed for Mehlich I extractable Cu, Mn, and Zn. Some significant increases (P<0.05) in forage Co, Cu, Fe, Zn, and Se were observed at various sampling times, but the increases were generally small and biologically insignificant. Although forage Mo samples from pastures with the Tampa biosolids applied were consistently higher than the control (P<0.05), at no time did they approach levels considered toxic. Similar results were seen in forage Mn concentrations, with treatment Baltimore‐2X elevating (P<0.05) Mn concentrations as well. Deficiencies of Co, Cu, Zn, and Se are common in this Florida region and slight elevations due to biosolids treatment could be beneficial. Biosolids applied at the highest rates improved soil Cu and Zn concentrations above control soils and soil Mn was increased over the control at both sampling times for Baltimore‐2X. In relation to beef cattle requirements, the majority of forages were deficient in Co, Cu, Se, and Zn. In summary, biosolids fertilization slightly improved the micromineral status of forage and soil, without creating toxicity.  相似文献   

4.
Abstract

A two‐year experiment was conducted at a north Florida farm to evaluate the mineral status of bahiagrass forages and soils. Forage samples were collected every 28 d throughout the grazing season, and soils evaluated twice yearly. The minerals calcium (Ca), sodium (Na), copper (Cu), cobalt (Co), selenium (Se), and zinc (Zn) were uniformly below the dietary requirements for growing beef cattle in both years. Forage magnesium (Mg), phosphorus (P), potassium (K), crude protein (CP), and manganese (Mn) were generally adequate throughout the grazing season, with the exception of low P concentration at the end of the growing season for both years. Extractable soil concentrations of Ca, P, K, Mg and Zn were adequate but low in Cu. Although CP was adequate (>7.0%) throughout the grazing season, IVOMD values were relatively low. There was a general trend for forage P, K, and IVOMD to decrease (P<0.05) with time.  相似文献   

5.
Abstract

A study was carried out to determine the mineral status of grazing cattle as affected by the eruption of the Cerro Negro Volcano in northwestern Nicaragua. A total of 14 composite soil and forage samples and 30 blood samples were collected at each collection period, before (August 1991) and after (August 1992) the volcanic eruption. Higher soil levels of calcium (Ca), sodium (Na), manganese (Mn) (P<0.01), zinc (Zn) (P<0.05), and lower organic matter (OM) (P<0.01) were found after the volcanic eruption. Phosphorus (P) was the only macromineral found deficient with 93 and 71% of the samples below a critical level before and after volcanic eruption, respectively. Forage Ca, potassium (K), magnesium (Mg), P, Zn, copper (Cu), and selenium (Se) concentrations did not vary between collections. Forage crude protein (CP), in vitro organic matter digestibility [(IVOMD) P<0.05], cobalt (Co), Mn, and Na (P<0.01) were lower after the eruption. Iron (Fe) was the only mineral in forages that increased (P<0.01) after the volcanic eruption. Of the six minerals evaluated in serum only Ca and Mg concentrations were higher (P<0.05) after the volcanic eruption. The macrominerals more likely to be deficient in this area are P and Mg. Trace elements most likely to limit cattle productivity are Zn, Mn, Cu, Se, and Co. Special attention should be given to supplementation of Cu, since both plant and animal tissue samples reflected a deficiency of this mineral.  相似文献   

6.
Abstract

A total of 71 forage samples were analyzed for trace mineral and crude protein concentrations in three Agricultural zones of Benue State, Nigeria. The zones consisted of the Northern, Eastern, and Central zones, each of which was made up of four Local Government Areas. In each Local Government Area, grazing animals were followed and forages corresponding to those consumed were collected during the peak of the wet season (June) and analyzed for the nutrient composition. Deficiencies were observed in copper (Cu) and cobalt (Co) concentrations in all classes of forage, and in forage Cu and zinc (Zn) in all Local Government Areas in the Northern zone. A higher (P<0.05) forage Cu concentration was observed in legumes compared to other classes of forage in the Eastern zone. Concentrations of iron (Fe) and manganese (Mn) were considered adequate and their contents were not affected (P>0.05) by class of forage or Local Government Areas. In the Eastern zone, the contents of selenium (Se) in grass and tree leaf hay were higher compared to leguminous forage, which in turn was higher compared to Se concentrations in crop wastes. Only about 18% of total forage samples showed protein concentrations below the critical value of 7%. Supplementation of Cu, Zn, and Co would seem to be necessary in the Northern zone, and to a lesser extent in the Eastern zone for optimum productivity of grazing animals.  相似文献   

7.
基施硒肥对莜麦产量和微量元素含量的影响   总被引:2,自引:2,他引:0  
在河南省黄河滩区,通过研究基施硒肥(亚硒酸钠)对莜麦青干草和果实产量以及微量元素含量的影响,探索提高莜麦产量以及微量元素含量的新途径。结果表明: 1)基施硒肥能提高莜麦的青干草产量, 当基施量为954 g/hm2的情况下,效果最佳,扬花期青干草产量提高9.33%(P0.05),但基施硒肥对莜麦果实产量影响不显著; 2)莜麦对硒有较强的吸收和同化能力,可以从肥料中大量吸收无机硒,并大多转化为有机硒向上运输到茎叶和果实中; 3)基施硒肥能在不同程度上提高莜麦青干草中Cu、 Zn和Se的含量,而对Fe和Mn的含量影响不大,当硒肥基施量在954 g/hm2的情况下,扬花期青干草中Cu、 Zn和Se的含量分别提高 9.31%(P0.05)、 13.22% (P0.05)和281.25%(P0.05); 4)基施硒肥能显著提高莜麦果实中Fe、 Cu、 Zn和Se的含量,而对Mn的含量影响不大,当硒肥基施量在954 g/hm2的情况下,Cu、 Zn和Se的含量分别比不施硒对照提高7.92%(P0.05)、 5.75%(P0.05)和18.75%(P0.05),当硒肥基施量在765 g/hm2的情况下,莜麦果实中Fe的含量比对照提高10.19%(P0.05)。综上,莜麦对硒肥有较强的吸收和转化能力,适当地基施硒肥有利于提高扬花期青干草中Cu、 Zn和Se的含量和果实中Fe、 Cu、 Zn和Se的含量,适宜的硒基施量为765954 g/hm2。  相似文献   

8.
Dual purpose wheat provides valuable forage resources for cattle in the southern Great Plains during winter. In this study, 96 recombinant inbred lines (RILs) were analyzed for variation in concentrations of 11 mineral elements in leaves. The mean concentration was 133.4 mg kg?1 for manganese (Mn) and 293 mg kg?1 for iron (Fe), being much higher than the 30 mg kg ?1 recommended for each of these two minor mineral elements. Mean concentrations of zinc (Zn) (24.1 mg kg?1) and copper (Cu) (4.4 mg kg?1) were much lower than recommended concentrations. A highly significant correlation was detected between major minerals, magnesium (Mg) and calcium (Ca) (r = 0.9272**) and between minor minerals, Fe and nickel (Ni) (r = 0.8905**). Copper had no significant correlation with any minerals except Zn (r = 0.2529*), whereas Zn had significant correlations with all of the tested minerals except Cu, Mn, and Ni. The interrelations between different minerals provided information for effective selection strategy for ideal mineral concentrations in breeding of dual purpose wheat.  相似文献   

9.
An investigation was conducted to determine the trace- mineral concentrations of forages in relation to requirements of ruminants grazing in natural pastures in the province of Punjab, Pakistan during two different seasons. Animals were closely followed during grazing and forages corresponding to those consumed by the animals were taken and analyzed for copper (Cu), iron (Fe), zinc (Zn), manganese (Mn), and cobalt (Co) concentrations. The data on the trace- mineral concentrations showed that most of these minerals varied greatly as a function of seasons and sampling periods. The forage Cu, Fe, and Zn concentrations were affected by seasonal changes but no influence of season was observed on the concentrations of forage Mn and Co concentration. Forage Zn and Co, during both seasons and at some sampling intervals, and forage Mn during summer were at marginal deficient levels, and in contrast, all other forage trace-minerals were within the required range for ruminants during both seasons. Based on these results, the supplementation of Zn, Co, and Mn would seem most important to support optimum livestock productivity.  相似文献   

10.
A shift in oat (Avena sativa L.) production from grain to forage (hay and grazing) is occurring in the southeastern USA. However, most available cultivars were developed for improved grain production, rather than forage yield. We field tested several standard and new oat releases over 2 years, using repeated clippings to determine forage yield, nutrient uptake, and the potential to match plant nutrients with cattle mineral dietary needs. There were no differences in total annual forage yield among the tested cultivars within years but there was a difference between years. Forage tissue phosphorus (P), magnesium (Mg), and calcium (Ca) were sufficient, potassium (K), sulfur (S), and manganese (Mn) were excessive, and iron (Fe), copper (Cu), and zinc (Zn) were occasionally or frequently deficient to meet daily cattle dietary mineral needs. Sulfur, Cu, Fe, Zn, and Mn may be the most challenging to regulate in U.S. Coastal Plain soils at concentrations that satisfy both, oat and cattle nutritional requirements.  相似文献   

11.
Twenty-four Spanish thyme honey samples were analyzed using inductively coupled plasma optical emission spectrometry (ICP-OES). Twenty-four minerals were quantified for each honey. The elements Al, As, Ba, Ca, Cr, Cu, Fe, K, Li, Mg, Mn, Na, P, Pb, S, Se, Si, Sr, and Zn were detected in all samples; seven elements are very abundant (Ca, K, Mg, Na, P, S, and Si), and six are not abundant (Al, Cu, Fe, Li, Mn, and Zn). Eleven of them are trace elements (As, Ba, Cd, Co, Cr, Ni, Mo, Pb, Se, Sr, and V) at <1 mg kg(-)(1). Classification of thyme honeys according to their origin (coast, mountains) was achieved by pattern recognition techniques on the mineral data. By means of principal component analysis, a good separation by geographical origin is obtained when scores for the two first principal components are plotted. Classification functions of 11 metals (Al, As, Cr, Cu, K, Li, Mg, Na, P, S, and V) were obtained using stepwise discriminant analysis and applied to classify correctly approximately 100% of the honey samples.  相似文献   

12.
Abstract

An experiment was conducted on a commercial farm located in the western part of Venezuela (10.5°N and 72°W; mean annual rainfall of 1000 mm; mean annual temperature of 28°C; sandy‐loam Alfisol with pH of 5.5). The purpose of the experiment was to evaluate the in vitro organic matter digestibility (IVOMD), crude protein (CP) content and mineral composition of four Leucaena leucocephala (Lam.) De Wit accessions under rotational grazing by heifers over a 6‐month period covering dry and rainy seasons, using a split‐plot experimental design with two replications. Neither accessions nor the accession x season interaction affected (P>0.05) any of the variables. The mean IVOMD was 68.6%, whereas CP content during the rainy season (26.5%) was higher (P<0.05) than in the dry season (24.3%). Average mineral content of the accessions were adequate in relation to grazing ruminant requirements with the exception of phosphorus [(P) 0.13%], sodium [(Na) 0.038%], copper [(Cu) 6.9 ppm], and zinc [(Zn) 19.7 ppm]. Forage P concentration may have been influenced by the low soil P content of the experimental site. The mean forage Ca:P ratio (11.3:1) was considerably wider than desirable. During the dry season, ash content increased (P<0.05), Na, iron (Fe), and cobalt (Co) decreased (P<0.05), but Fe and Co still remained above the critical levels. Mean concentrations of other elements were not affected (P>0.05) by season. Forage molybdenum (Mo) concentrations were low and, therefore, would not result in conditioned Cu deficiency. The four L. leucocephala accessions had similar feeding value for grazing ruminants and their quality was not markedly reduced in the dry season. Mineral supplementation of ruminants grazing this legume may be needed to correct specific deficiencies and imbalances.  相似文献   

13.
上海土壤中微量元素的含量与分布的研究   总被引:3,自引:0,他引:3  
植物必需的微量营养元素锌、锰、钼、硼、铜在土壤中供给不足或过剩时,都可能引起植物、动物及人体生理功能失调,生长发育受阻,诱发出各种特殊的生理病害。明确土壤中微量元素含量分布规律及其有效性问题,有助于采取措施来调剂微量元素的供应水平,对于农业生产的发展,以及维护人类和动物的健康,都具有重要的意义。本文就1978-1979年关于上海土壤中微量元素的含量分布及其有效性问题的研究,作一总结。  相似文献   

14.
Effect of wastewater irrigation was investigated on mineral composition of corn and sorghum plants in a pot experiment. The ranges for the concentration of different minerals in corn plants were 0.67–0.89% calcium (Ca), 0.38–0.58% magnesium (Mg), 0.09–1.29% sodium (Na), 0.81–1.87% nitrogen (N), 1.81–2.27% potassium (K), 0.12–0.16% phosphorus (P), 190–257 mg/kg iron (Fe), 3.5–5.6 mg/kg copper (Cu), 37.1–44.5 mg/kg manganese (Mn), 21.6–33.6 mg/kg zinc (Zn), 1.40–1.84 mg/kg molydbenum (Mo), 11.0–45.7 mg/kg lead (Pb), and 2.5–10.8 mg/kg nickel (Ni). Whereas for sorghum plants, the ranges were: 0.56–0.68% Ca, 0.19–0.32% Mg, 0.02–0.27% Na, 0.69–1.53% N, 1.40–1.89% K, 0.10–0.14% P, 190–320 mg/kg Fe, 3.8–6.0 mg/kg Cu, 29.2–37.6 mg/kg Mn, 21.1–29.9 mg/kg Zn, 2.2–3.7 mg/kg Mo, 12.3–59.0 mg/kg Pb, and 2.5–15.2 mg/kg Ni. Heavy metals such as cobalt (Co) and cadmium (Cd) were below detection limits at mg/kg levels. The concentrations of Ca, N, K, P, Cu, and Mn in corn plants were in the deficient range except for Mg, Fe, Zn, and Al. The concentrations of Ca, N, P, K, Cu, Mn, Mg, and Zn in sorghum plants were in the deficient range except for Fe and aluminum (Al). The analysis of regression indicated a strong interaction between Pb, Ni, Ca, and Fe in corn and sorghum plants. In conclusion, waste water irrigation did not increase mineral concentrations of either macro‐ and micro‐elements or heavy trace metals in corn and sorghum plants to hazardous limits according to the established standards and could be used safely for crop irrigation.  相似文献   

15.
湖北省土壤微量元素含量分布研究   总被引:8,自引:0,他引:8  
本项研究对湖北省14种主要成土母质及其发育的土壤,按土属布点,共取表层土壤样3346个,剖面样305个和岩石样40个,分别测定锌、铜、锰、硼、铁含量取得数据21,967项,查明全省土壤锌、铜、锰、硼、铁含量,全量分别平均为83、27、596、80、35000ppm,有效量分别平均为0.65、1.11、29.7、0.33、37.1ppm,低于缺乏临界值的耕地共2460万亩;研究得出本省近代河流冲积物发育的土壤大多缺锌;酸性结晶岩发育的土壤缺硼;褐色粘土发育的土壤缺锰,红、黄壤缺铜,石灰土缺铁等。综上,编绘出土壤有效性锌、硼、铜、锰、铁缺素分布图,指导粮、棉、油、果等作物的微肥应用,常年施用面积800余万亩,效益显著。  相似文献   

16.
山东省土壤微量营养元素含量分布   总被引:12,自引:0,他引:12  
本文论述山东省土壤中B、Mn、Zn、Cu、Fe有效态含量及分布。有效硼含量0.04-6.79ppm,平均0.48ppm;易还原态锰9-1345ppm,平均169ppm;有效锰1.5-175.9ppm,平均17.1ppm;有效锌0.04-14.56ppm,平均0.54ppm;有效铜0.03-20.64ppm,平均1.08ppm;有效铁1.6-162.0 ppm,平均12.6ppm。不同土壤类型微量元素含量有明显差异,主要特征为:棕壤、褐土缺硼,潮土、砂姜黑土缺锌,水稻土富铁、锰、铜,盐土富硼。其分布呈明显的地域性,可分为山地丘陵(鲁东和鲁中南)低硼、中锌、高锰区;泛滥平原(鲁西北)低锌、中硼锰区。  相似文献   

17.
Phosphate rock (PR) was activated via acidulation with HCl, EDTA, and oxalic acid to enhance its reactivity. The release, lateral transport, and uptake of phosphorus (P) along with trace metals from pristine and activated PRs were investigated in a soil micro-block system over a period of 27 days, using wheat (Triticum aestivum L.) plants. Significantly (p < 0.05) higher amounts of available soil P, Fe, Mn, and Zn were released from all the PRs after application to soil within first 9 days of seedling transplantation, while the release of other trace metals (Cd, Co, Cr, Cu, Ni, and Pb) was minimal (<1.2 mg kg?1). On cumulative basis, APR-O (oxalic acid activated PR) was the most efficient amendment releasing 164% more available P, followed by APR-E (EDTA activated PR) releasing 130% more available P, compared to the pristine PR. Similar results were also observed in the release of available Fe, Mn, Zn, and other trace metals. The highest diffusive mass fluxes for available P, Mn, Fe, and Zn in soil were observed after 3 days of seedling transplantation, which reduced subsequently. The uptake of P, Fe, Mn, and Zn by wheat plants was increased by 394%, 715%, 92%, and 91%, respectively, in APR-O application compared to the pristine PR, while it was increased by 280%, 188%, 16%, and 27%, respectively, in APR-E application compared to the pristine PR. Subsequently, APR-O and APR-E amendments resulted in enhanced shoot lengths, root lengths, shoot dry matter, and root dry matter contents of wheat plants. Hence, it was concluded that activation of PR with oxalic acid and EDTA prior to direct soil application may enhance the reactivity of PR and could serve as a cost-effect fertilization strategy for higher wheat crop production.  相似文献   

18.
Results presented in this paper come from two long-term fertilization experiments carried out in Skierniewice (since 1923) and _ yczyn (since 1960). The top layer of soil in Skierniewice contains a little more clay and silt (17%) than at _ yczyn (14%), but the climatic conditions are alike - the mean for many years shows the precipitation of 520mm and temperature 7,9°C. Soil samples for the determination of microelements were collected in the years 1999 and 2000 from the control plots (Ca) and from combinations corresponding to 3 fertilization systems: mineral (CaNPK), organic (Ca + FYM) and mixed organic-mineral (CaNPK + FYM). The contents of B, Cu, Zn, Mn were determined in 4 extract solutions: 0,01mol CaCl2, EDTA, 1mol HCl and HF (total contents). The paper presents average results for the last two years. The following amounts of microelements (%) in relation to the total contents in particular extract solutions were obtained: CaCl 2 m Cu 0,4< Zn 2,2< Mn 3,5 < B 5,0; EDTA - B 2,4 < Mn 5,7 < Zn 9,0 < Cu 13,9; HCl - B 7,8 < Cu 37,3 < Zn 37,6< Mn 72,5. The soil contents of readily soluble forms of Mn were significantly higher in non-limed than in limed soil, while the amounts of B, Cu and Zn were higher in limed soils as some amounts of Cu and Zn were present in lime fertilizers. In the system of mineral fertilization, some amounts of boron and zinc were introduced to the soil together with fertilizers, however, they were insufficient in view of nutritional requirements. On the other hand, in the organic-mineral system the amounts of introduced boron were adequate, copper and zinc twice higher and manganese four times higher. The use of mineral fertilization alone for 26 years, leads to soil depletion of zinc and copper and the use of manure alone enriches soil in those components.  相似文献   

19.
Modern agricultural systems have to provide enough micronutrient output to meet all the nutritional needs of people. Accordingly, knowledge on micronutrient status in soil and crop edible tissues is necessary. This study was carried out to investigate zinc (Zn), iron (Fe), manganese (Mn), and copper (Cu) concentration of calcareous paddy soil and the relative rice grain. Rice crops (straw, hull, and grain) and associated surface soils (0–25 cm) were collected from 136 fields and analyzed for total and diethylene triamine pentaacetic acid (DTPA) available Zn, Fe, Mn, and Cu. The DTPA-Zn concentration in more than 50% of paddy soils was less than its critical deficiency concentration (2 mg kg−1), while the concentrations of DTPA Fe, Mn, and Cu were sufficient. The grain Zn concentration of more than 54% of the rice samples was less than 20 mg kg−1. About 55% and 49% of the rice samples were deficient in Mn and Cu, respectively, while the Fe concentration in rice grains was sufficient. A significant negative correlation was found between the CaCO3 content and soil DTPA-extractable Zn, Fe, Mn, and Cu. There were significant relationships between the total soil phosphorus and DTPA-extractable micronutrient concentrations. By considering the average daily rice consumption of 110 g per capita, the Zn, Fe, Mn, and Cu intake from rice consumption was estimated to be 2.4, 7.7, 1.6, and 0.7 mg for adults, respectively.  相似文献   

20.
The objective of this study was to investigate changes of total concentrations and various extract-defined Al and heavy metal fractions in Slovak agricultural soils during the last 25 years. We compared 7 stored soil samples collected between 1966 and 1970 with samples collected in 1994 at the same sites. Seven fractions of Al, Cd, Cr, Cu, Fe, Mn, Ni, Pb, and Zn were determined with a sequential extraction procedure in all samples. Total concentrations of Cd, Zn, Mn, Ni, and Cu were lower in the 1994 samples; those of Al, Fe, Pb, and Cr were higher. Based on the initial concentrations, the average total concentration changes were: Cd(-10,3%)<Zn(-7,2%)<Mn(-4,8%)<Ni(-2,3%)<Cu(-1,4%)<Al(+2,1%)<Fe(+2,9%)<Cr(+7,4%)<Pb(+8,3%). This row is consistent with the decrease in metal mobility. The differences in salt-extractable metals showed the same pattern; however, changes were more pronounced than for total concentrations. The results suggest that decreases during the last 25 years are caused by higher leaching than deposition rates and increases vice versa. The highest increase in Cr and Pb concentrations is observed in the EDTA-extractable fraction, which mainly characterizes organically bound metals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号