首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
磷石膏改良强酸性黄壤的效应研究   总被引:5,自引:0,他引:5  
采用盆栽试验,以耐铝能力弱的高粱和强酸性黄壤为研究对象,探讨了磷石膏对强酸性环境高粱生长、养分平衡以及对土壤有效养分和交换铝的影响。结果表明,在强酸性黄壤上,由于铝毒作用,即使施足氮磷钾肥,高粱也生长不良;施用磷石膏和石灰的高粱生长正常,各生物学性状均极显著优于对照,施磷石膏高粱长势更优于施石灰者,高粱干重与磷石膏、石灰的施用量呈二次曲线变化(回归方程分别为:y=6.88 11.92x-1.65x2,R=0.983;y=6.88 6.39x-0.72x2,R=0.996),高粱株高和根长与磷石膏、石灰的施用量也呈二次曲线变化;磷石膏降低酸性黄壤铝毒、提高植物钙含量的效果略逊于石灰,在提高植物营养三要素(特别是磷、钾元素)的作用方面优于石灰,施磷石膏高粱磷、钾含量较石灰处理分别提高117.0%~200.0%和13.0%~14.8%;施磷石膏生长良好的高粱植株氮/磷、氮/钾、钾/磷比分别为6.8~7.1,1.2~1.3和5.4~5.6,比值适中、变幅小,氮/铝、磷/铝、钾/铝、钙/铝比分别是对照植株的1.9~2.0倍,5.8~6.3倍,1.8~2.1倍和2.0~2.5倍,改善和调节了高粱体内氮、磷、钾、钙养分的平衡;施磷石膏的土壤有效氮、磷、钾、钙较对照极显著增加,土壤有效磷、钾分别比施石灰提高41.8%~114.2%和59.4%~67.5%,施石灰的土壤有效磷、钾与对照差异不显著。  相似文献   

2.
采用盆栽试验, 研究了贵州强酸性(pH 4.3)黄壤施用磷石膏对高粱生长、养分平衡、细胞膜保护酶活性的影响.结果表明, 在强酸性土壤上种植耐铝能力弱的高粱, 铝毒害明显, 即使施用足量的氮磷钾肥, 作物也生长不良.施用磷石膏和石灰后高粱出苗和生长正常, 各生物学性状均极显著优于对照, 施磷石膏高粱长势优于施石灰处理;高粱干物质量与磷石膏(X1)、石灰(X2)的施用量呈二次曲线变化(回归方程分别为: Yw=6.88+11.92X1-1.65X12, R=0.983**;Yw=6.88+6.39X2-0.72X22, R=0.996**);磷石膏降低酸性黄壤铝毒、提高植物钙含量的效果略逊于石灰, 在提高植物营养3要素(特别是磷、钾元素)的作用方面优于石灰, 施磷石膏植株磷含量是石灰处理的1.17~2.43倍;施高量磷石膏的高粱植株氮/磷、氮/钾、钾/磷比值分别为6.8~7.1、1.2~1.3和5.4~5.6, 比值适中、变幅小, 氮/铝、磷/铝、钾/铝、钙/铝比值提高, 改善和调节了高粱体内氮、磷、钾、钙养分的平衡.高粱叶片细胞膜保护酶(SOD、CAT和POD)活性分析表明, 施磷石膏、石灰后SOD和CAT活性增加, POD活性和脯氨酸含量下降, 施磷石膏效果优于石灰.  相似文献   

3.
4.
Traditional soil testing has a limited predictability about available nutrients for plant uptake. Potential of ion exchange resin membrane (RM) or plant root simulator probe is evaluated to determine the effect of moisture on nutrient availability and uptake by corn (Zea mays L.), under greenhouse condition. Available nutrient concentrations measured by RM in two soil series at three soil moisture levels (40%, 60%, and 80% of field capacity) with (W) and without (W/O) the plant at V3 and V7 stages were compared with plant nutrient content at the V7 stage. Soil moisture did not influence RM-extracted nutrient concentrations (except for N at V3). Concentrations of nitrogen (N), phosphorus (P), potassium (K), sulfur (S), and iron (Fe) from RM at the V3 stage significantly correlated with shoot uptake. The presence of plant (W- vs. W/O-plant) significantly influenced RM-nutrient concentration at both stages. RM can predict crop nutrient requirements.

Abbreviations: Ion exchange resin membrane (RM); nitrogen (N); phosphorus (P); potassium (K), sulfur (S), field capacity (FC)  相似文献   


5.
Incinerating turkey manure is a new option in the USA to generate renewable energy and to eliminate environmental problems associated with manure stockpiling. Incineration produces turkey manure ash (TMA) with a nutrient content of 43 g phosphorus (P) kg?1 and 100 g potassium (K) kg?1. We conducted a greenhouse pot study using a low P (6 mg kg?1) and high K (121 mg kg?1) soil/sand mixture with a 7.0 pH to evaluate early growth response of corn (Zea mays L.) to TMA. A control and five rates based on P (5.6, 10.9, 16.5, 21.9, and 27.2 mg kg?1) and respective K contents in TMA were compared with triple-superphosphate and potassium chloride fertilizer. Plant height and stalk thickness at 24 and 31 days after emergence (DAE) were greatest with the fertilizer, but no differences were detected at the final sampling (52 DAE). Regardless of nutrient source, plant biomass increased with P rate. Because of faster initial plant development, corn dry matter 52 DAE was 15 to 20% greater with fertilizer than with TMA. Corn tissue P concentration was greater with TMA than with fertilizer, but P uptake was similar. Tissue micronutrient concentrations were greatest for the control. Bray 1 P appeared to extract excessive amounts of P in TMA-amended soil, whereas soil P levels with the Olsen extractant provided an estimate of plant-available P that was consistent with plant response. Based on this first approximation, we conclude that TMA is a potential source of P for field crops. Field studies are required to determine recommended application rates.  相似文献   

6.
Abstract

Knowledge of relationships between variation in early plant growth and soil nutrient supply is needed for effective site‐specific management of no‐till fields. This study assessed relationships between soil test phosphorus (STP) and potassium (STK) with early plant growth and P or K content of young corn (Zea mays L.) and soybean [Glycine max (L.) Merr.] plants in eight no‐till fields. Composite soil (0–15 cm depth) and plant (V5‐V6 growth stages) samples were collected from 400‐m2 areas at the center of 0.14‐ha cells of a 16‐cell square grid and from 2‐m2 areas spaced 3 m along each of two 150‐m intersecting transects. Correlation, regression, multivariate factor analyses were used to study the relationships between the variables. Variability was higher for samples collected from the transects. Plant dry weight (DW), P uptake (PU), and K uptake (KU) usually were correlated with STP and STK but the correlations varied markedly among fields. Relationships between soil and plant variables could not always be explained by known nutrient sufficiency levels for grain production. Plant P concentration (PC) was not always correlated with STP and sometimes it increased linearly with STP, but other times increased curvilinearly until a maximum was reached. Plant K concentration (KC) usually was correlated with STK, however, and increased linearly with increasing STK even in fields with above‐optimum STK. The results suggest greater susceptibility of early growth to STP than to STK and greater plant capacity to accumulate K compared with P over a wide range of soil nutrient supplies. Variation in STK likely is a major direct cause of variation in KC over a wide range of conditions but variation in STP is not likely a major direct cause of variation in PC when high STP predominates.  相似文献   

7.
[目的]探讨人工刺槐林植被恢复对土壤水分和养分的影响,为半干旱黄土丘陵区植被恢复与生态建设提供理论依据。[方法]选择山西省黄河中游典型黄土丘陵沟壑区的人工刺槐林为研究对象,评估不同退耕年限刺槐林地土壤水分和养分特征。[结果]刺槐林地能够有效改善土壤水分条件,尤其在造林初期,土壤有机质和全氮平均含量显著提高,且具有明显的表聚性;刺槐林地对浅层土壤水分和养分的改善作用较大,土壤水分在40cm以上土层坑内平均水分比坑外提高了3.97%,在40cm以下土层仅提高了2.74%;土壤养分在20cm以上土层,坑内土壤有机质、全氮、全磷和全钾平均含量分别比坑外提高了6.61%,6.14%,1.55%和1.98%;在20cm以下土层,对土壤全磷和全钾无明显改善作用。[结论]刺槐林地不同程度地改善和提高了于浅层坑内土壤水分和养分状况。  相似文献   

8.
Commonly used soil analyses and resin capsules are employed to assess nutrient status in agriculture soils, but their validity in semi-arid ecosystems is unknown. Field studies with six rates of nitrogen (N) and phosphorus (P) application were established on crested wheat stands in both Rush Valley and Skull Valley, Utah. Resin capsule and conventional soil tests for nitrate (NO3)-N, ammonium (NH4)-N, and P were administered, and plant nutrient status was examined. Resin capsules were removed and replaced, and soil samples were taken every 90 d for 1 year. Concentration of P in resin capsules was not related to P rate but sodium bicarbonate (NaHCO3)-extracted P was, and resin NH4-N, resin NO3-N, potassium chloride (KCl)–extracted NO3-N and KCl-extracted NH4-N were all related to N rate. Only KCl-extracted NO3-N and NH4-N levels related to plant tissue N. Overall, traditional soil tests are more effective than resin capsules in semi-arid field conditions, but resin capsules have potential for use in N assessment.  相似文献   

9.
Abstract

In a pot experiment, the ability of Trifolium balansae and Trifolium subterraneum to utilise 10‐year‐old phosphorus (P) fertiliser residues in the soil was determined relative to the effectiveness of freshly‐applied superphosphate. The soil samples for the pot experiment were collected February 1994 from a field experiment to which six levels of P either as triple superphosphate, North Carolina rock phosphate, or Queensland rock phosphate were applied in 1984 and six levels of P as triple superphosphate were applied in 1994 just before the soil samples were collected. T. balansae utilised the P residues more effectively than T. subterraneum to produce dry herbage and required about half as much applied P to produce the same yield.  相似文献   

10.
The vine-growing region of Lumbarda, located in the southeastern part of the island of Korcula, Croatia, has deep sandy soils (paleodunes) associated with the Mediterranean climate and provides optimal conditions for cultivating the autochthonous vine variety Vitis vinifera L. cv. Grk. Unfortunately, recently growers have noted declining yield and quality of grapes resulting from inadequate vineyard management (particularly unsustainable management of soil organic matter) and the occurrence of viral diseases. To revitalize and maintain the vineyards in the Lumbarda region, a detailed study was carried out involving intensive soil survey, analysis of grapevine nutrient status, positive clonal selection, and establishment of new vineyards with virus-free plant material. Preliminary soil survey results provided insight into the extent of variability in major physical and chemical soil characteristics. Based on these results, eight markedly different vineyards were selected for detailed analysis of grapevine nutrients [boron (B), calcium (Ca), copper (Cu), iron (Fe), potassium (K), magnesium (Mg), manganese (Mn), phosphorus (P), and zinc (Zn)] at key development stages to detect potential imbalances that may hamper vine growth and affect its production. Leaf blades and petioles were sampled at midflowering and midveraison stages during the 2007–8 growing season from each of the selected vineyards. The greatest variability in nutrient content between the study sites was recorded for Cu, and considerable variability was also determined for B, Mn, Mg, and P. Differences in fertilization practices are the most common reasons for this variability. The results point to B deficiency in some of the vineyards and suggest potentially toxic levels of Cu in others.  相似文献   

11.
ABSTRACT

Field experiments were conducted for two consecutive years to evaluate the influence of cow dung and rice husk application rates on soil chemical properties and nutrient composition of cocoyam cormels. The treatments comprised four rates each of cow dung and rice husk (0, 10, 20, and 30 t/ha) arranged as a factorial experiment using randomized complete block design with three replicates. The treatments were incorporated into the soil 2 weeks before planting of cocoyam each year. After 2 years of cropping, soil samples were collected from the respective plots and analyzed so also cocoyam cormels. Cow dung application positively and significantly (P < .05) affected soil pH, organic matter (OM), and the soil nutrients (r = 0.95, 0.98, and 0.94–1.00, respectively) while rice husk application significantly and positively influenced soil OM, nitrogen and phosphorus (r = 0.98, 0.95, and 0.98, respectively). Aside potassium content that was enhanced, cow dung application did not significantly affect the nutrient composition of the cocoyam cormels. However, 30 t/ha of applied rice husk caused significant reduction in crude protein and fiber contents but significant increase in carbohydrate. There was negative and significant correlation between rice husk and the cormels crude protein (r = ?0.97). A total of 20 t/ha each of the organic fertilizers was found to be optimum for improving soil fertility and invariably yield without compromising the nutrient content of the cocoyam cormels.  相似文献   

12.
Abstract

A greenhouse experiment was conducted with alfalfa (Medicago sativa L. cv. Aragon wide leaf) to test the performance of a zeolite (phillipsite) phosphorus‐potassium (P‐K) fertilizer versus soluble potassium dihydrogen phosphate (KH2PO4) applied to a coarse‐textured substratum consisting of a mixture 1: 4 (in volume) soihbasaltic ash. Plants were sown at four fertilization rates and five harvests were collected after nine months. The nutrient content in plant tissue was higher in the plants treated with zeolitic fertilizer, although the response was primarily due to P. No differences due to the fertilizer source were observed for dry matter yield. When considering nutrient uptake, differences between the two fertilizers were enhanced, although the results for P are more pronounced. The soil nutrient content found after the experiment shows that available P was significantly higher in those pots that received the zeolite fertilizer, but no differences were found for K.  相似文献   

13.
Abstract

Calcified seaweed has long been used as a soil conditioner in northern Europe, but supposed beneficial responses have not been experimentally substantiated. Field and glasshouse studies examined treatment responses on the characteristics of sandy silt loam Hapludalf soils and on the growth and elemental composition of Loliumperenne. Agricultural lime was a treatment in both experiments, being chemically similar to calcified seaweed. Calcified seaweed was applied at 2 t ha‐1 and produced small increases in soil pH and extractable calcium (Ca). Significant increases in Lolium perenne growth were found in field studies after both calcified seaweed and lime applications. Smaller, but consistent, increases in growth were found in glasshouse pot studies. However, only one harvest showed a significant dry weight yield increase after calcified seaweed application compared with the untreated control. In pot studies, increases in soil extractable Ca were associated with increases in shoot elemental Ca. Decreases in shoot zinc (Zn) and manganese (Mn) concentrations were found after both calcified seaweed and lime applications. Total shoot element accumulation of Zn and Mn after calcified seaweed application were similar to those produced by the control, suggesting that decreases in shoot Zn and Mn concentrations resulted from dilution after increased shoot growth. However, total Zn and Mn accumulation decreased after lime application compared to the control and calcified seaweed treatments, probably resulting from fixation of available soil Zn and Mn through greater increases in soil pH.  相似文献   

14.
[目的] 探究耕地土壤养分含量空间格局及与环境因子的空间相关性,为区域耕地土壤施肥管控及农业生态环境保护等相关工作提供理论依据。[方法] 以湖北省枣阳市耕地为研究对象,选取土壤有机质、全氮、速效钾、缓效钾和有效磷5种土壤养分指标,并收集整理成土母质、土壤类型、土壤pH值、高程(DEM)、地表起伏度、坡度、植被覆盖度指数(NDVI)、平均气温、平均降水量和土地利用方式10种环境影响因子,利用普通克里金插值和信息熵原理,分析每种土壤养分的空间分布特征以及每种土壤养分空间分异特征与环境因子的相关性。[结果] 枣阳市土壤缓效钾空间异质性不明显,全域含量水平较高;其他4种养分均表现出不同程度的空间异质性。信息熵结果表明,5种土壤养分含量空间格局与成土母质、土壤类型和气候因子相关性均较强但相关程度存在差异;地形因子与全氮和有机质含量空间相关性较强,土壤pH值与土壤速效钾、缓效钾和有效磷相关性较强。[结论] 枣阳市土壤养分格局受自然因素影响较强,但相关性指数K值都较低,说明受到人为施肥与农作物消耗以及灌溉排水导致的土壤水化学反应及养分流失的影响。  相似文献   

15.
Abstract

Variations in papaya yields and fruit quality between papaya growers in Keaau, Hawai’i are mainly caused by differences in nutrient management. The objectives of this study were to (1) identify soil chemical properties and plant mineral compositions and their correlations in commercial papaya orchards; (2) compare soil chemical properties and plant nutrient concentrations between papaya orchards with low, medium and high fruit yields; (3) compare soil chemical properties and plant nutrient composition between orchards with low, medium and high fruit quality; (4) determine the difference in soil chemical properties, plant nutrient composition, and papaya yield and quality between new and long-term papaya land. Between 2016 and 2018, soil and plant tissue samples were collected from 100 commercial papaya orchards. Soil pH, potassium (K), calcium (Ca), and magnesium (Mg) were below and phosphorus (P) was above the recommended range for papaya. Petiole P, K, Ca, and sulfur (S) concentrations were below the recommended range. Fields with low fruit yields and low fruit quality were deficient in P, K, Ca, and zinc (Zn). Long-term papaya land had significantly (p?<?0.05) lower soil pH, total carbon (C), K, Ca, Mg, and sodium (Na), and higher concentrations of soil P than new papaya land. Nitrogen (N), boron (B), zinc (Zn), and copper (Cu) was significantly higher and Ca was significantly lower in petioles from papaya crops grown on long-term papaya land compared to new papaya land.  相似文献   

16.
The experiment was conducted to evaluate the nutrient utilization ability of sweet orange (Citrus sinensis L. Osbeck) budded on five rootstocks (viz., Sathgudi, Rangpur lime, Cleopatra mandarin, Troyer citrange, and Trifoliate orange) in Alfisols at the experimental farm of the Citrus Improvement Project, S. V. Agricultural College Farm, Tirupati, Andhra Pradesh, India. Results of the study revealed that all the five rootstocks showed differential behaviors in terms of nutrient absorption from the soil. Rootstocks exhibited significant variation in the leaf content of potassium (K), copper (Cu), manganese (Mn), and boron (B) at all the three stages of sampling. Concentrations of the following key nutrient elements significantly varied: phosphorus (P), calcium (Ca), magnesium (Mg), zinc (Zn), and Cu at stage 1; K, Ca, Mg, Zn, iron (Fe), and Mn at stage 2; and nitrogen (N), P, Zn, Fe, and B at stage 3. The performances of rootstocks in terms of relative nutrient accumulation indices (RNAIs) were in the order of Sathgudi (1.00) > Rangpur lime (0.98) > Cleopatra mandarin (0.96) > Trifoliate orange (0.76) > Troyer citrange (0.69). The present study clearly demonstrated that citrus rootstocks employed had differential nutritional behavior and different abilities to utilize plant nutrient elements. Thus, the findings of the present study and the methodology adopted can help the horticultural breeders and nutritionists choose the best rootstock/scion combination having the desirable traits of nutrient utilization ability and also to plan effective fertilizer schedule programs for achieving greater yields.  相似文献   

17.
Potassium-mobilizing bacterial strain Frateuria aurantia was examined for plant-growth-promoting effects and nutrient uptake on tobacco (Nicotiana tabacum L.) grown in vertisols as a field experiment for two crop seasons, 2009–2010 and 2010–2011. Inoculation with bacterial strain Frateuria aurantia was found to increase biomass, nutrient content, and leaf quality of flue-cured Virginia (FCV) tobacco. Bacterial strain F. aurantia was able to enhance potassium uptake efficiently in tobacco plants when sulfate of potash was added to the soil. In tobacco, the ultimate product is the leaf that is consumed and has commercial value. In tobacco-growing soils treated with soluble potassium and inoculated with strain F. aurantia, the potassium content of the leaf was increased by 39%. Bacterial inoculation also resulted in greater nitrogen and phosphorus contents of aboveground plant components. The bacterial isolate was also able to colonize and develop in the rhizosphere soil of tobacco after root inoculation. Solubilization of potassium containing minerals by potassium-mobilizing bacteria in vertisols and their effect on tobacco plant growth, yield, and quality are reported in this study.  相似文献   

18.
A field experiment was carried out to study the influence of nitrogen (N), phosphorus (P), and potassium (K) nutrient supply on weed flora in maize. The investigations were conducted in a long-term fertilization experiment launched in 2003 on a loamy chernozem soil with lime deposits, in Fejér County, Hungary. The composition, biomass weight, and density of weeds were determined in relation to different nutrient supplies. Seventy-five percent of weeds consisted of three species: Ambrosia artemisiifolia L., Datura stramonium L., and Helianthus annuus L. Density of weeds varied relative to the different nutrient treatments, with a range of 82–131 plants m?2. The total weed density was significantly lower by 19.9–37.8 percent in the N-containing treatments (NP, NPK) than in non-N treatments. The density of the nitrophil D. stramonium L., Chenopodium album L., Chenopodium hybridum L., and Amaranthus blitoides S. Watson was higher when N supply was greater.  相似文献   

19.
Intensive cropping with conventional tillage results in a decline of soil organic carbon (SOC) with consequent deterioration of soil physical properties. Some studies indicate that this decline in SOC can be arrested by way of organic manure application and improved nutrient management practices. This study was conducted to find out the long-term effects of inorganic fertilizer, manure and lime application on organic carbon content and physical properties of an acidic Alfisol (Typic Haplustalf) under an annual soybean-wheat crop rotation. Six treatments namely, control (CON), nitrogen fertilization (NIT), nitrogen and phosphorus (NP), nitrogen, phosphorus and potassium (NPK), NPK plus manure (NPKM) and NPK plus lime (NPKL) from a long-term fertilizer experiment continuing at Ranchi, India, were chosen for this study. Soil samples were collected from the selected treatments after 29 crop cycles and analyzed for physical and chemical properties. The results indicated that SOC content in all the treatments decreased from initial levels, but the decrease was considerably less in NPKM (8.7%) and NPKL (10.9%) treatments than that in NIT (28.3%) treatment. The SOC at 0-15 and 15-30 cm depth was lowest in NIT and CON. The NPKM, NPKL and NPK treatments up to 30 cm soil depth recorded significantly higher SOC than NIT and CON. Application of balanced fertilizer along with manure (NPKM) or lime (NPKL) improved soil aggregation, soil water retention, microporosity and available water capacity and reduced bulk density of the soil in 0-30 cm depth over CON. In contrast, soil aggregate stability, microporosity and available water capacity were significantly lower in the NIT plots than that in CON. The study thus suggests that soil management practices in acidic Alfisols should include integrated use of mineral fertilizer and organic manure or lime to maintain the organic carbon status and physical environment of soil.  相似文献   

20.
A field experiment was conducted for five kharif seasons (2006–2011) in an Alfisol to study the effect of integrated use of lime, mycorrhiza, and inorganic and organics on soil fertility, yield, and proximate composition of sweet potato. Application of graded doses of nitrogen, phosphorus, and potassium (NPK) significantly increased the mean tuber yield of sweet potato by 44, 106, and 130 percent over control. Green manuring along with ½ NPK showed greater yield response over that of ½ NPK. The greatest mean tuber yield was recorded due to integrated application of lime, farmyard manure (FYM), NPK, and MgSO4 (13.69 t ha?1) over the other treatments. Inoculation of mycorrhiza combined with lime, FYM, and NPK showed a significant yield response of 10 percent over FYM + NPK. Conjunctive use of lime, inorganics, and organics not only produces sustainable crop yields but also improve soil fertility, nutrient-use efficiency, and apparent nutrient recovery in comparison to NPK and organic manures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号