首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 203 毫秒
1.
基于夏玉米冠层内辐射分布的不同层叶面积指数模拟   总被引:1,自引:1,他引:1  
为了模拟夏玉米冠层内各层叶面积指数垂直分布,光合有效辐射(photosynthetically active radiation, PAR)是研究作物群体光合作用和长势的重要特征参数,阐明冠层内PAR的垂直分布规律与冠层结构等参数之间的相关关系,可为遥感定量反演冠层结构参数提供模型基础。该文基于PAR在冠层内的辐射传输规律结合冠层结构模拟不同太阳高度角的PAR透过率垂直分布模型,并用地面冠层分析仪测量值进行验证,结果表明模型对封垄前玉米抽雄期冠层内PAR透过率垂直分布模拟精度较高。通过不同太阳高度角PAR透过率的垂直分布模型结合消光系数运用不同算法分别反演层叶面积指数(leaf area index, LAI),并与不同高度层LAI实测值进行比较。结果显示:Bonhomme& Chartier算法反演不同高度层LAI精度较高,上层均方根误差(root mean square error,RMSE)为0.18,中层RMSE为0.55,下层RMSE为0.09。不同太阳高度角反演结果存在差异,30°和45°高度角均能较好地反演下层LAI,RMSE分别为0.11与0.09;30°高度角反演中层LAI精度较高,RMSE为0.30;45°高度角反演上层LAI精度较高,RMSE为0.18。结果表明基于不同太阳高度角构建的层LAI反演模型更适于实现夏玉米不同高度层LAI的遥感估算。该研究可为模拟垄行结构冠层内LAI垂直分布提供参考。  相似文献   

2.
高光谱图像检测马铃薯植株叶绿素含量垂直分布   总被引:11,自引:6,他引:5  
为了检测马铃薯作物叶绿素含量,该文按照叶片垂直分布位置采集马铃薯叶片样本的成像高光谱数据,提取并计算了400个划分区域的平均光谱,使用手持式SPAD-502叶绿素仪测定了相应位置的SPAD(soil plant analysis development)值。采用标准正态变量校正(standard normal variate,SNV)方法对光谱数据进行预处理,分析了开花期植株自下而上垂直叶位间光谱和叶绿素分布关系,其光谱反射率在382~700 nm区间随叶位的升高反射率增加(上中下),在700~1 019 nm范围下叶位反射率高于上部和中部叶位(下上中),且SPAD均值依次为36.41、43.11、47.04。分别采用相关系数分析法和随机蛙跳(random frog,RF)算法筛选叶绿素含量敏感波长,并建立偏最小二乘回归(partial least squares regression,PLSR)模型。结果如下:基于相关系数分析法筛选的12个敏感波长主要位于530~550和706~708nm范围,建模精度RC2为0.7 588,验证精度RV2为0.5 773;基于random frog算法筛选的11个敏感波长(554.62、560.26、575.04、576.35、595.09、604.7、649.44、731.8、752.78、786.38、789.97 nm),建模精度RC2为0.8 423,验证精度RV2为0.7 676。选取RF-PLS模型计算马铃薯叶片每个像素点的叶绿素含量,绘制不同叶位马铃薯叶片叶绿素含量可视化分布图,结果可反映马铃薯在开花期植株上叶片叶绿素动态响应关系,实现了不同叶位马铃薯叶片叶绿素含量无损检测以及分布可视化表达。  相似文献   

3.
以半湿润地区土垫旱耕人为土为供试土壤,采用田问试验,研究了不同施氮水平下夏玉米(Zea maysL.)拔节期、灌浆期和成熟期3个生育期冠层叶片氮素、叶绿素相对值(SPAt)值)的垂直分布规律及其差异;同时对各层叶片含氮量、SPAR值与施氮量进行相关分析.结果表明,在各生育期不同叶层叶片含氮量按上、中、下层顺序呈明显递减规律,从全生育期不同施氮处理看,上层比中层增加6.64%,中层比下层增加5.18%.随施氮量增加,中上层叶片含氮量差异增大,中下层叶片含氮量差异减小.冠层内叶片SPAD值垂直分布规律与叶片含氮量分布规律相类似.相关分析表明,全生育期各层叶片SPAD值与叶片含氮量呈极显著线性正相关关系(R=0.503**).进一步分析发现,各层叶片SPAD值,叶片含氮量与施氮量的相关性以上层叶关系最为密切,揭示了夏玉米氮素营养诊断的较好叶片是上层叶位.  相似文献   

4.
利用高光谱指数进行冬小麦条锈病严重度的反演研究   总被引:8,自引:3,他引:5  
通过选取不同条锈病抗性品种(高抗、高感、中间)进行田间不同梯度(对照、轻度、中度、重度)的接种试验,在接种后每隔7 d左右,同步测定了不同品种、不同处理的冠层光谱、单叶光谱和对应目标的病情指数以及叶面积指数、叶倾角等生物物理参数和叶绿素、SPAD数值等生物化学参数。通过对获取的光谱数据和生物物理参数和生物化学参数进行统计分析。研究结果表明,小麦被条锈病感染以后,叶片叶绿素含量急剧下降,通过研究叶片绿度值(SPAFD)值与叶绿素含量之间的关系,建立了叶片叶绿素含量和叶片SPAD数值之间的线性关系方程。通过在借鉴前人研究结果的基础上,通过筛选光谱指数,在冠层水平上构建作物冠层结构不敏感色素反演指数(CCII=TCARI/OSAVI)来反演全生育期不同处理的SPAD数值,此反演结果受品种类型、冠层结构和土壤背景的影响较小,线性方程的决定系数达到极显著的水平。在单叶水平选取归一化的光化学指数(NPRI)来反演单叶的病情指数(DI),线性方程的决定系数达到极显著的水平。所以该文通过选取适当的高光谱指数进行冬小麦条锈病严重度的反演的理论和方法是可行的。且反演结果受不同品种、不同叶面积指数和土壤背景等的影响均较小。  相似文献   

5.
为了利用冠反射光谱特征监不同筋力小麦品种的生理特征差异,利用不同筋力小麦冠层反射光谱的差异,可对不同小麦品种进行遥感识别与监测。试验以低筋小麦品种扬麦13和高筋小麦品种徐麦31为材料,结合不同生育时期两品种叶面积指数(LAI)、叶绿素含量和叶片氮含量的变化,以及相应的光谱参数,分析不同筋力小麦冠层反射光谱的变化特征。结果表明,在近红外和可见光波段,从拔节期到蜡熟期,扬麦13的冠层光谱反射率均高于徐麦31,在孕穗期两品种的差异最显著;LAI、叶片叶绿素和氮含量均在开花时达最大值,扬麦13的叶绿素含量明显高于徐麦31,而LAI和叶片氮含量则低于徐麦31。比值植被指数(RVI)、归一化植被指数(NDVI)与LAI;红边位置(λr)、红边幅值(Dr)与叶绿素含量,氮素反射指数(NRI)、抗大气植被指数(VARIgreen)与叶片氮含量极显著相关,表明RVI、NDVI可以反演LAI;λr、Dr可以反演叶绿素;NRI、VARIgreen可以反演叶片氮含量的变化。以上光谱参数能反映小麦相关指标的变化情况,不同时期可运用小麦冠层反射光谱进行不同筋力小麦品种识别,孕穗期为最佳识别时期。通过本研究,以期为不同筋力小麦品种的遥感识别提供依据。  相似文献   

6.
初步分析了11个玉米品种在7个生育期的植株叶绿素含量、类胡萝卜素含量和叶绿素/类胡萝卜素比值在不同层位(上层、中层和下层)的变化特点及其与15个高光谱参量间的关系,结果发现1)玉米叶片叶绿素/类胡萝卜素比值较明显表现出随形态学高度的下降而升高;2)绝大多数的高光谱参量与叶绿素含量(mg·g-1FW)间达到了显著或极显著相关,但相关性不强(最大r=0.56,n=77);3)高光谱参量与叶绿素/类胡萝卜素比值间相关性,明显强于与叶绿素含量或类胡萝卜素含量间的相关性(最大r=0.75,n=77),并表现出明显的层间差异,下层明显强于中层和上层。研究表明,在用高光谱反射分析玉米的色素状况时,用叶绿素/类胡萝卜素比值代替叶绿素含量作为色素指标可提高分析精度。  相似文献   

7.
基于光谱反射信息的作物单产估测模型研究进展   总被引:5,自引:1,他引:4  
及时准确地估测区域作物单产信息,对于粮食安全预警、粮食贸易流通,以及农业可持续发展都具有非常重要的意义。基于光谱反射信息的遥感技术,能够实时获取作物和土壤在不同时间和空间尺度下的分布信息,为区域作物单产估测研究提供了新的机遇和挑战。在简单介绍作物反射光谱特性和作物单产影响因素的基础上,分经验模型、半经验半机理模型和机理模型三部分,详细论述了基于光谱反射信息的作物单产遥感估测模型的国内外研究进展,并指出基于作物生长机理模型与多时相遥感信息同化技术的研究,应该是未来区域作物单产估测的重要发展方向之一。今后应该重点加强作物冠层关键参数(如叶面积指数、叶绿素浓度、作物吸收光合有效辐射系数、植被覆盖率等)的定量反演研究,同时加强多源遥感数据替代和整合技术研究,以及作物模型与遥感信息同化关键技术研究,以进一步改善单产估测精度和提高系统可运行性。  相似文献   

8.
基于扫描成像的作物近地高光谱获取与特征分析   总被引:1,自引:1,他引:0  
为了验证自主研制的扫描成像光谱仪(PIS)在近地应用的可行性,该文以小麦、玉米为研究对象,利用PIS近地获取作物冠层和叶片的高光谱图像,在对田间和室内获得的成像数据进行对比分析的同时,探讨了成像光谱采集过程中的影响因素。此外,将PIS获取的成像高光谱与地物光谱仪(ASD)测定的高光谱进行比对研究。结果表明:PIS能准确收集作物的光谱信息,且采集的高光谱数据与ASD具有很好的一致性;PIS在田间采集作物光谱信息时,受氧气吸收的影响,在760 nm处有明显的干扰吸收;PIS除了能反映作物不同叶位叶片、不同器官光谱的差异,还可依据影像提取杂草、土壤对作物冠层光谱的影响程度。上述初步结果为进一步应用PIS进行农作物长势诊断提供了参考。  相似文献   

9.
基于多时相和多角度光谱信息的作物株型遥感识别初探   总被引:2,自引:1,他引:1  
作物群体具有一定的冠层几何结构(株型),对于不同株型的品种,在相同的叶面积指数时冠层反射光谱往往不同,使得利用冠层反射光谱来反演叶面积指数等生物物理和生物化学参数时存在不同株型产生的误差,该文定量研究了不同叶面积指数条件下,作物株型对冠层反射光谱的影响,并提出运用波长800 nm处起身期的冠层反射光谱与该波长处拔节期和起身期冠层反射光谱的比值,可以初步实现高密度披散型品种、低密度披散型品种、高密度中间型品种、低密度中间型品种、高密度直立型品种和低密度直立型品种的遥感识别,结合一定条件下选取的15°、30°和45°观测天顶角下,与可见光和近红外波段(波长)处的二向反射冠层反射光谱数值大小进行结合,可以初步实现作物株型的遥感识别。  相似文献   

10.
玉米冠层叶片光谱反射率与玉米长势空间变异的关系   总被引:3,自引:2,他引:1  
为了寻找一种快捷获取玉米叶绿素空间分布信息的方法,研究了玉米苗期冠层叶片光谱反射率的变化特征,分析了不同生长阶段冠层叶片光谱反射率的空间分布和叶绿素质量浓度的空间分布.研究结果表明:玉米苗期冠层叶片叶绿素的质量浓度空间分布不均匀.冠层叶片的叶绿素质量浓度与光谱指数RVI的相关性较低,与归一化差异植被指数NDV1值和550 nm波段的反射率均有较高的相关性.分析550nm波段的反射率值与冠层叶片叶绿素质量浓度值的相关关系,显示二者成负相关变化趋势,相关系数绝对值在0.69~0.88范围随着生长期的变化而逐渐增大,五叶期前期的相关性系数绝对值达到苗期最大值,表明550 nm波段反射率值能够较好的反映玉米苗期叶绿素质量浓度的水平,分析和掌握550 nm波段反射率值的变化及其空间分布特性对快速监测玉米苗期生长状况,对指导田间施肥具有重要意义.  相似文献   

11.
冬小麦红边参数各向异性特征分析   总被引:1,自引:1,他引:1  
基于冬小麦冠层高光谱二向性反射波谱数据及其配套的非波谱参数,对可见光至近红外波段二向性反射特性和红边参数随观测角度的变化情况进行了分析。结果表明:冬小麦在太阳主平面呈现出强烈的各向异性反射特性。不同叶面积指数下,由于作物冠层的结构特征和其他组分参数发生较大变化,其二向性反射特性在强度和趋势上也有一定的变化。红边幅值及红边峰值面积随观测角度的变化而发生了变化,呈现为各向异性特征,而红边位置几乎不发生变化。鉴于以往采用垂直观测时的红边参数推算植物生化组分含量,该文指出应选取合理观测角度下的红边参数来精确反演其他相关参数。另外为了定量描述红边幅值随观测角度而变化,提出了红边幅值各向异性指数和红边幅值各向异性因子。  相似文献   

12.
A study was conducted in Phoenix, AZ on stressed and unstressed field plots of Anza wheat (Triticum aestivum L.) on an Avondale loam soil (a fine, loamy, mixed calcareous hyperthermic Anthropic Torrifluvent) to determine effects of panicles on the apparent canopy temperature and their consequent impact on the estimation of crop stress. The panicles were removed from a 1.5 × 4-m sample of each plot by extracting the peduncle from the upper sheath. For each treatment canopy radiative temperature measurements were made from vertical and oblique angles (30° from the horizontal), using an 8° field-of-view (FOV) infrared thermometer, at half-hour intervals from sunrise to sunset on 20, 22, and 30 April. Complementary measurements included leaf water potential and leaf diffusive resistance.Apparent canopy temperatures obtained from the oblique view of the canopy with panicles and under well-watered conditions were 2°C warmer than those of the unstressed canopy without panicles. In the stressed plot the canopy with panicles was 1°C cooler than that without panicles, but this effect was only noticed around 1200 MST. The temperature difference between viewing angles was apparently caused by different percentages of panicle area viewed by the radiometer. In the vertical view panicles contributed to 3% of the total viewed area while at the 30° oblique view panicles comprised 40% of the area. Since energy balance calculations of a non-transpiring cylinder with dimensions similar to a typical wheat panicle showed its temperature would remain very close to that of the surrounding air, canopy temperatures were adjusted for the proportion of panicles viewed assuming they were in equilibrium with air temperature. Results showed the corrected canopy temperatures of the canopy with panicles were the same as those measured in the canopy without panicles. Such a correction is necessary to avoid an overestimate of the stress level and an underestimate of differences between treatments. Crops with non-transpiring and/or well-ventilated morphological structures above the foliage will require this correction if radiative canopy temperatures are to be used in irrigation management programs or stress detection studies.  相似文献   

13.
冬小麦苗期叶绿素含量检测光谱学参数寻优   总被引:2,自引:3,他引:2  
光谱分析技术是作物生长检测的主要手段,为了解决大田漫反射采集所造成的光谱基线漂移和偏移问题,研究采集了冬小麦冠层325~1 075 nm范围反射光谱,采用多元散射校正方法对小麦原始光谱进行预处理。采取遗传算法对光谱特征参数寻优并结合相关分析结果,选取486、599、699和762 nm波长处反射率值并组合计算了RVI(ratio vegetation index),DVI(difference vegetation index),NDVI(normalized difference vegetation index)和SAVI(soil-adjusted vegetation index)共12个植被指数,分析了各植被指数与叶绿素含量值之间的相关关系,结果显示:DVI和SAVI可抑制苗期土壤背景干扰并对叶绿素含量响应较为敏感,与叶绿素含量相关性最优的参数分别为DVI(762,599)、SAVI(762,599)、DVI(762,699)和SAVI(762,699),与叶绿素含量的相关系数都达到0.6以上。基于相关性最优光谱植被指数DVI(762,699)和SAVI(762,599)利用最小二乘-支持向量回归建立冬小麦叶绿素含量预测模型,建模集决定系数为0.681,验证集决定系数为0.611。该模型可用于无损检测冬小麦苗期叶绿素含量,以期为后续施肥决策提供支持。  相似文献   

14.
基于Hyperion高光谱图像的氮和叶绿素制图   总被引:6,自引:2,他引:6  
利用云南省西双版纳的Hyperion高光谱图像,利用多元逐步线性回归建立了Hyperion一阶导数反射率与氮浓度和叶绿素浓度的关系,结果表明:经6S模型大气校正的Hyperion反射率与野外实测冠层反射率基本吻合;经6S校正的反射率计算的NDVI,高于用绝对亮度、表观反射率计算的NDVI,而且前者与野外实测计算的NDVI最接近;预测氮和叶绿素浓度的模型中大部分入选波长与蛋白质的吸收有关,R2分别为0.586和0.506。产生了冠层水平氮和叶绿素浓度的空间分布。结果表明:水稻的氮浓度最高,为2.5%~3.5%,其次为甘蔗、土豆、茶树,氮浓度为1.0%~2.5%,而大多数森林的氮浓度在1.0%~1.5%。对于叶绿素,水稻、马铃薯的叶绿素浓度最高,为25%~35%,其次为玉米、甘蔗,叶绿素浓度为20%~30%,而栗树的叶绿素浓度为20%~25%。证明高光谱图像是大尺度估算植被生化组分的有效方式。  相似文献   

15.
Increasing nitrogen use efficiency (NUE) in irrigated corn production is of great importance to overall agricultural sustainability. Studies have shown that crop canopy sensors can aid in this pursuit as they allow for the determination of nitrogen (N) requirements in split applications later in the growing season. Fertigation can also increase NUE as many split applications can be conducted. If crop canopy sensors could be used to direct N fertigation rates, overall NUE may be increased even further. However, in some cases, N differences may need to be determined later in the growing season after corn has tasseled, which can cause issues with crop canopy sensor readings. Therefore, a study was initiated to evaluate the potential of a crop canopy sensor to differentiate between N levels at two corn (Zea mays) growth stages (R1 and R3) after the corn had tasseled. The sensor was placed in three orientations to evaluate which orientation best determined the corn N status across two sensor-calculated indices while avoiding taking measurements involving the corn tassel. These orientations were (1) nadir, between corn rows (above canopy), (2) 45° off nadir within the corn canopy (below corn tassel), and (3) 90° off nadir within the corn canopy (below corn tassel). The results of this study show that N differences in late season corn can be determined by utilizing crop canopy sensors in an inter-row orientation. Results also show that the red edge normalized difference vegetation index (ReNDVI) index is superior to the normalized difference vegetation index (NDVI) index for late season N determinations in corn. These results suggest that crop canopy sensors could be an effective tool for determining N requirements of corn late in the growing season.  相似文献   

16.
基于SVR算法的小麦冠层叶绿素含量高光谱反演   总被引:21,自引:14,他引:7  
为给小麦的长势监测与农艺决策提供科学依据,利用高光谱技术实现了小麦冠层叶绿素含量的估测。通过分析18种高光谱指数对叶绿素的估测能力,筛选出可敏感表征叶绿素含量的指数REP,利用地面光谱数据为样本集,以最小二乘支持向量回归(least squares support vector regression,LS-SVR)算法建立了小麦冠层叶绿素含量反演模型,其校正决定系数C-R2与预测决定系数P-R2分别为0.751与0.722,在各指数中反演精度最高。进一步分析表明,REP对叶绿素含量以及LAI值较高与较低的样本均具备良好的预测能力,可有效避免样本取值范围以及冠层郁闭度等因素对叶绿素含量估测的影响。利用LS-SVR反演模型完成了OMIS影像叶绿素含量的遥感填图,并以地面实测值进行检验,其拟合模型R2与RMSE值分别为0.676与1.715。结果表明,高光谱指数REP所建立的LS-SVR模型实现了叶绿素含量的准确估测,可用于小麦叶绿素含量信息的快速、无损获取。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号