首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Rapamycin has been reported to reduce cancer cell survival in certain tumors following radiation therapy, but the mechanisms driving this phenomenon are unclear. Rapamycin inhibits mTOR signaling, a pathway responsible for several essential cell functions. The objective of this study was to investigate the effects of rapamycin and radiation on the activation and inhibition of mTOR signaling and the relationship between mTOR signaling and DNA damage response in vitro using canine mast cell tumor (MCT) cancer cell lines. Rapamycin rapidly inhibited S6K phosphorylation in a dose-dependent manner. Ionizing radiation (3, 6, or 10 Gy) was able to activate mTOR signalling, but the combination of radiation and rapamycin maintained mTOR inhibition. The comet assay revealed that co-treatment with rapamycin induced modest increases in the severity of DNA damage to MCT cells, but that these differences were not statistically significant. Although the relationship between mTOR and DNA damage response in MCT cancer cell lines remains unclear, our findings suggest the possibility of interaction, leading to enhancement of radiation response.  相似文献   

2.
OBJECTIVE: To characterize the radiosensitivity and capacity for sublethal damage repair (SLDR) of radiation-induced injury in 4 canine osteosarcoma cell lines. SAMPLE POPULATION: 4 canine osteosarcoma cell lines (HMPOS, POS, COS 31, and D17). PROCEDURES: A clonogenic colony-forming assay was used to evaluate the cell lines' intrinsic radiosensitivities and SLDR capacities. Dose-response curves for the cell lines were generated by fitting the surviving fractions after radiation doses of 0 (control cells), 1, 2, 3, 6, and 9 Gy to a linear quadratic model. To evaluate SLDR, cell lines were exposed to 2 doses of 3 Gy (split-dose experiments) at an interval of 0 (single 6-Gy dose), 2, 4, 6, or 24 hours, after which the surviving fractions were assessed. RESULTS: Mean surviving fraction did not differ significantly among the 4 cell lines at the radiation doses tested. Mean surviving fraction at 2 Gy was high (0.62), and the alpha/beta ratios (predictor of tissue sensitivity to radiation therapy) for the cell lines were low (mean ratio, 3.47). The split-dose experiments revealed a 2.8- to 3.9-fold increase in cell survival when the radiation doses were applied at an interval of 24 hours, compared with cell survival after radiation doses were applied consecutively (0-hour interval). CONCLUSIONS AND CLINICAL RELEVANCE: Results indicated that these canine osteosarcoma cell lines are fairly radioresistant; alpha/beta ratios were similar to those of nonneoplastic, late-responding tissues. Future clinical investigations should involve increasing the fraction size in a manner that maximizes tumor killing without adverse effects on the nonneoplastic surrounding tissues.  相似文献   

3.
Canine melanoma is one of the most important diseases in small animal medicine. Protein phosphatase 2A (PP2A), a well conserved serine/threonine phosphatase, plays a critical role as a tumor suppressor. SET/I2PP2A is an endogenous inhibitor for PP2A, which directly binds to PP2A and suppresses its phosphatase activity. Elevated SET protein levels have been reported to exacerbate human tumor progression. The role of SET in canine melanoma, however, has not been understood. Here, we investigated the potential therapeutic role for SET inhibitors in canine melanoma. The expression of SET protein was observed in 6 canine melanoma cell lines. We used CMeC-1 cells (primary origin) and CMeC-2 cells (metastatic origin) to generate cell lines stably expressing SET-targeting shRNAs. Knockdown of SET expression in CMeC-2, but not in CMeC-1, leads to decreased cell proliferation, invasion and colony formation. Phosphorylation level of p70 S6 kinase was decreased by SET knockdown in CMeC-2, suggesting the involvement of mTOR (mammalian target of rapamycin)/p70 S6 kinase signaling. The SET inhibitors, OP449 and FTY720, more effectively killed CMeC-2 than CMeC-1. We observed PP2A activation in CMeC-2 treated with OP449 and FTY720. These results demonstrated the potential therapeutic application of SET inhibitors for canine melanoma.  相似文献   

4.
As major fuels for the small intestinal mucosa, dietary amino acids (AA) are catabolized in the mitochondria and serve as sources of energy production. The present study was conducted to investigate AA metabolism that supply cell energy and the underlying signaling pathways in porcine enterocytes. Intestinal porcine epithelial cells (IPEC-J2) were treated with different concentrations of AA, inhibitor, or agonist of mammalian target of rapamycin complex 1 (mTORC1) and adenosine monophosphate activated protein kinase (AMPK), and mitochondrial respiration was monitored. The results showed that AA treatments resulted in enhanced mitochondrial respiration, increased intracellular content of pyruvic acid and lactic acid, and increased hormone-sensitive lipase mRNA expression. Meanwhile, decreased citrate synthase, isocitrate dehydrogenase alpha, and carnitine palmitoyltransferase 1 mRNA expression were also observed. We found that AA treatments increased the protein levels of phosphorylated mammalian target of rapamycin (p-mTOR), phosphorylated-p70 ribosomal protein S6 kinase, and phosphorylated-4E-binding protein 1. What is more, the protein levels of phosphorylated AMPK α (p-AMPKα) and nicotinamide adenine dinucleotide (NAD)-dependent protein deacetylase sirtuin-1 (SIRT1) were decreased by AA treatments in a time depending manner. Mitochondrial bioenergetics and the production of tricarboxylic acid cycle intermediates were decreased upon inhibition of mTORC1 or AMPK. Moreover, AMPK activation could up-regulate the mRNA expressions of inhibitor of nuclear factor kappa-B kinase subunit beta (Ikbkβ), integrin-linked protein kinase (ILK), unconventional myosin-Ic (Myo1c), ribosomal protein S6 kinase beta-2 (RPS6Kβ2), and vascular endothelial growth factor (VEGF)-β, which are downstream effectors of mammalian target of rapamycin (mTOR). The mRNA expressions of phosphatidylinositol 4,5-bisphosphate 3-kinase catalytic subunit delta isoform (PIK3CD) and 5′-AMP-activated protein kinase subunit gamma-1 (PRKAG1), which are upstream regulators of mTOR, were also up-regulated by AMPK activation. On the other hand, AMPK activation also down-regulated FK506-binding protein 1A (FKBP1A), serine/threonine-protein phosphatase 2A 55 kDa regulatory subunit B beta isoform, phosphatase and tensin homolog (PTEN), and unc-51 like autophagy activating kinase 1 (Ulk1), which are up-stream regulators of mTORC1. Taken together, these data indicated that AA regulated cellular energy metabolism through mTOR and AMPK pathway in porcine enterocytes. These results demonstrated interactions of AMPK and mTORC1 pathways in AA catabolism and energy metabolism in intestinal mucosa cells of piglets, and also provided reference for using AA to remedy human intestinal diseases.  相似文献   

5.
Cutaneous papillomas (CP) are one of the most common skin neoplasms in dogs. Different murine models have shown that persistent activation of the phosphatidylinositol 3‐kinase/Akt/mammalian target of rapamycin (PI3K/Akt/mTOR) pathway has a central role in the development and progression of CP. The purpose of this study were to evaluate the immunohistochemical expression pattern of two key molecules involved in the PI3K/Akt/mTOR signalling pathway, pAktSer473, and pS6Ser235/236, on 36 canine specimens of CP using a tissue microarray. The results show that the PI3K/Akt/mTOR signalling pathway is persistently activated in CP of dogs, pointing to this pathway as a potential therapeutic target.  相似文献   

6.
The LH surge induces functional and morphological changes in granulosa cells. Mechanistic target of rapamycin (mTOR) is an integrator of signalling pathways in multiple cell types. We hypothesized that mTOR kinase activity integrates and modulates molecular pathways induced by LH in granulosa cells during the preovulatory period. Cows were ovariectomized and granulosa cells collected at 0, 3, 6, 12 and 24 hr after GnRH injection. While RHEB mRNA levels increased at 3 and 6 hr, returning to basal levels by 12 hr after GnRH treatment, RHOA mRNA levels increased at 6 hr and remained high thereafter. Western blot analyses revealed increased S6K phosphorylation at 3 and 6 hr after GnRH injection. Similarly, mRNA levels of ERK1/2, STAR and EGR‐1 were higher 3 hr after GnRH treatment. Rapamycin treatment inhibited mTOR activity and increased AKT activity, but did not alter ERK1/2 phosphorylation and EGR1 protein levels in cultured bovine granulosa cells. Rapamycin also inhibited LH‐induced increase in EREG mRNA abundance in granulosa cells in vitro. However, intrafollicular injection of rapamycin did not suppress ovulation. These findings suggest that mTOR is involved in the control of EREG expression in cattle, which may be triggered by LH surge stimulating RHEB and S6K activity.  相似文献   

7.
Adrenergic receptor (AR) expression has been demonstrated at several sites of primary and metastatic tumour growth and may influence proliferation, survival, metastasis and angiogenesis. AR antagonists like propranolol and carvedilol inhibit proliferation, induce apoptosis and synergize with chemotherapy agents in some cancers. Radiation resistance is mediated in many cells by upregulation of pro‐survival pathways, which may be influenced by ARs. Studies evaluating AR antagonists combined with radiation are limited. The purpose of this study was to determine the effect of propranolol and carvedilol on viability and radiosensitivity in sarcoma cell lines. The hypothesis was that propranolol and carvedilol would increase radiosensitivity in four primary bone sarcoma cell lines. Single agent propranolol or carvedilol inhibited cell viability in all cell lines in a concentration‐dependent manner. The mean inhibitory concentrations (IC50) for carvedilol were approximately 4‐fold lower than propranolol and may be clinically relevant in vivo. Immunoblot analysis confirmed AR expression in both human and canine sarcoma cell lines; however, there was no correlation between baseline AR protein expression and radiosensitivity. Short duration treatment with carvedilol and propranolol did not significantly affect clonogenic survival. Prolonged exposure to propranolol and carvedilol significantly decreased the surviving fraction of canine osteosarcoma cells after 3Gy radiation. Based on our results and possible in vivo activity in dogs, further studies investigating the effects of carvedilol on sarcoma are warranted.  相似文献   

8.
Because of rare glucagon‐like peptide‐2 (GLP‐2) receptor (+) cells within the gut mucosa, the molecular mechanisms transducing the diverse actions of GLP‐2 remain largely obscure. This research identified the naturally occurring intestinal cell lines that endogenously express GLP‐2R and determined the molecular mechanisms of the protective effects of GLP‐2‐mediated tight junctions (TJ) in GLP‐2R (+) cell line. (i) Immunohistochemistry results showed that GLP‐2R is localised to the epithelia, laminae propriae and muscle layers of the small and large bowels of newborn piglets. (ii) GLP‐2R expression was apparent in the cytoplasm of endocrine cells in IPEC‐J2 cell lines. (iii) The protein expressions of ZO‐1, claudin‐1, occludin, p‐PI3K, p‐Akt, p‐mTOR and p‐p70S6K significantly (p < 0.05) increased in GLP‐2‐treated IPEC‐J2 cells, and all of them significantly (p < 0.05) decreased when LY‐294002 or rapamycin was added. GLP‐2 improves intestinal TJ expression of GLP‐2R (+) cells through the PI3k/Akt/mTOR/p70S6K signalling pathway.  相似文献   

9.
Sodium-coupled neutral amino acid transporter 2 (SNAT2), also known as solute carrier family 38 member 2 (SLC38A2), is expressed in the skeletal muscle. Our research previously indicated that SNAT2 mRNA expression level in the skeletal muscle was modulated by genotype and dietary protein. The aim of this study was to investigate the key role of the amino acid transporter SNAT2 in muscle cell growth, differentiation, and related signaling pathways via SNAT2 suppression using the inhibitor α-methylaminoisobutyric acid (MeAIB). The results showed that SNAT2 suppression down-regulated both the mRNA and protein expression levels of SNAT2 in C2C12 cells, inhibited cell viability and differentiation of the cell, and regulated the cell distribution in G0/G1 and S phases (P < 0.05). Meanwhile, most of the intercellular amino acid content of the cells after MeAIB co-culturing was significantly lower (P < 0.05). Furthermore, the mRNA expression levels of system L amino acid transporter 1 (LAT1), silent information regulator 1, and peroxisome proliferator-activated receptor-gamma co-activator 1 alpha, as well as the protein expression levels of amino acid transporters LAT1 and vacuolar protein sorting 34, were all down-regulated. The phosphorylated protein expression levels of mammalian target of rapamycin (mTOR), regulatory-associated protein of mTOR, 4E binding protein 1, and ribosomal protein S6 kinase 1 after MeAIB treatment were also significantly down-regulated (P < 0.05), which could contribute to the importance of SNAT2 in amino acid transportation and skeletal muscle cell sensing. In conclusion, SNAT2 suppression inhibited C2C12 cell growth and differentiation, as well as the availability of free amino acids. Although the mTOR complex 1 signaling pathway was found to be involved, its response to different nutrients requires further study.  相似文献   

10.
11.
To determine the influence of the transplantation site of canine osteosarcoma (OS) cell lines on tumour growth and pulmonary metastasis, three OS cell lines were transplanted into nude mice via subcutaneous (SC), intratibial (IT) or intravenous (IV) injection. IT‐xenografts exhibited greater potential for developing primary masses and pulmonary metastasis than SC‐xenografts. In IT and IV xenografts, lung micrometastases along with phosphorylated ezrin–radixin–moesin (p‐ERM) overexpression were found in mice xenografted with HMPOS and OOS cells after 1 week and metastasis was found with decreased p‐ERM expression at later time points. The expression of ezrin and p‐ERM in the primary tumours of IT‐xenografted mice was higher than those in SC‐xenografted mice with HMPOS and OOS cells. The results suggest that the orthotopic transplantation site plays an important role in the spontaneous metastasis of canine OS and that ezrin phosphorylation may be involved in the early metastatic mechanism of canine OS cells.  相似文献   

12.
Mammalian target of rapamycin (mTOR) signaling is one of the main signaling pathways controlling protein synthesis. Leucine treatment upregulates mTOR signaling, which enhances protein synthesis; however, the mechanisms are not well understood. Herein, treatment of C2C12 myoblast cells with leucine enhanced the phosphorylation of mTOR and ribosomal protein S6 kinase. Leucine treatment also decreased the adenosine monophosphate/ATP ratio in myoblasts by 36.4 +/- 9.1% (P < 0.05) and reduced the phosphorylation of adenosine monophosphate-activated protein kinase (AMPK) alpha subunit at Thr172 (28.6 +/- 4.9% reduction, P < 0.05) and inhibited AMPK activity (43.6 +/- 3.5% reduction, P < 0.05). In addition, leucine increased the phosphorylation of mTOR at Ser2448 by 63.5 +/- 10.0% (P < 0.05) and protein synthesis by 30.6 +/- 6.1% (P < 0.05). Applying 5-aminoimidazole-4-carbox-amide 1-beta-d-ribonucleoside, an activator of AMPK, abolished the stimulation of mTOR signaling by leucine, showing that AMPK negatively controls mTOR signaling. To further show the role of AMPK in mTOR signaling, myoblasts expressing a dominant negative AMPKalpha subunit were employed. Negative myoblasts had very low AMPK activity. The activation of mTOR induced by leucine in these cells was abated, showing that AMPK contributed to mTOR activation. In conclusion, leucine stimulates mTOR signaling in part through AMPK inhibition. This study implicates AMPK as an important target for nutritional management to enhance mTOR signaling and protein synthesis in muscle cells, thereby increasing muscle growth.  相似文献   

13.
Adjuvant chemotherapy improves survival time in dogs receiving adequate local control for appendicular osteosarcoma, but most dogs ultimately succumb to metastatic disease. The fluoroquinolone antibiotic enrofloxacin has been shown to inhibit survival and proliferation of canine osteosarcoma cells in vitro. Others have reported that fluoroquinolones may modulate cellular responses to DNA damaging agents and that these effects may be differentially mediated by p53 activity. We therefore determined p53 status and activity in three canine osteosarcoma cell lines and examined the effects of enrofloxacin when used alone or in combination with doxorubicin or carboplatin chemotherapy. Moresco and Abrams canine osteosarcoma cell lines contained mutations in p53, while no mutations were identified in the D17 cells or in a normal canine osteoblast cell line. The addition of enrofloxacin to either doxorubicin or carboplatin resulted in further reductions in osteosarcoma cell viability; this effect was apparent regardless of p53 mutational status or downstream activity.  相似文献   

14.
15.
The receptor tyrosine kinase (RTK) Met is known to be over‐expressed in canine osteosarcoma (OSA). In human cancers, the RTKs Met, epidermal growth factor receptor (EGFR) and Ron are frequently co‐expressed and engage in heterodimerization, altering signal transduction and promoting resistance to targeted therapeutics. We found that EGFR and Ron are expressed in canine OSA cell lines and primary tissues, EGFR and Ron are frequently phosphorylated in OSA tumour samples, and Met is co‐associated with EGFR and Ron in canine OSA cell lines. Transforming growth factor alpha (TGFα) and hepatocyte growth factor (HGF) stimulation induced amplification of ERK1/2 and STAT3 phosphorylation in OSA cells and Met was phosphorylated following TGFα stimulation providing evidence for receptor cross‐talk. Lastly, treatment of OSA cells with combined gefitinib and crizotinib inhibited cell proliferation in an additive manner. Together, these data support the notion that Met, EGFR and Ron interact in OSA cells and as such, may represent viable targets for therapeutic intervention.  相似文献   

16.
The mammalian target of rapamycin (mTOR) signaling controls nutrient-stimulated protein synthesis in skeletal muscle, whereas ubiquitin-proteasome systems control the degradation of myofibrillar proteins. The objective of this study was to elucidate the effect of nutrient restriction on the mTOR signaling and ubiquitin-proteasome system in the skeletal muscle of cows and their fetuses. Beginning 30 d after conception, 20 cows were fed either a control diet that provided 100% nutrient requirements or a nutrient-restricted diet at 68.1% of NE(m) and 86.7% of metabolizable protein requirement. Cows were slaughtered on 125 d of gestation, and the LM of both cows and fetuses was sampled for the measurement of mTOR, ribosomal protein S6, adenosine 5'-monophosphate-activated protein kinase (AMPK), and protein ubiquitylation. When comparing the muscle samples from nutrient-restricted and control cows and their fetuses, no difference was observed for the content of mTOR and ribosomal protein S6, but the phosphorylation of mTOR at Ser(2448) and ribosomal protein S6 at Ser(235/336) were greater (P < 0.05) in control muscle than in muscle from nutrient-restricted animals. Because the phosphorylation of mTOR and ribosomal protein S6 upregulates translation, these results showed that nutrient restriction inhibits protein synthesis in muscle. The activity of AMPK in the muscle of nutrient-restricted cows was significantly lower (P = 0.05) than that of control cows. The protein ubiquitylation, however, was greater (P < 0.05) in the muscle from nutrient-restricted cows, showing accelerated protein degradation. No difference in the protein ubiquitylation was detected for fetal muscle. Data suggested that the decreased protein synthesis and promoted protein degradation resulted in muscle atrophy of pregnant cows, but not in fetal muscle. Results of this study show that in response to nutrient restriction, protein degradation was differentially regulated between cow and fetal muscle. The atrophy of cow muscle during nutrient deficiency may involve the enhanced degradation of muscle proteins.  相似文献   

17.
Introduction:  It has been reported that 40–50% of canine osteosarcoma cases have p53 mutations. The p53 tumor supressor gene plays a central role in cell cycle regulation and induction of apoptosis. We previously showed that adenoviral vector expressing canine P53 (AxCA‐cp53) inhibited growth of cultured canine osteosarcoma cell lines. Here, we evaluated anti‐tumor effect of adenovirus‐mediated p53 gene therapy on the growth of canine osteosarcomas transplanted into nude mice.
Methods:  Nine nude mice were subcutaneously injected with cells of a canine osteosarcoma cell line (POS) having p53 gene mutation. The transplanted tumors formed into nude mice were injected with AxCA‐cp53, AxCA‐LacZ (adenovirus vector expressing LacZ) or PBS (3 mice each) 7 times during 15 days. Tumor sizes were measured every 3 days for 27 days after injection with the adenovirus vectors. Expression efficiency of the adenovirus‐mediated gene transfer was examined by X‐gal staining and P53 immunostaining. Effects of the P53 expression on cell cycle control were examined by RT‐PCR for expression of p21 gene downstream of P53.
Results:  Significant differences in the tumor size was observed between the transplanted osteosarcoma tissues injected with AxCA‐cp53 and those injected with AxCA‐LacZ or PBS. Expressions of LacZ and P53 were confirmed at the injection sites of the tumors. Moreover, p21 mRNA expression was shown to be induced in the AxCA‐cp53‐injected tumors, indicating the funciton of P53 to induce cell cycle arrest.
Conclusions:  Adenoviral vector expressing canine P53 inhibited the growth of canine ostersarcoma transplanted into nude mice.  相似文献   

18.
19.
OBJECTIVE: To determine whether exposure of canine osteosarcoma cells to deracoxib or piroxicam results in decreased viability, whether the cytotoxic effects of deracoxib and piroxicam involve induction of apoptosis, and whether deracoxib is a more potent inhibitor of osteosarcoma cell growth than piroxicam. SAMPLE POPULATION: 1 fibroblast and 3 osteosarcoma cell lines. PROCEDURE: Cell counts and viability assays were performed using osteosarcoma cells (POS, highly metastatic POS, and canine osteosarcoma cell 31) and fibroblasts after 72 hours of incubation with deracoxib at concentrations of 0.5 microM to 500 microM or piroxicam at concentrations of 1 microM to 1,000 microM. Percentage viability was determined for each concentration. A DNA fragmentation analysis was performed to assess drug-induced apoptosis. RESULTS: Concentration of deracoxib required for 50% inhibition of cell viability (IC50) was reached in all 3 osteosarcoma cell lines and ranged from 70 to 150 microM, whereas the IC50 for piroxicam was only reached in the POS cell line at 500 microM. Neither deracoxib nor piroxicam induced sufficient toxicity in fibroblasts to reach an IC50. Exposure of osteosarcoma cells to cytotoxic concentrations of deracoxib and piroxicam did not result in DNA fragmentation. CONCLUSIONS AND CLINICAL RELEVANCE: Intermediate and high concentrations of deracoxib and high concentrations of piroxicam were cytotoxic to osteosarcoma cells; neither drug inhibited cell viability at typical plasma concentrations in dogs. Deracoxib inhibited viability of cells at concentrations that did not affect fibroblast viability. There was no evidence of apoptosis induction for either drug; however, only 1 cell line was evaluated for apoptosis induction and only for a limited selection of drug concentrations.  相似文献   

20.
The lack of advanced animal models of human cancers is considered a barrier to developing effective therapeutics. Canine and human melanomas are histologically disparate but show similar disease progression and response to therapies. The purpose of these studies was to compare human and canine melanoma tumours and cell lines regarding MAPK and PI3K/AKT signalling dysregulation, and response to select molecularly targeted agents. Pathway activation was investigated via microarray and mutational analysis. Growth inhibition and cell cycle effects were assessed for pathway inhibitors AZD6244 (MAPK) and rapamycin (PI3K/AKT) in human and canine melanoma cells. Human and canine melanoma share similar differential gene expression patterns within the MAPK and PI3K/AKT pathways. Constitutive pathway activation and similar sensitivity to AZD6244 and rapamycin was observed in human and canine cells. These results show that human and canine melanoma share activation and sensitivity to inhibition of cancer‐related signalling pathways despite differences in activating mutations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号